[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * WAODE.java |
---|
| 19 | * Copyright 2006 Liangxiao Jiang |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.bayes; |
---|
| 23 | |
---|
| 24 | import weka.classifiers.Classifier; |
---|
| 25 | import weka.classifiers.AbstractClassifier; |
---|
| 26 | import weka.core.Capabilities; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.Option; |
---|
| 30 | import weka.core.RevisionUtils; |
---|
| 31 | import weka.core.TechnicalInformation; |
---|
| 32 | import weka.core.TechnicalInformationHandler; |
---|
| 33 | import weka.core.Utils; |
---|
| 34 | import weka.core.Capabilities.Capability; |
---|
| 35 | import weka.core.TechnicalInformation.Field; |
---|
| 36 | import weka.core.TechnicalInformation.Type; |
---|
| 37 | |
---|
| 38 | import java.util.Enumeration; |
---|
| 39 | import java.util.Vector; |
---|
| 40 | |
---|
| 41 | /** |
---|
| 42 | <!-- globalinfo-start --> |
---|
| 43 | * WAODE contructs the model called Weightily Averaged One-Dependence Estimators.<br/> |
---|
| 44 | * <br/> |
---|
| 45 | * For more information, see<br/> |
---|
| 46 | * <br/> |
---|
| 47 | * L. Jiang, H. Zhang: Weightily Averaged One-Dependence Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, 970-974, 2006. |
---|
| 48 | * <p/> |
---|
| 49 | <!-- globalinfo-end --> |
---|
| 50 | * |
---|
| 51 | <!-- technical-bibtex-start --> |
---|
| 52 | * BibTeX: |
---|
| 53 | * <pre> |
---|
| 54 | * @inproceedings{Jiang2006, |
---|
| 55 | * author = {L. Jiang and H. Zhang}, |
---|
| 56 | * booktitle = {Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006}, |
---|
| 57 | * pages = {970-974}, |
---|
| 58 | * series = {LNAI}, |
---|
| 59 | * title = {Weightily Averaged One-Dependence Estimators}, |
---|
| 60 | * volume = {4099}, |
---|
| 61 | * year = {2006} |
---|
| 62 | * } |
---|
| 63 | * </pre> |
---|
| 64 | * <p/> |
---|
| 65 | <!-- technical-bibtex-end --> |
---|
| 66 | * |
---|
| 67 | <!-- options-start --> |
---|
| 68 | * Valid options are: <p/> |
---|
| 69 | * |
---|
| 70 | * <pre> -D |
---|
| 71 | * If set, classifier is run in debug mode and |
---|
| 72 | * may output additional info to the console</pre> |
---|
| 73 | * |
---|
| 74 | * <pre> -I |
---|
| 75 | * Whether to print some more internals. |
---|
| 76 | * (default: no)</pre> |
---|
| 77 | * |
---|
| 78 | <!-- options-end --> |
---|
| 79 | * |
---|
| 80 | * @author Liangxiao Jiang (ljiang@cug.edu.cn) |
---|
| 81 | * @author H. Zhang (hzhang@unb.ca) |
---|
| 82 | * @version $Revision: 5928 $ |
---|
| 83 | */ |
---|
| 84 | public class WAODE |
---|
| 85 | extends AbstractClassifier |
---|
| 86 | implements TechnicalInformationHandler { |
---|
| 87 | |
---|
| 88 | /** for serialization */ |
---|
| 89 | private static final long serialVersionUID = 2170978824284697882L; |
---|
| 90 | |
---|
| 91 | /** The number of each class value occurs in the dataset */ |
---|
| 92 | private double[] m_ClassCounts; |
---|
| 93 | |
---|
| 94 | /** The number of each attribute value occurs in the dataset */ |
---|
| 95 | private double[] m_AttCounts; |
---|
| 96 | |
---|
| 97 | /** The number of two attributes values occurs in the dataset */ |
---|
| 98 | private double[][] m_AttAttCounts; |
---|
| 99 | |
---|
| 100 | /** The number of class and two attributes values occurs in the dataset */ |
---|
| 101 | private double[][][] m_ClassAttAttCounts; |
---|
| 102 | |
---|
| 103 | /** The number of values for each attribute in the dataset */ |
---|
| 104 | private int[] m_NumAttValues; |
---|
| 105 | |
---|
| 106 | /** The number of values for all attributes in the dataset */ |
