1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * WAODE.java |
---|
19 | * Copyright 2006 Liangxiao Jiang |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.classifiers.bayes; |
---|
23 | |
---|
24 | import weka.classifiers.Classifier; |
---|
25 | import weka.classifiers.AbstractClassifier; |
---|
26 | import weka.core.Capabilities; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.Option; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.TechnicalInformation; |
---|
32 | import weka.core.TechnicalInformationHandler; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.core.Capabilities.Capability; |
---|
35 | import weka.core.TechnicalInformation.Field; |
---|
36 | import weka.core.TechnicalInformation.Type; |
---|
37 | |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Vector; |
---|
40 | |
---|
41 | /** |
---|
42 | <!-- globalinfo-start --> |
---|
43 | * WAODE contructs the model called Weightily Averaged One-Dependence Estimators.<br/> |
---|
44 | * <br/> |
---|
45 | * For more information, see<br/> |
---|
46 | * <br/> |
---|
47 | * L. Jiang, H. Zhang: Weightily Averaged One-Dependence Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, 970-974, 2006. |
---|
48 | * <p/> |
---|
49 | <!-- globalinfo-end --> |
---|
50 | * |
---|
51 | <!-- technical-bibtex-start --> |
---|
52 | * BibTeX: |
---|
53 | * <pre> |
---|
54 | * @inproceedings{Jiang2006, |
---|
55 | * author = {L. Jiang and H. Zhang}, |
---|
56 | * booktitle = {Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006}, |
---|
57 | * pages = {970-974}, |
---|
58 | * series = {LNAI}, |
---|
59 | * title = {Weightily Averaged One-Dependence Estimators}, |
---|
60 | * volume = {4099}, |
---|
61 | * year = {2006} |
---|
62 | * } |
---|
63 | * </pre> |
---|
64 | * <p/> |
---|
65 | <!-- technical-bibtex-end --> |
---|
66 | * |
---|
67 | <!-- options-start --> |
---|
68 | * Valid options are: <p/> |
---|
69 | * |
---|
70 | * <pre> -D |
---|
71 | * If set, classifier is run in debug mode and |
---|
72 | * may output additional info to the console</pre> |
---|
73 | * |
---|
74 | * <pre> -I |
---|
75 | * Whether to print some more internals. |
---|
76 | * (default: no)</pre> |
---|
77 | * |
---|
78 | <!-- options-end --> |
---|
79 | * |
---|
80 | * @author Liangxiao Jiang (ljiang@cug.edu.cn) |
---|
81 | * @author H. Zhang (hzhang@unb.ca) |
---|
82 | * @version $Revision: 5928 $ |
---|
83 | */ |
---|
84 | public class WAODE |
---|
85 | extends AbstractClassifier |
---|
86 | implements TechnicalInformationHandler { |
---|
87 | |
---|
88 | /** for serialization */ |
---|
89 | private static final long serialVersionUID = 2170978824284697882L; |
---|
90 | |
---|
91 | /** The number of each class value occurs in the dataset */ |
---|
92 | private double[] m_ClassCounts; |
---|
93 | |
---|
94 | /** The number of each attribute value occurs in the dataset */ |
---|
95 | private double[] m_AttCounts; |
---|
96 | |
---|
97 | /** The number of two attributes values occurs in the dataset */ |
---|
98 | private double[][] m_AttAttCounts; |
---|
99 | |
---|
100 | /** The number of class and two attributes values occurs in the dataset */ |
---|
101 | private double[][][] m_ClassAttAttCounts; |
---|
102 | |
---|
103 | /** The number of values for each attribute in the dataset */ |
---|
104 | private int[] m_NumAttValues; |
---|
105 | |
---|
106 | /** The number of values for all attributes in the dataset */ |
---|
107 | private int m_TotalAttValues; |
---|
108 | |
---|
109 | /** The number of classes in the dataset */ |
---|
110 | private int m_NumClasses; |
---|
111 | |
---|
112 | /** The number of attributes including class in the dataset */ |
---|
113 | private int m_NumAttributes; |
---|
114 | |
---|
115 | /** The number of instances in the dataset */ |
---|
116 | private int m_NumInstances; |
---|
117 | |
---|
118 | /** The index of the class attribute in the dataset */ |
---|
119 | private int m_ClassIndex; |
---|
120 | |
---|
121 | /** The starting index of each attribute in the dataset */ |
---|
122 | private int[] m_StartAttIndex; |
---|
123 | |
---|
