[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Copyright (C) 2004 |
---|
| 19 | * & Matthias Schubert (schubert@dbs.ifi.lmu.de) |
---|
| 20 | * & Zhanna Melnikova-Albrecht (melnikov@cip.ifi.lmu.de) |
---|
| 21 | * & Rainer Holzmann (holzmann@cip.ifi.lmu.de) |
---|
| 22 | */ |
---|
| 23 | |
---|
| 24 | package weka.clusterers; |
---|
| 25 | |
---|
| 26 | import weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject; |
---|
| 27 | import weka.clusterers.forOPTICSAndDBScan.Databases.Database; |
---|
| 28 | import weka.core.Capabilities; |
---|
| 29 | import weka.core.Instance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.Option; |
---|
| 32 | import weka.core.OptionHandler; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.TechnicalInformation; |
---|
| 35 | import weka.core.TechnicalInformationHandler; |
---|
| 36 | import weka.core.Utils; |
---|
| 37 | import weka.core.Capabilities.Capability; |
---|
| 38 | import weka.core.TechnicalInformation.Field; |
---|
| 39 | import weka.core.TechnicalInformation.Type; |
---|
| 40 | import weka.filters.Filter; |
---|
| 41 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
| 42 | |
---|
| 43 | import java.lang.reflect.Constructor; |
---|
| 44 | import java.lang.reflect.InvocationTargetException; |
---|
| 45 | import java.text.DecimalFormat; |
---|
| 46 | import java.util.Enumeration; |
---|
| 47 | import java.util.Iterator; |
---|
| 48 | import java.util.List; |
---|
| 49 | import java.util.Vector; |
---|
| 50 | |
---|
| 51 | /** |
---|
| 52 | <!-- globalinfo-start --> |
---|
| 53 | * Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Second International Conference on Knowledge Discovery and Data Mining, 226-231, 1996. |
---|
| 54 | * <p/> |
---|
| 55 | <!-- globalinfo-end --> |
---|
| 56 | * |
---|
| 57 | <!-- technical-bibtex-start --> |
---|
| 58 | * BibTeX: |
---|
| 59 | * <pre> |
---|
| 60 | * @inproceedings{Ester1996, |
---|
| 61 | * author = {Martin Ester and Hans-Peter Kriegel and Joerg Sander and Xiaowei Xu}, |
---|
| 62 | * booktitle = {Second International Conference on Knowledge Discovery and Data Mining}, |
---|
| 63 | * editor = {Evangelos Simoudis and Jiawei Han and Usama M. Fayyad}, |
---|
| 64 | * pages = {226-231}, |
---|
| 65 | * publisher = {AAAI Press}, |
---|
| 66 | * title = {A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise}, |
---|
| 67 | * year = {1996} |
---|
| 68 | * } |
---|
| 69 | * </pre> |
---|
| 70 | * <p/> |
---|
| 71 | <!-- technical-bibtex-end --> |
---|
| 72 | * |
---|
| 73 | <!-- options-start --> |
---|
| 74 | * Valid options are: <p/> |
---|
| 75 | * |
---|
| 76 | * <pre> -E <double> |
---|
| 77 | * epsilon (default = 0.9)</pre> |
---|
| 78 | * |
---|
| 79 | * <pre> -M <int> |
---|
| 80 | * minPoints (default = 6)</pre> |
---|
| 81 | * |
---|
| 82 | * <pre> -I <String> |
---|
| 83 | * index (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)</pre> |
---|
| 84 | * |
---|
| 85 | * <pre> -D <String> |
---|
| 86 | * distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)</pre> |
---|
| 87 | * |
---|
| 88 | <!-- options-end --> |
---|
| 89 | * |
---|
| 90 | * @author Matthias Schubert (schubert@dbs.ifi.lmu.de) |
---|
| 91 | * @author Zhanna Melnikova-Albrecht (melnikov@cip.ifi.lmu.de) |
---|
| 92 | * @author Rainer Holzmann (holzmann@cip.ifi.lmu.de) |
---|
| 93 | * @version $Revision: 5488 $ |
---|
| 94 | */ |
---|
| 95 | public class DBScan |
---|
| 96 | extends AbstractClusterer |
---|
| 97 | implements OptionHandler, TechnicalInformationHandler { |
---|
| 98 | |
---|
| 99 | /** for serialization */ |
---|
| 100 | static final long serialVersionUID = -1666498248451219728L; |
---|
| 101 | |
---|
| 102 | /** |
---|
| 103 | * Specifies the radius for a range-query |
---|
| 104 | */ |
---|
| 105 | private double epsilon = 0.9; |
---|
| 106 | |
---|
| 107 | /** |
---|