---|
| 107 | private int m_TotalAttValues; |
---|
| 108 | |
---|
| 109 | /** The number of classes in the dataset */ |
---|
| 110 | private int m_NumClasses; |
---|
| 111 | |
---|
| 112 | /** The number of attributes including class in the dataset */ |
---|
| 113 | private int m_NumAttributes; |
---|
| 114 | |
---|
| 115 | /** The number of instances in the dataset */ |
---|
| 116 | private int m_NumInstances; |
---|
| 117 | |
---|
| 118 | /** The index of the class attribute in the dataset */ |
---|
| 119 | private int m_ClassIndex; |
---|
| 120 | |
---|
| 121 | /** The starting index of each attribute in the dataset */ |
---|
| 122 | private int[] m_StartAttIndex; |
---|
| 123 | |
---|
| 124 | /** The array of mutual information between each attribute and class */ |
---|
| 125 | private double[] m_mutualInformation; |
---|
| 126 | |
---|
| 127 | /** the header information of the training data */ |
---|
| 128 | private Instances m_Header = null; |
---|
| 129 | |
---|
| 130 | /** whether to print more internals in the toString method |
---|
| 131 | * @see #toString() */ |
---|
| 132 | private boolean m_Internals = false; |
---|
| 133 | |
---|
| 134 | /** a ZeroR model in case no model can be built from the data */ |
---|
| 135 | private Classifier m_ZeroR; |
---|
| 136 | |
---|
| 137 | /** |
---|
| 138 | * Returns a string describing this classifier |
---|
| 139 | * |
---|
| 140 | * @return a description of the classifier suitable for |
---|
| 141 | * displaying in the explorer/experimenter gui |
---|
| 142 | */ |
---|
| 143 | public String globalInfo() { |
---|
| 144 | return |
---|
| 145 | "WAODE contructs the model called Weightily Averaged One-Dependence " |
---|
| 146 | + "Estimators.\n\n" |
---|
| 147 | + "For more information, see\n\n" |
---|
| 148 | + getTechnicalInformation().toString(); |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | /** |
---|
| 152 | * Gets an enumeration describing the available options. |
---|
| 153 | * |
---|
| 154 | * @return an enumeration of all the available options. |
---|
| 155 | */ |
---|
| 156 | public Enumeration listOptions() { |
---|
| 157 | Vector result = new Vector(); |
---|
| 158 | Enumeration enm = super.listOptions(); |
---|
| 159 | while (enm.hasMoreElements()) |
---|
| 160 | result.add(enm.nextElement()); |
---|
| 161 | |
---|
| 162 | result.addElement(new Option( |
---|
| 163 | "\tWhether to print some more internals.\n" |
---|
| 164 | + "\t(default: no)", |
---|
| 165 | "I", 0, "-I")); |
---|
| 166 | |
---|
| 167 | return result.elements(); |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | /** |
---|
| 172 | * Parses a given list of options. <p/> |
---|
| 173 | * |
---|
| 174 | <!-- options-start --> |
---|
| 175 | * Valid options are: <p/> |
---|
| 176 | * |
---|
| 177 | * <pre> -D |
---|
| 178 | * If set, classifier is run in debug mode and |
---|
| 179 | * may output additional info to the console</pre> |
---|
| 180 | * |
---|
| 181 | * <pre> -I |
---|
| 182 | * Whether to print some more internals. |
---|
| 183 | * (default: no)</pre> |
---|
| 184 | * |
---|
| 185 | <!-- options-end --> |
---|
| 186 | * |
---|
| 187 | * @param options the list of options as an array of strings |
---|
| 188 | * @throws Exception if an option is not supported |
---|
| 189 | */ |
---|
| 190 | public void setOptions(String[] options) throws Exception { |
---|
| 191 | super.setOptions(options); |
---|
| 192 | |
---|
| 193 | setInternals(Utils.getFlag('I', options)); |
---|
| 194 | } |
---|
| 195 | |
---|
| 196 | /** |
---|