124 | /** The array of mutual information between each attribute and class */ |
---|
125 | private double[] m_mutualInformation; |
---|
126 | |
---|
127 | /** the header information of the training data */ |
---|
128 | private Instances m_Header = null; |
---|
129 | |
---|
130 | /** whether to print more internals in the toString method |
---|
131 | * @see #toString() */ |
---|
132 | private boolean m_Internals = false; |
---|
133 | |
---|
134 | /** a ZeroR model in case no model can be built from the data */ |
---|
135 | private Classifier m_ZeroR; |
---|
136 | |
---|
137 | /** |
---|
138 | * Returns a string describing this classifier |
---|
139 | * |
---|
140 | * @return a description of the classifier suitable for |
---|
141 | * displaying in the explorer/experimenter gui |
---|
142 | */ |
---|
143 | public String globalInfo() { |
---|
144 | return |
---|
145 | "WAODE contructs the model called Weightily Averaged One-Dependence " |
---|
146 | + "Estimators.\n\n" |
---|
147 | + "For more information, see\n\n" |
---|
148 | + getTechnicalInformation().toString(); |
---|
149 | } |
---|
150 | |
---|
151 | /** |
---|
152 | * Gets an enumeration describing the available options. |
---|
153 | * |
---|
154 | * @return an enumeration of all the available options. |
---|
155 | */ |
---|
156 | public Enumeration listOptions() { |
---|
157 | Vector result = new Vector(); |
---|
158 | Enumeration enm = super.listOptions(); |
---|
159 | while (enm.hasMoreElements()) |
---|
160 | result.add(enm.nextElement()); |
---|
161 | |
---|
162 | result.addElement(new Option( |
---|
163 | "\tWhether to print some more internals.\n" |
---|
164 | + "\t(default: no)", |
---|
165 | "I", 0, "-I")); |
---|
166 | |
---|
167 | return result.elements(); |
---|
168 | } |
---|
169 | |
---|
170 | |
---|
171 | /** |
---|
172 | * Parses a given list of options. <p/> |
---|
173 | * |
---|
174 | <!-- options-start --> |
---|
175 | * Valid options are: <p/> |
---|
176 | * |
---|
177 | * <pre> -D |
---|
178 | * If set, classifier is run in debug mode and |
---|
179 | * may output additional info to the console</pre> |
---|
180 | * |
---|
181 | * <pre> -I |
---|
182 | * Whether to print some more internals. |
---|
183 | * (default: no)</pre> |
---|
184 | * |
---|
185 | <!-- options-end --> |
---|
186 | * |
---|
187 | * @param options the list of options as an array of strings |
---|
188 | * @throws Exception if an option is not supported |
---|
189 | */ |
---|
190 | public void setOptions(String[] options) throws Exception { |
---|
191 | super.setOptions(options); |
---|
192 | |
---|
193 | setInternals(Utils.getFlag('I', options)); |
---|
194 | } |
---|
195 | |
---|
196 | /** |
---|
197 | * Gets the current settings of the filter. |
---|
198 | * |
---|
199 | * @return an array of strings suitable for passing to setOptions |
---|
200 | */ |
---|
201 | public String[] getOptions() { |
---|
202 | Vector result; |
---|
203 | String[] options; |
---|
204 | int i; |
---|
205 | |
---|
206 | result = new Vector(); |
---|
207 | |
---|
208 | options = super.getOptions(); |
---|
209 | for (i = 0; i < options.length; i++) |
---|
210 | result.add(options[i]); |
---|
211 | |
---|
212 | if (getInternals()) |
---|
213 | result.add("-I"); |
---|
214 | |
---|
215 | return (String[]) result.toArray(new String[result.size()]); |
---|
216 | } |
---|
217 | |
---|
218 | /** |
---|
219 | * Returns the tip text for this property |
---|
220 | * |
---|
221 | * @return tip text for this property suitable for |
---|
222 | * displaying in the explorer/experimenter gui |
---|
223 | */ |
---|
224 | public String internalsTipText() { |
---|
225 | return "Prints more internals of the classifier."; |
---|
226 | } |
---|
227 | |
---|
228 | /** |
---|
229 | * Sets whether internals about classifier are printed via toString(). |
---|
230 | * |
---|
231 | * @param value if internals should be printed |
---|
232 | * @see #toString() |
---|
233 | */ |
---|
234 | public void setInternals(boolean value) { |
---|
235 | m_Internals = value; |
---|
236 | } |
---|
237 | |
---|
238 | /** |
---|