| 108 | * Specifies the density (the range-query must contain at least minPoints DataObjects) |
---|
| 109 | */ |
---|
| 110 | private int minPoints = 6; |
---|
| 111 | |
---|
| 112 | /** |
---|
| 113 | * Replace missing values in training instances |
---|
| 114 | */ |
---|
| 115 | private ReplaceMissingValues replaceMissingValues_Filter; |
---|
| 116 | |
---|
| 117 | /** |
---|
| 118 | * Holds the number of clusters generated |
---|
| 119 | */ |
---|
| 120 | private int numberOfGeneratedClusters; |
---|
| 121 | |
---|
| 122 | /** |
---|
| 123 | * Holds the distance-type that is used |
---|
| 124 | * (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject) |
---|
| 125 | */ |
---|
| 126 | private String database_distanceType = "weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject"; |
---|
| 127 | |
---|
| 128 | /** |
---|
| 129 | * Holds the type of the used database |
---|
| 130 | * (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase) |
---|
| 131 | */ |
---|
| 132 | private String database_Type = "weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase"; |
---|
| 133 | |
---|
| 134 | /** |
---|
| 135 | * The database that is used for DBScan |
---|
| 136 | */ |
---|
| 137 | private Database database; |
---|
| 138 | |
---|
| 139 | /** |
---|
| 140 | * Holds the current clusterID |
---|
| 141 | */ |
---|
| 142 | private int clusterID; |
---|
| 143 | |
---|
| 144 | /** |
---|
| 145 | * Counter for the processed instances |
---|
| 146 | */ |
---|
| 147 | private int processed_InstanceID; |
---|
| 148 | |
---|
| 149 | /** |
---|
| 150 | * Holds the time-value (seconds) for the duration of the clustering-process |
---|
| 151 | */ |
---|
| 152 | private double elapsedTime; |
---|
| 153 | |
---|
| 154 | /** |
---|
| 155 | * Returns default capabilities of the clusterer. |
---|
| 156 | * |
---|
| 157 | * @return the capabilities of this clusterer |
---|
| 158 | */ |
---|
| 159 | public Capabilities getCapabilities() { |
---|
| 160 | Capabilities result = super.getCapabilities(); |
---|
| 161 | result.disableAll(); |
---|
| 162 | result.enable(Capability.NO_CLASS); |
---|
| 163 | |
---|
| 164 | // attributes |
---|
| 165 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 166 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 167 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 168 | result.enable(Capability.MISSING_VALUES); |
---|
| 169 | |
---|
| 170 | return result; |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | // ***************************************************************************************************************** |
---|
| 174 | // constructors |
---|
| 175 | // ***************************************************************************************************************** |
---|
| 176 | |
---|
| 177 | // ***************************************************************************************************************** |
---|
| 178 | // methods |
---|
| 179 | // ***************************************************************************************************************** |
---|
| 180 | |
---|
| 181 | /** |
---|
| 182 | * Generate Clustering via DBScan |
---|
| 183 | * @param instances The instances that need to be clustered |
---|
| 184 | * @throws java.lang.Exception If clustering was not successful |
---|
| 185 | */ |
---|
| 186 | public void buildClusterer(Instances instances) throws Exception { |
---|
| 187 | // can clusterer handle the data? |
---|
| 188 | getCapabilities().testWithFail(instances); |
---|
| 189 | |
---|
| 190 | long time_1 = System.currentTimeMillis(); |
---|
| 191 | |
---|
| 192 | processed_InstanceID = 0; |
---|
| 193 | numberOfGeneratedClusters = 0; |
---|
| 194 | clusterID = 0; |
---|
| 195 | |
---|
| 196 | replaceMissingValues_Filter = new ReplaceMissingValues(); |
---|
| 197 | replaceMissingValues_Filter.setInputFormat(instances); |