| 197 | * Gets the current settings of the filter. |
---|
| 198 | * |
---|
| 199 | * @return an array of strings suitable for passing to setOptions |
---|
| 200 | */ |
---|
| 201 | public String[] getOptions() { |
---|
| 202 | Vector result; |
---|
| 203 | String[] options; |
---|
| 204 | int i; |
---|
| 205 | |
---|
| 206 | result = new Vector(); |
---|
| 207 | |
---|
| 208 | options = super.getOptions(); |
---|
| 209 | for (i = 0; i < options.length; i++) |
---|
| 210 | result.add(options[i]); |
---|
| 211 | |
---|
| 212 | if (getInternals()) |
---|
| 213 | result.add("-I"); |
---|
| 214 | |
---|
| 215 | return (String[]) result.toArray(new String[result.size()]); |
---|
| 216 | } |
---|
| 217 | |
---|
| 218 | /** |
---|
| 219 | * Returns the tip text for this property |
---|
| 220 | * |
---|
| 221 | * @return tip text for this property suitable for |
---|
| 222 | * displaying in the explorer/experimenter gui |
---|
| 223 | */ |
---|
| 224 | public String internalsTipText() { |
---|
| 225 | return "Prints more internals of the classifier."; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /** |
---|
| 229 | * Sets whether internals about classifier are printed via toString(). |
---|
| 230 | * |
---|
| 231 | * @param value if internals should be printed |
---|
| 232 | * @see #toString() |
---|
| 233 | */ |
---|
| 234 | public void setInternals(boolean value) { |
---|
| 235 | m_Internals = value; |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | /** |
---|
| 239 | * Gets whether more internals of the classifier are printed. |
---|
| 240 | * |
---|
| 241 | * @return true if more internals are printed |
---|
| 242 | */ |
---|
| 243 | public boolean getInternals() { |
---|
| 244 | return m_Internals; |
---|
| 245 | } |
---|
| 246 | |
---|
| 247 | /** |
---|
| 248 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 249 | * detailed information about the technical background of this class, |
---|
| 250 | * e.g., paper reference or book this class is based on. |
---|
| 251 | * |
---|
| 252 | * @return the technical information about this class |
---|
| 253 | */ |
---|
| 254 | public TechnicalInformation getTechnicalInformation() { |
---|
| 255 | TechnicalInformation result; |
---|
| 256 | |
---|
| 257 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 258 | result.setValue(Field.AUTHOR, "L. Jiang and H. Zhang"); |
---|
| 259 | result.setValue(Field.TITLE, "Weightily Averaged One-Dependence Estimators"); |
---|
| 260 | result.setValue(Field.BOOKTITLE, "Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006"); |
---|
| 261 | result.setValue(Field.YEAR, "2006"); |
---|
| 262 | result.setValue(Field.PAGES, "970-974"); |
---|
| 263 | result.setValue(Field.SERIES, "LNAI"); |
---|
| 264 | result.setValue(Field.VOLUME, "4099"); |
---|
| 265 | |
---|
| 266 | return result; |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | /** |
---|
| 270 | * Returns default capabilities of the classifier. |
---|
| 271 | * |
---|
| 272 | * @return the capabilities of this classifier |
---|
| 273 | */ |
---|
| 274 | public Capabilities getCapabilities() { |
---|
| 275 | Capabilities result = super.getCapabilities(); |
---|
| 276 | result.disableAll(); |
---|
| 277 | |
---|
| 278 | // attributes |
---|
| 279 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 280 | |
---|
| 281 | // class |
---|
| 282 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 283 | |
---|
| 284 | return result; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /** |
---|
| 288 | * Generates the classifier. |
---|
| 289 | * |
---|
| 290 | * @param instances set of instances serving as training data |