239 | * Gets whether more internals of the classifier are printed. |
---|
240 | * |
---|
241 | * @return true if more internals are printed |
---|
242 | */ |
---|
243 | public boolean getInternals() { |
---|
244 | return m_Internals; |
---|
245 | } |
---|
246 | |
---|
247 | /** |
---|
248 | * Returns an instance of a TechnicalInformation object, containing |
---|
249 | * detailed information about the technical background of this class, |
---|
250 | * e.g., paper reference or book this class is based on. |
---|
251 | * |
---|
252 | * @return the technical information about this class |
---|
253 | */ |
---|
254 | public TechnicalInformation getTechnicalInformation() { |
---|
255 | TechnicalInformation result; |
---|
256 | |
---|
257 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
258 | result.setValue(Field.AUTHOR, "L. Jiang and H. Zhang"); |
---|
259 | result.setValue(Field.TITLE, "Weightily Averaged One-Dependence Estimators"); |
---|
260 | result.setValue(Field.BOOKTITLE, "Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006"); |
---|
261 | result.setValue(Field.YEAR, "2006"); |
---|
262 | result.setValue(Field.PAGES, "970-974"); |
---|
263 | result.setValue(Field.SERIES, "LNAI"); |
---|
264 | result.setValue(Field.VOLUME, "4099"); |
---|
265 | |
---|
266 | return result; |
---|
267 | } |
---|
268 | |
---|
269 | /** |
---|
270 | * Returns default capabilities of the classifier. |
---|
271 | * |
---|
272 | * @return the capabilities of this classifier |
---|
273 | */ |
---|
274 | public Capabilities getCapabilities() { |
---|
275 | Capabilities result = super.getCapabilities(); |
---|
276 | result.disableAll(); |
---|
277 | |
---|
278 | // attributes |
---|
279 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
280 | |
---|
281 | // class |
---|
282 | result.enable(Capability.NOMINAL_CLASS); |
---|
283 | |
---|
284 | return result; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Generates the classifier. |
---|
289 | * |
---|
290 | * @param instances set of instances serving as training data |
---|
291 | * @throws Exception if the classifier has not been generated successfully |
---|
292 | */ |
---|
293 | public void buildClassifier(Instances instances) throws Exception { |
---|
294 | |
---|
295 | // can classifier handle the data? |
---|
296 | getCapabilities().testWithFail(instances); |
---|
297 | |
---|
298 | // only class? -> build ZeroR model |
---|
299 | if (instances.numAttributes() == 1) { |
---|
300 | System.err.println( |
---|
301 | "Cannot build model (only class attribute present in data!), " |
---|
302 | + "using ZeroR model instead!"); |
---|
303 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
304 | m_ZeroR.buildClassifier(instances); |
---|
305 | return; |
---|
306 | } |
---|
307 | else { |
---|
308 | m_ZeroR = null; |
---|
309 | } |
---|
310 | |
---|
311 | // reset variable |
---|
312 | m_NumClasses = instances.numClasses(); |
---|
313 | m_ClassIndex = instances.classIndex(); |
---|
314 | m_NumAttributes = instances.numAttributes(); |
---|
315 | m_NumInstances = instances.numInstances(); |
---|
316 | m_TotalAttValues = 0; |
---|
317 | |
---|
318 | // allocate space for attribute reference arrays |
---|
319 | m_StartAttIndex = new int[m_NumAttributes]; |
---|
320 | m_NumAttValues = new int[m_NumAttributes]; |
---|
321 | |
---|
322 | // set the starting index of each attribute and the number of values for |
---|
323 | // each attribute and the total number of values for all attributes (not including class). |
---|
324 | for (int i = 0; i < m_NumAttributes; i++) { |
---|
325 | if (i != m_ClassIndex) { |
---|
326 | m_StartAttIndex[i] = m_TotalAttValues; |
---|
327 | m_NumAttValues[i] = instances.attribute(i).numValues(); |
---|
328 | m_TotalAttValues += m_NumAttValues[i]; |
---|
329 | } |
---|
330 | else { |
---|
331 | m_StartAttIndex[i] = -1; |
---|
332 | m_NumAttValues[i] = m_NumClasses; |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | // allocate space for counts and frequencies |
---|
337 | m_ClassCounts = new double[m_NumClasses]; |
---|
338 | m_AttCounts = new double[m_TotalAttValues]; |