---|
| 198 | Instances filteredInstances = Filter.useFilter(instances, replaceMissingValues_Filter); |
---|
| 199 | |
---|
| 200 | database = databaseForName(getDatabase_Type(), filteredInstances); |
---|
| 201 | for (int i = 0; i < database.getInstances().numInstances(); i++) { |
---|
| 202 | DataObject dataObject = dataObjectForName(getDatabase_distanceType(), |
---|
| 203 | database.getInstances().instance(i), |
---|
| 204 | Integer.toString(i), |
---|
| 205 | database); |
---|
| 206 | database.insert(dataObject); |
---|
| 207 | } |
---|
| 208 | database.setMinMaxValues(); |
---|
| 209 | |
---|
| 210 | Iterator iterator = database.dataObjectIterator(); |
---|
| 211 | while (iterator.hasNext()) { |
---|
| 212 | DataObject dataObject = (DataObject) iterator.next(); |
---|
| 213 | if (dataObject.getClusterLabel() == DataObject.UNCLASSIFIED) { |
---|
| 214 | if (expandCluster(dataObject)) { |
---|
| 215 | clusterID++; |
---|
| 216 | numberOfGeneratedClusters++; |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | long time_2 = System.currentTimeMillis(); |
---|
| 222 | elapsedTime = (double) (time_2 - time_1) / 1000.0; |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | /** |
---|
| 226 | * Assigns this dataObject to a cluster or remains it as NOISE |
---|
| 227 | * @param dataObject The DataObject that needs to be assigned |
---|
| 228 | * @return true, if the DataObject could be assigned, else false |
---|
| 229 | */ |
---|
| 230 | private boolean expandCluster(DataObject dataObject) { |
---|
| 231 | List seedList = database.epsilonRangeQuery(getEpsilon(), dataObject); |
---|
| 232 | /** dataObject is NO coreObject */ |
---|
| 233 | if (seedList.size() < getMinPoints()) { |
---|
| 234 | dataObject.setClusterLabel(DataObject.NOISE); |
---|
| 235 | return false; |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | /** dataObject is coreObject */ |
---|
| 239 | for (int i = 0; i < seedList.size(); i++) { |
---|
| 240 | DataObject seedListDataObject = (DataObject) seedList.get(i); |
---|
| 241 | /** label this seedListDataObject with the current clusterID, because it is in epsilon-range */ |
---|
| 242 | seedListDataObject.setClusterLabel(clusterID); |
---|
| 243 | if (seedListDataObject.equals(dataObject)) { |
---|
| 244 | seedList.remove(i); |
---|
| 245 | i--; |
---|
| 246 | } |
---|
| 247 | } |
---|
| 248 | |
---|
| 249 | /** Iterate the seedList of the startDataObject */ |
---|
| 250 | for (int j = 0; j < seedList.size(); j++) { |
---|
| 251 | DataObject seedListDataObject = (DataObject) seedList.get(j); |
---|
| 252 | List seedListDataObject_Neighbourhood = database.epsilonRangeQuery(getEpsilon(), seedListDataObject); |
---|
| 253 | |
---|
| 254 | /** seedListDataObject is coreObject */ |
---|
| 255 | if (seedListDataObject_Neighbourhood.size() >= getMinPoints()) { |
---|
| 256 | for (int i = 0; i < seedListDataObject_Neighbourhood.size(); i++) { |
---|
| 257 | DataObject p = (DataObject) seedListDataObject_Neighbourhood.get(i); |
---|
| 258 | if (p.getClusterLabel() == DataObject.UNCLASSIFIED || p.getClusterLabel() == DataObject.NOISE) { |
---|
| 259 | if (p.getClusterLabel() == DataObject.UNCLASSIFIED) { |
---|
| 260 | seedList.add(p); |
---|
| 261 | } |
---|
| 262 | p.setClusterLabel(clusterID); |
---|
| 263 | } |
---|
| 264 | } |
---|
| 265 | } |
---|
| 266 | seedList.remove(j); |
---|
| 267 | j--; |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | return true; |
---|
| 271 | } |
---|
| 272 | |
---|
| 273 | /** |
---|
| 274 | * Classifies a given instance. |
---|
| 275 | * |
---|
| 276 | * @param instance The instance to be assigned to a cluster |
---|
| 277 | * @return int The number of the assigned cluster as an integer |
---|
| 278 | * @throws java.lang.Exception If instance could not be clustered |
---|
| 279 | * successfully |
---|