---|
| 291 | * @throws Exception if the classifier has not been generated successfully |
---|
| 292 | */ |
---|
| 293 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 294 | |
---|
| 295 | // can classifier handle the data? |
---|
| 296 | getCapabilities().testWithFail(instances); |
---|
| 297 | |
---|
| 298 | // only class? -> build ZeroR model |
---|
| 299 | if (instances.numAttributes() == 1) { |
---|
| 300 | System.err.println( |
---|
| 301 | "Cannot build model (only class attribute present in data!), " |
---|
| 302 | + "using ZeroR model instead!"); |
---|
| 303 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
| 304 | m_ZeroR.buildClassifier(instances); |
---|
| 305 | return; |
---|
| 306 | } |
---|
| 307 | else { |
---|
| 308 | m_ZeroR = null; |
---|
| 309 | } |
---|
| 310 | |
---|
| 311 | // reset variable |
---|
| 312 | m_NumClasses = instances.numClasses(); |
---|
| 313 | m_ClassIndex = instances.classIndex(); |
---|
| 314 | m_NumAttributes = instances.numAttributes(); |
---|
| 315 | m_NumInstances = instances.numInstances(); |
---|
| 316 | m_TotalAttValues = 0; |
---|
| 317 | |
---|
| 318 | // allocate space for attribute reference arrays |
---|
| 319 | m_StartAttIndex = new int[m_NumAttributes]; |
---|
| 320 | m_NumAttValues = new int[m_NumAttributes]; |
---|
| 321 | |
---|
| 322 | // set the starting index of each attribute and the number of values for |
---|
| 323 | // each attribute and the total number of values for all attributes (not including class). |
---|
| 324 | for (int i = 0; i < m_NumAttributes; i++) { |
---|
| 325 | if (i != m_ClassIndex) { |
---|
| 326 | m_StartAttIndex[i] = m_TotalAttValues; |
---|
| 327 | m_NumAttValues[i] = instances.attribute(i).numValues(); |
---|
| 328 | m_TotalAttValues += m_NumAttValues[i]; |
---|
| 329 | } |
---|
| 330 | else { |
---|
| 331 | m_StartAttIndex[i] = -1; |
---|
| 332 | m_NumAttValues[i] = m_NumClasses; |
---|
| 333 | } |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | // allocate space for counts and frequencies |
---|
| 337 | m_ClassCounts = new double[m_NumClasses]; |
---|
| 338 | m_AttCounts = new double[m_TotalAttValues]; |
---|
| 339 | m_AttAttCounts = new double[m_TotalAttValues][m_TotalAttValues]; |
---|
| 340 | m_ClassAttAttCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; |
---|
| 341 | m_Header = new Instances(instances, 0); |
---|
| 342 | |
---|
| 343 | // Calculate the counts |
---|
| 344 | for (int k = 0; k < m_NumInstances; k++) { |
---|
| 345 | int classVal=(int)instances.instance(k).classValue(); |
---|
| 346 | m_ClassCounts[classVal] ++; |
---|
| 347 | int[] attIndex = new int[m_NumAttributes]; |
---|
| 348 | for (int i = 0; i < m_NumAttributes; i++) { |
---|
| 349 | if (i == m_ClassIndex){ |
---|
| 350 | attIndex[i] = -1; |
---|
| 351 | } |
---|
| 352 | else{ |
---|
| 353 | attIndex[i] = m_StartAttIndex[i] + (int)instances.instance(k).value(i); |
---|
| 354 | m_AttCounts[attIndex[i]]++; |
---|
| 355 | } |
---|
| 356 | } |
---|
| 357 | for (int Att1 = 0; Att1 < m_NumAttributes; Att1++) { |
---|
| 358 | if (attIndex[Att1] == -1) continue; |
---|
| 359 | for (int Att2 = 0; Att2 < m_NumAttributes; Att2++) { |
---|
| 360 | if ((attIndex[Att2] != -1)) { |
---|
| 361 | m_AttAttCounts[attIndex[Att1]][attIndex[Att2]] ++; |
---|
| 362 | m_ClassAttAttCounts[classVal][attIndex[Att1]][attIndex[Att2]] ++; |
---|
| 363 | } |
---|
| 364 | } |
---|
| 365 | } |
---|
| 366 | } |
---|
| 367 | |
---|
| 368 | //compute mutual information between each attribute and class |
---|
| 369 | m_mutualInformation=new double[m_NumAttributes]; |