---|
339 | m_AttAttCounts = new double[m_TotalAttValues][m_TotalAttValues]; |
---|
340 | m_ClassAttAttCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues]; |
---|
341 | m_Header = new Instances(instances, 0); |
---|
342 | |
---|
343 | // Calculate the counts |
---|
344 | for (int k = 0; k < m_NumInstances; k++) { |
---|
345 | int classVal=(int)instances.instance(k).classValue(); |
---|
346 | m_ClassCounts[classVal] ++; |
---|
347 | int[] attIndex = new int[m_NumAttributes]; |
---|
348 | for (int i = 0; i < m_NumAttributes; i++) { |
---|
349 | if (i == m_ClassIndex){ |
---|
350 | attIndex[i] = -1; |
---|
351 | } |
---|
352 | else{ |
---|
353 | attIndex[i] = m_StartAttIndex[i] + (int)instances.instance(k).value(i); |
---|
354 | m_AttCounts[attIndex[i]]++; |
---|
355 | } |
---|
356 | } |
---|
357 | for (int Att1 = 0; Att1 < m_NumAttributes; Att1++) { |
---|
358 | if (attIndex[Att1] == -1) continue; |
---|
359 | for (int Att2 = 0; Att2 < m_NumAttributes; Att2++) { |
---|
360 | if ((attIndex[Att2] != -1)) { |
---|
361 | m_AttAttCounts[attIndex[Att1]][attIndex[Att2]] ++; |
---|
362 | m_ClassAttAttCounts[classVal][attIndex[Att1]][attIndex[Att2]] ++; |
---|
363 | } |
---|
364 | } |
---|
365 | } |
---|
366 | } |
---|
367 | |
---|
368 | //compute mutual information between each attribute and class |
---|
369 | m_mutualInformation=new double[m_NumAttributes]; |
---|
370 | for (int att=0;att<m_NumAttributes;att++){ |
---|
371 | if (att == m_ClassIndex) continue; |
---|
372 | m_mutualInformation[att]=mutualInfo(att); |
---|
373 | } |
---|
374 | } |
---|
375 | |
---|
376 | /** |
---|
377 | * Computes mutual information between each attribute and class attribute. |
---|
378 | * |
---|
379 | * @param att is the attribute |
---|
380 | * @return the conditional mutual information between son and parent given class |
---|
381 | */ |
---|
382 | private double mutualInfo(int att) { |
---|
383 | |
---|
384 | double mutualInfo=0; |
---|
385 | int attIndex=m_StartAttIndex[att]; |
---|
386 | double[] PriorsClass = new double[m_NumClasses]; |
---|
387 | double[] PriorsAttribute = new double[m_NumAttValues[att]]; |
---|
388 | double[][] PriorsClassAttribute=new double[m_NumClasses][m_NumAttValues[att]]; |
---|
389 | |
---|
390 | for (int i=0;i<m_NumClasses;i++){ |
---|
391 | PriorsClass[i]=m_ClassCounts[i]/m_NumInstances; |
---|
392 | } |
---|
393 | |
---|
394 | for (int j=0;j<m_NumAttValues[att];j++){ |
---|
395 | PriorsAttribute[j]=m_AttCounts[attIndex+j]/m_NumInstances; |
---|
396 | } |
---|
397 | |
---|
398 | for (int i=0;i<m_NumClasses;i++){ |
---|
399 | for (int j=0;j<m_NumAttValues[att];j++){ |
---|
400 | PriorsClassAttribute[i][j]=m_ClassAttAttCounts[i][attIndex+j][attIndex+j]/m_NumInstances; |
---|
401 | } |
---|
402 | } |
---|
403 | |
---|
404 | for (int i=0;i<m_NumClasses;i++){ |
---|
405 | for (int j=0;j<m_NumAttValues[att];j++){ |
---|
406 | mutualInfo+=PriorsClassAttribute[i][j]*log2(PriorsClassAttribute[i][j],PriorsClass[i]*PriorsAttribute[j]); |
---|
407 | } |
---|
408 | } |
---|
409 | return mutualInfo; |
---|
410 | } |
---|
411 | |
---|
412 | /** |
---|
413 | * compute the logarithm whose base is 2. |
---|
414 | * |
---|
415 | * @param x numerator of the fraction. |
---|
416 | * @param y denominator of the fraction. |
---|
417 | * @return the natual logarithm of this fraction. |
---|
418 | */ |
---|
419 | private double log2(double x,double y){ |
---|
420 | |
---|
421 | if (x < Utils.SMALL || y < Utils.SMALL) |
---|
422 | return 0.0; |
---|
423 | else |
---|
424 | return Math.log(x/y)/Math.log(2); |
---|
425 | } |
---|
426 | |
---|
427 | /** |
---|
428 | * Calculates the class membership probabilities for the given test instance |
---|
429 | * |
---|
430 | * @param instance the instance to be classified |
---|
431 | * @return predicted class probability distribution |
---|
432 | * @throws Exception if there is a problem generating the prediction |
---|
433 | */ |
---|
434 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
435 | |
---|
436 | // default model? |
---|
437 | if (m_ZeroR != null) { |
---|