| 280 | */ |
---|
| 281 | public int clusterInstance(Instance instance) throws Exception { |
---|
| 282 | if (processed_InstanceID >= database.size()) processed_InstanceID = 0; |
---|
| 283 | int cnum = (database.getDataObject(Integer.toString(processed_InstanceID++))).getClusterLabel(); |
---|
| 284 | if (cnum == DataObject.NOISE) |
---|
| 285 | throw new Exception(); |
---|
| 286 | else |
---|
| 287 | return cnum; |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | /** |
---|
| 291 | * Returns the number of clusters. |
---|
| 292 | * |
---|
| 293 | * @return int The number of clusters generated for a training dataset. |
---|
| 294 | * @throws java.lang.Exception if number of clusters could not be returned |
---|
| 295 | * successfully |
---|
| 296 | */ |
---|
| 297 | public int numberOfClusters() throws Exception { |
---|
| 298 | return numberOfGeneratedClusters; |
---|
| 299 | } |
---|
| 300 | |
---|
| 301 | /** |
---|
| 302 | * Returns an enumeration of all the available options.. |
---|
| 303 | * |
---|
| 304 | * @return Enumeration An enumeration of all available options. |
---|
| 305 | */ |
---|
| 306 | public Enumeration listOptions() { |
---|
| 307 | Vector vector = new Vector(); |
---|
| 308 | |
---|
| 309 | vector.addElement( |
---|
| 310 | new Option("\tepsilon (default = 0.9)", |
---|
| 311 | "E", |
---|
| 312 | 1, |
---|
| 313 | "-E <double>")); |
---|
| 314 | vector.addElement( |
---|
| 315 | new Option("\tminPoints (default = 6)", |
---|
| 316 | "M", |
---|
| 317 | 1, |
---|
| 318 | "-M <int>")); |
---|
| 319 | vector.addElement( |
---|
| 320 | new Option("\tindex (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)", |
---|
| 321 | "I", |
---|
| 322 | 1, |
---|
| 323 | "-I <String>")); |
---|
| 324 | vector.addElement( |
---|
| 325 | new Option("\tdistance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)", |
---|
| 326 | "D", |
---|
| 327 | 1, |
---|
| 328 | "-D <String>")); |
---|
| 329 | return vector.elements(); |
---|
| 330 | } |
---|
| 331 | |
---|
| 332 | /** |
---|
| 333 | * Sets the OptionHandler's options using the given list. All options |
---|
| 334 | * will be set (or reset) during this call (i.e. incremental setting |
---|
| 335 | * of options is not possible). <p/> |
---|
| 336 | * |
---|
| 337 | <!-- options-start --> |
---|
| 338 | * Valid options are: <p/> |
---|
| 339 | * |
---|
| 340 | * <pre> -E <double> |
---|
| 341 | * epsilon (default = 0.9)</pre> |
---|
| 342 | * |
---|
| 343 | * <pre> -M <int> |
---|
| 344 | * minPoints (default = 6)</pre> |
---|
| 345 | * |
---|
| 346 | * <pre> -I <String> |
---|
| 347 | * index (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)</pre> |
---|
| 348 | * |
---|
| 349 | * <pre> -D <String> |
---|
| 350 | * distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)</pre> |
---|
| 351 | * |
---|
| 352 | <!-- options-end --> |
---|
| 353 | * |
---|
| 354 | * @param options The list of options as an array of strings |
---|
| 355 | * @throws java.lang.Exception If an option is not supported |
---|
| 356 | */ |
---|
| 357 | public void setOptions(String[] options) throws Exception { |
---|
| 358 | String optionString = Utils.getOption('E', options); |
---|
| 359 | if (optionString.length() != 0) { |
---|
| 360 | setEpsilon(Double.parseDouble(optionString)); |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | optionString = Utils.getOption('M', options); |
---|
| 364 | if (optionString.length() != 0) { |
---|
| 365 | setMinPoints(Integer.parseInt(optionString)); |
---|
| 366 | } |
---|
| 367 | |
---|
| 368 | optionString = Utils.getOption('I', options); |
---|
| 369 | if (optionString.length() != 0) { |
---|
| 370 | setDatabase_Type(optionString); |
---|
| 371 | } |
---|
| 372 | |
---|
| 373 | optionString = Utils.getOption('D', options); |
---|
| 374 | if (optionString.length() != 0) { |
---|