---|
| 370 | for (int att=0;att<m_NumAttributes;att++){ |
---|
| 371 | if (att == m_ClassIndex) continue; |
---|
| 372 | m_mutualInformation[att]=mutualInfo(att); |
---|
| 373 | } |
---|
| 374 | } |
---|
| 375 | |
---|
| 376 | /** |
---|
| 377 | * Computes mutual information between each attribute and class attribute. |
---|
| 378 | * |
---|
| 379 | * @param att is the attribute |
---|
| 380 | * @return the conditional mutual information between son and parent given class |
---|
| 381 | */ |
---|
| 382 | private double mutualInfo(int att) { |
---|
| 383 | |
---|
| 384 | double mutualInfo=0; |
---|
| 385 | int attIndex=m_StartAttIndex[att]; |
---|
| 386 | double[] PriorsClass = new double[m_NumClasses]; |
---|
| 387 | double[] PriorsAttribute = new double[m_NumAttValues[att]]; |
---|
| 388 | double[][] PriorsClassAttribute=new double[m_NumClasses][m_NumAttValues[att]]; |
---|
| 389 | |
---|
| 390 | for (int i=0;i<m_NumClasses;i++){ |
---|
| 391 | PriorsClass[i]=m_ClassCounts[i]/m_NumInstances; |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | for (int j=0;j<m_NumAttValues[att];j++){ |
---|
| 395 | PriorsAttribute[j]=m_AttCounts[attIndex+j]/m_NumInstances; |
---|
| 396 | } |
---|
| 397 | |
---|
| 398 | for (int i=0;i<m_NumClasses;i++){ |
---|
| 399 | for (int j=0;j<m_NumAttValues[att];j++){ |
---|
| 400 | PriorsClassAttribute[i][j]=m_ClassAttAttCounts[i][attIndex+j][attIndex+j]/m_NumInstances; |
---|
| 401 | } |
---|
| 402 | } |
---|
| 403 | |
---|
| 404 | for (int i=0;i<m_NumClasses;i++){ |
---|
| 405 | for (int j=0;j<m_NumAttValues[att];j++){ |
---|
| 406 | mutualInfo+=PriorsClassAttribute[i][j]*log2(PriorsClassAttribute[i][j],PriorsClass[i]*PriorsAttribute[j]); |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | return mutualInfo; |
---|
| 410 | } |
---|
| 411 | |
---|
| 412 | /** |
---|
| 413 | * compute the logarithm whose base is 2. |
---|
| 414 | * |
---|
| 415 | * @param x numerator of the fraction. |
---|
| 416 | * @param y denominator of the fraction. |
---|
| 417 | * @return the natual logarithm of this fraction. |
---|
| 418 | */ |
---|
| 419 | private double log2(double x,double y){ |
---|
| 420 | |
---|
| 421 | if (x < Utils.SMALL || y < Utils.SMALL) |
---|
| 422 | return 0.0; |
---|
| 423 | else |
---|
| 424 | return Math.log(x/y)/Math.log(2); |
---|
| 425 | } |
---|
| 426 | |
---|
| 427 | /** |
---|
| 428 | * Calculates the class membership probabilities for the given test instance |
---|
| 429 | * |
---|
| 430 | * @param instance the instance to be classified |
---|
| 431 | * @return predicted class probability distribution |
---|
| 432 | * @throws Exception if there is a problem generating the prediction |
---|
| 433 | */ |
---|
| 434 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 435 | |
---|
| 436 | // default model? |
---|
| 437 | if (m_ZeroR != null) { |
---|
| 438 | return m_ZeroR.distributionForInstance(instance); |
---|
| 439 | } |
---|
| 440 | |
---|
| 441 | //Definition of local variables |
---|
| 442 | double[] probs = new double[m_NumClasses]; |
---|
| 443 | double prob; |
---|
| 444 | double mutualInfoSum; |
---|
| 445 | |
---|
| 446 | // store instance's att values in an int array |
---|
| 447 | int[] attIndex = new int[m_NumAttributes]; |
---|
| 448 | for (int att = 0; att < m_NumAttributes; att++) { |
---|
| 449 | if (att == m_ClassIndex) |
---|
| 450 | attIndex[att] = -1; |
---|
| 451 | else |
---|
| 452 | attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); |
---|
| 453 | } |
---|
| 454 | |
---|
| 455 | // calculate probabilities for each possible class value |