438 | return m_ZeroR.distributionForInstance(instance); |
---|
439 | } |
---|
440 | |
---|
441 | //Definition of local variables |
---|
442 | double[] probs = new double[m_NumClasses]; |
---|
443 | double prob; |
---|
444 | double mutualInfoSum; |
---|
445 | |
---|
446 | // store instance's att values in an int array |
---|
447 | int[] attIndex = new int[m_NumAttributes]; |
---|
448 | for (int att = 0; att < m_NumAttributes; att++) { |
---|
449 | if (att == m_ClassIndex) |
---|
450 | attIndex[att] = -1; |
---|
451 | else |
---|
452 | attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); |
---|
453 | } |
---|
454 | |
---|
455 | // calculate probabilities for each possible class value |
---|
456 | for (int classVal = 0; classVal < m_NumClasses; classVal++) { |
---|
457 | probs[classVal] = 0; |
---|
458 | prob=1; |
---|
459 | mutualInfoSum=0.0; |
---|
460 | for (int parent = 0; parent < m_NumAttributes; parent++) { |
---|
461 | if (attIndex[parent]==-1) continue; |
---|
462 | prob=(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0/(m_NumClasses*m_NumAttValues[parent]))/(m_NumInstances + 1.0); |
---|
463 | for (int son = 0; son < m_NumAttributes; son++) { |
---|
464 | if (attIndex[son]==-1 || son == parent) continue; |
---|
465 | prob*=(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[son]] + 1.0/m_NumAttValues[son])/(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0); |
---|
466 | } |
---|
467 | mutualInfoSum+=m_mutualInformation[parent]; |
---|
468 | probs[classVal]+=m_mutualInformation[parent]*prob; |
---|
469 | } |
---|
470 | probs[classVal]/=mutualInfoSum; |
---|
471 | } |
---|
472 | if (!Double.isNaN(Utils.sum(probs))) |
---|
473 | Utils.normalize(probs); |
---|
474 | return probs; |
---|
475 | } |
---|
476 | |
---|
477 | /** |
---|
478 | * returns a string representation of the classifier |
---|
479 | * |
---|
480 | * @return string representation of the classifier |
---|
481 | */ |
---|
482 | public String toString() { |
---|
483 | StringBuffer result; |
---|
484 | String classname; |
---|
485 | int i; |
---|
486 | |
---|
487 | // only ZeroR model? |
---|
488 | if (m_ZeroR != null) { |
---|
489 | result = new StringBuffer(); |
---|
490 | result.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
491 | result.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
492 | result.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
493 | result.append(m_ZeroR.toString()); |
---|
494 | } |
---|
495 | else { |
---|
496 | classname = this.getClass().getName().replaceAll(".*\\.", ""); |
---|
497 | result = new StringBuffer(); |
---|
498 | result.append(classname + "\n"); |
---|
499 | result.append(classname.replaceAll(".", "=") + "\n\n"); |
---|
500 | |
---|
501 | if (m_Header == null) { |
---|
502 | result.append("No Model built yet.\n"); |
---|
503 | } |
---|
504 | else { |
---|
505 | if (getInternals()) { |
---|
506 | result.append("Mutual information of attributes with class attribute:\n"); |
---|
507 | for (i = 0; i < m_Header.numAttributes(); i++) { |
---|
508 | // skip class |
---|
509 | if (i == m_Header.classIndex()) |
---|
510 | continue; |
---|
511 | |
---|
512 | result.append( |
---|
513 | (i+1) + ". " + m_Header.attribute(i).name() + ": " |
---|
514 | + Utils.doubleToString(m_mutualInformation[i], 6) + "\n"); |
---|
515 | } |
---|
516 | } |
---|
517 | else { |
---|
518 | result.append("Model built successfully.\n"); |
---|
519 | } |
---|
520 | } |
---|
521 | } |
---|
522 | |
---|
523 | return result.toString(); |
---|
524 | } |
---|
525 | |
---|
526 | /** |
---|
527 | * Returns the revision string. |
---|
528 | * |
---|
529 | * @return the revision |
---|
530 | */ |
---|
531 | public String getRevision() { |
---|
532 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
533 | } |
---|
534 | |
---|
535 | /** |
---|
536 | * Main method for testing this class. |
---|
537 | * |
---|
538 | * @param argv the commandline options, use -h to list all options |
---|
539 | */ |
---|
540 | public static void main(String[] argv) { |
---|
541 | runClassifier(new WAODE(), argv); |
---|
542 | } |
---|
543 | } |
---|