| 375 | setDatabase_distanceType(optionString); |
---|
| 376 | } |
---|
| 377 | } |
---|
| 378 | |
---|
| 379 | /** |
---|
| 380 | * Gets the current option settings for the OptionHandler. |
---|
| 381 | * |
---|
| 382 | * @return String[] The list of current option settings as an array of strings |
---|
| 383 | */ |
---|
| 384 | public String[] getOptions() { |
---|
| 385 | String[] options = new String[8]; |
---|
| 386 | int current = 0; |
---|
| 387 | |
---|
| 388 | options[current++] = "-E"; |
---|
| 389 | options[current++] = "" + getEpsilon(); |
---|
| 390 | options[current++] = "-M"; |
---|
| 391 | options[current++] = "" + getMinPoints(); |
---|
| 392 | options[current++] = "-I"; |
---|
| 393 | options[current++] = "" + getDatabase_Type(); |
---|
| 394 | options[current++] = "-D"; |
---|
| 395 | options[current++] = "" + getDatabase_distanceType(); |
---|
| 396 | |
---|
| 397 | return options; |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | /** |
---|
| 401 | * Returns a new Class-Instance of the specified database |
---|
| 402 | * @param database_Type String of the specified database |
---|
| 403 | * @param instances Instances that were delivered from WEKA |
---|
| 404 | * @return Database New constructed Database |
---|
| 405 | */ |
---|
| 406 | public Database databaseForName(String database_Type, Instances instances) { |
---|
| 407 | Object o = null; |
---|
| 408 | |
---|
| 409 | Constructor co = null; |
---|
| 410 | try { |
---|
| 411 | co = (Class.forName(database_Type)).getConstructor(new Class[]{Instances.class}); |
---|
| 412 | o = co.newInstance(new Object[]{instances}); |
---|
| 413 | } catch (NoSuchMethodException e) { |
---|
| 414 | e.printStackTrace(); |
---|
| 415 | } catch (SecurityException e) { |
---|
| 416 | e.printStackTrace(); |
---|
| 417 | } catch (ClassNotFoundException e) { |
---|
| 418 | e.printStackTrace(); |
---|
| 419 | } catch (InstantiationException e) { |
---|
| 420 | e.printStackTrace(); |
---|
| 421 | } catch (IllegalAccessException e) { |
---|
| 422 | e.printStackTrace(); |
---|
| 423 | } catch (InvocationTargetException e) { |
---|
| 424 | e.printStackTrace(); |
---|
| 425 | } |
---|
| 426 | |
---|
| 427 | return (Database) o; |
---|
| 428 | } |
---|
| 429 | |
---|
| 430 | /** |
---|
| 431 | * Returns a new Class-Instance of the specified database |
---|
| 432 | * @param database_distanceType String of the specified distance-type |
---|
| 433 | * @param instance The original instance that needs to hold by this DataObject |
---|
| 434 | * @param key Key for this DataObject |
---|
| 435 | * @param database Link to the database |
---|
| 436 | * @return DataObject New constructed DataObject |
---|
| 437 | */ |
---|
| 438 | public DataObject dataObjectForName(String database_distanceType, Instance instance, String key, Database database) { |
---|
| 439 | Object o = null; |
---|
| 440 | |
---|
| 441 | Constructor co = null; |
---|
| 442 | try { |
---|
| 443 | co = (Class.forName(database_distanceType)). |
---|
| 444 | getConstructor(new Class[]{Instance.class, String.class, Database.class}); |
---|
| 445 | o = co.newInstance(new Object[]{instance, key, database}); |
---|
| 446 | } catch (NoSuchMethodException e) { |
---|
| 447 | e.printStackTrace(); |
---|
| 448 | } catch (SecurityException e) { |
---|
| 449 | e.printStackTrace(); |
---|
| 450 | } catch (ClassNotFoundException e) { |
---|
| 451 | e.printStackTrace(); |
---|
| 452 | } catch (InstantiationException e) { |
---|
| 453 | e.printStackTrace(); |
---|
| 454 | } catch (IllegalAccessException e) { |
---|
| 455 | e.printStackTrace(); |
---|
| 456 | } catch (InvocationTargetException e) { |
---|
| 457 | e.printStackTrace(); |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | return (DataObject) o; |
---|
| 461 | } |
---|
| 462 | |
---|
| 463 | /** |
---|
| 464 | * Sets a new value for minPoints |