---|
| 456 | for (int classVal = 0; classVal < m_NumClasses; classVal++) { |
---|
| 457 | probs[classVal] = 0; |
---|
| 458 | prob=1; |
---|
| 459 | mutualInfoSum=0.0; |
---|
| 460 | for (int parent = 0; parent < m_NumAttributes; parent++) { |
---|
| 461 | if (attIndex[parent]==-1) continue; |
---|
| 462 | prob=(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0/(m_NumClasses*m_NumAttValues[parent]))/(m_NumInstances + 1.0); |
---|
| 463 | for (int son = 0; son < m_NumAttributes; son++) { |
---|
| 464 | if (attIndex[son]==-1 || son == parent) continue; |
---|
| 465 | prob*=(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[son]] + 1.0/m_NumAttValues[son])/(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0); |
---|
| 466 | } |
---|
| 467 | mutualInfoSum+=m_mutualInformation[parent]; |
---|
| 468 | probs[classVal]+=m_mutualInformation[parent]*prob; |
---|
| 469 | } |
---|
| 470 | probs[classVal]/=mutualInfoSum; |
---|
| 471 | } |
---|
| 472 | if (!Double.isNaN(Utils.sum(probs))) |
---|
| 473 | Utils.normalize(probs); |
---|
| 474 | return probs; |
---|
| 475 | } |
---|
| 476 | |
---|
| 477 | /** |
---|
| 478 | * returns a string representation of the classifier |
---|
| 479 | * |
---|
| 480 | * @return string representation of the classifier |
---|
| 481 | */ |
---|
| 482 | public String toString() { |
---|
| 483 | StringBuffer result; |
---|
| 484 | String classname; |
---|
| 485 | int i; |
---|
| 486 | |
---|
| 487 | // only ZeroR model? |
---|
| 488 | if (m_ZeroR != null) { |
---|
| 489 | result = new StringBuffer(); |
---|
| 490 | result.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
| 491 | result.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
| 492 | result.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
| 493 | result.append(m_ZeroR.toString()); |
---|
| 494 | } |
---|
| 495 | else { |
---|
| 496 | classname = this.getClass().getName().replaceAll(".*\\.", ""); |
---|
| 497 | result = new StringBuffer(); |
---|
| 498 | result.append(classname + "\n"); |
---|
| 499 | result.append(classname.replaceAll(".", "=") + "\n\n"); |
---|
| 500 | |
---|
| 501 | if (m_Header == null) { |
---|
| 502 | result.append("No Model built yet.\n"); |
---|
| 503 | } |
---|
| 504 | else { |
---|
| 505 | if (getInternals()) { |
---|
| 506 | result.append("Mutual information of attributes with class attribute:\n"); |
---|
| 507 | for (i = 0; i < m_Header.numAttributes(); i++) { |
---|
| 508 | // skip class |
---|
| 509 | if (i == m_Header.classIndex()) |
---|
| 510 | continue; |
---|
| 511 | |
---|
| 512 | result.append( |
---|
| 513 | (i+1) + ". " + m_Header.attribute(i).name() + ": " |
---|
| 514 | + Utils.doubleToString(m_mutualInformation[i], 6) + "\n"); |
---|
| 515 | } |
---|
| 516 | } |
---|
| 517 | else { |
---|
| 518 | result.append("Model built successfully.\n"); |
---|
| 519 | } |
---|
| 520 | } |
---|
| 521 | } |
---|
| 522 | |
---|
| 523 | return result.toString(); |
---|
| 524 | } |
---|
| 525 | |
---|
| 526 | /** |
---|
| 527 | * Returns the revision string. |
---|
| 528 | * |
---|
| 529 | * @return the revision |
---|
| 530 | */ |
---|
| 531 | public String getRevision() { |
---|
| 532 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 533 | } |
---|
| 534 | |
---|
| 535 | /** |
---|
| 536 | * Main method for testing this class. |
---|
| 537 | * |
---|
| 538 | * @param argv the commandline options, use -h to list all options |
---|
| 539 | */ |
---|
| 540 | public static void main(String[] argv) { |
---|
| 541 | runClassifier(new WAODE(), argv); |
---|
| 542 | } |
---|
| 543 | } |
---|