---|
| 465 | * @param minPoints MinPoints |
---|
| 466 | */ |
---|
| 467 | public void setMinPoints(int minPoints) { |
---|
| 468 | this.minPoints = minPoints; |
---|
| 469 | } |
---|
| 470 | |
---|
| 471 | /** |
---|
| 472 | * Sets a new value for epsilon |
---|
| 473 | * @param epsilon Epsilon |
---|
| 474 | */ |
---|
| 475 | public void setEpsilon(double epsilon) { |
---|
| 476 | this.epsilon = epsilon; |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | /** |
---|
| 480 | * Returns the value of epsilon |
---|
| 481 | * @return double Epsilon |
---|
| 482 | */ |
---|
| 483 | public double getEpsilon() { |
---|
| 484 | return epsilon; |
---|
| 485 | } |
---|
| 486 | |
---|
| 487 | /** |
---|
| 488 | * Returns the value of minPoints |
---|
| 489 | * @return int MinPoints |
---|
| 490 | */ |
---|
| 491 | public int getMinPoints() { |
---|
| 492 | return minPoints; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | /** |
---|
| 496 | * Returns the distance-type |
---|
| 497 | * @return String Distance-type |
---|
| 498 | */ |
---|
| 499 | public String getDatabase_distanceType() { |
---|
| 500 | return database_distanceType; |
---|
| 501 | } |
---|
| 502 | |
---|
| 503 | /** |
---|
| 504 | * Returns the type of the used index (database) |
---|
| 505 | * @return String Index-type |
---|
| 506 | */ |
---|
| 507 | public String getDatabase_Type() { |
---|
| 508 | return database_Type; |
---|
| 509 | } |
---|
| 510 | |
---|
| 511 | /** |
---|
| 512 | * Sets a new distance-type |
---|
| 513 | * @param database_distanceType The new distance-type |
---|
| 514 | */ |
---|
| 515 | public void setDatabase_distanceType(String database_distanceType) { |
---|
| 516 | this.database_distanceType = database_distanceType; |
---|
| 517 | } |
---|
| 518 | |
---|
| 519 | /** |
---|
| 520 | * Sets a new database-type |
---|
| 521 | * @param database_Type The new database-type |
---|
| 522 | */ |
---|
| 523 | public void setDatabase_Type(String database_Type) { |
---|
| 524 | this.database_Type = database_Type; |
---|
| 525 | } |
---|
| 526 | |
---|
| 527 | /** |
---|
| 528 | * Returns the tip text for this property |
---|
| 529 | * @return tip text for this property suitable for |
---|
| 530 | * displaying in the explorer/experimenter gui |
---|
| 531 | */ |
---|
| 532 | public String epsilonTipText() { |
---|
| 533 | return "radius of the epsilon-range-queries"; |
---|
| 534 | } |
---|
| 535 | |
---|
| 536 | /** |
---|
| 537 | * Returns the tip text for this property |
---|
| 538 | * @return tip text for this property suitable for |
---|
| 539 | * displaying in the explorer/experimenter gui |
---|
| 540 | */ |
---|
| 541 | public String minPointsTipText() { |
---|
| 542 | return "minimun number of DataObjects required in an epsilon-range-query"; |
---|
| 543 | } |
---|
| 544 | |
---|
| 545 | /** |
---|
| 546 | * Returns the tip text for this property |
---|
| 547 | * @return tip text for this property suitable for |
---|
| 548 | * displaying in the explorer/experimenter gui |
---|
| 549 | */ |
---|
| 550 | public String database_TypeTipText() { |
---|
| 551 | return "used database"; |
---|
| 552 | } |
---|
| 553 | |
---|
| 554 | /** |
---|
| 555 | * Returns the tip text for this property |
---|
| 556 | * @return tip text for this property suitable for |
---|
| 557 | * displaying in the explorer/experimenter gui |
---|
| 558 | */ |
---|
| 559 | public String database_distanceTypeTipText() { |
---|
| 560 | return "used distance-type"; |
---|
| 561 | } |
---|
| 562 | |
---|
| 563 | /** |
---|
| 564 | * Returns a string describing this DataMining-Algorithm |
---|
| 565 | * @return String Information for the gui-explorer |
---|
| 566 | */ |
---|
| 567 | public String globalInfo() { |
---|
| 568 | return getTechnicalInformation().toString(); |
---|
| 569 | } |
---|
| 570 | |
---|
| 571 | /** |
---|
| 572 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 573 | * detailed information about the technical background of this class, |
---|
| 574 | * e.g., paper reference or book this class is based on. |
---|
| 575 | * |
---|
| 576 | * @return the technical information about this class |
---|
| 577 | */ |
---|
| 578 | public TechnicalInformation getTechnicalInformation() { |
---|
| 579 | TechnicalInformation result; |
---|
| 580 | |
---|
| 581 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 582 | result.setValue(Field.AUTHOR, "Martin Ester and Hans-Peter Kriegel and Joerg Sander and Xiaowei Xu"); |
---|
| 583 | result.setValue(Field.TITLE, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise"); |
---|
| 584 | result.setValue(Field.BOOKTITLE, "Second International Conference on Knowledge Discovery and Data Mining"); |
---|
| 585 | result.setValue(Field.EDITOR, "Evangelos Simoudis and Jiawei Han and Usama M. Fayyad"); |
---|
| 586 | result.setValue(Field.YEAR, "1996"); |
---|
| 587 | result.setValue(Field.PAGES, "226-231"); |
---|
| 588 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
| 589 | |
---|
| 590 | return result; |
---|
| 591 | } |
---|
| 592 | |
---|
| 593 | /** |
---|
| 594 | * Returns a description of the clusterer |
---|
| 595 | * |
---|
| 596 | * @return a string representation of the clusterer |
---|
| 597 | */ |
---|
| 598 | public String toString() { |
---|
| 599 | StringBuffer stringBuffer = new StringBuffer(); |
---|
| 600 | stringBuffer.append("DBScan clustering results\n" + |
---|
| 601 | "========================================================================================\n\n"); |
---|
| 602 | stringBuffer.append("Clustered DataObjects: " + database.size() + "\n"); |
---|
| 603 | stringBuffer.append("Number of attributes: " + database.getInstances().numAttributes() + "\n"); |
---|
| 604 | stringBuffer.append("Epsilon: " + getEpsilon() + "; minPoints: " + getMinPoints() + "\n"); |
---|
| 605 | stringBuffer.append("Index: " + getDatabase_Type() + "\n"); |
---|
| 606 | stringBuffer.append("Distance-type: " + getDatabase_distanceType() + "\n"); |
---|
| 607 | stringBuffer.append("Number of generated clusters: " + numberOfGeneratedClusters + "\n"); |
---|
| 608 | DecimalFormat decimalFormat = new DecimalFormat(".##"); |
---|
| 609 | stringBuffer.append("Elapsed time: " + decimalFormat.format(elapsedTime) + "\n\n"); |
---|
| 610 | |
---|
| 611 | for (int i = 0; i < database.size(); i++) { |
---|
| 612 | DataObject dataObject = database.getDataObject(Integer.toString(i)); |
---|
| 613 | stringBuffer.append("(" + Utils.doubleToString(Double.parseDouble(dataObject.getKey()), |
---|
| 614 | (Integer.toString(database.size()).length()), 0) + ".) " |
---|
| 615 | + Utils.padRight(dataObject.toString(), 69) + " --> " + |
---|
| 616 | ((dataObject.getClusterLabel() == DataObject.NOISE) ? |
---|
| 617 | "NOISE\n" : dataObject.getClusterLabel() + "\n")); |
---|
| 618 | } |
---|
| 619 | return stringBuffer.toString() + "\n"; |
---|
| 620 | } |
---|
| 621 | |
---|
| 622 | /** |
---|
| 623 | * Returns the revision string. |
---|
| 624 | * |
---|
| 625 | * @return the revision |
---|
| 626 | */ |
---|
| 627 | public String getRevision() { |
---|
| 628 | return RevisionUtils.extract("$Revision: 5488 $"); |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | /** |
---|
| 632 | * Main Method for testing DBScan |
---|
| 633 | * @param args Valid parameters are: 'E' epsilon (default = 0.9); 'M' minPoints (default = 6); |
---|
| 634 | * 'I' index-type (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase); |
---|
| 635 | * 'D' distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject); |
---|
| 636 | */ |
---|
| 637 | public static void main(String[] args) { |
---|
| 638 | runClusterer(new DBScan(), args); |
---|
| 639 | } |
---|
| 640 | } |
---|