1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Copyright (C) 2004 |
---|
19 | * & Matthias Schubert (schubert@dbs.ifi.lmu.de) |
---|
20 | * & Zhanna Melnikova-Albrecht (melnikov@cip.ifi.lmu.de) |
---|
21 | * & Rainer Holzmann (holzmann@cip.ifi.lmu.de) |
---|
22 | */ |
---|
23 | |
---|
24 | package weka.clusterers; |
---|
25 | |
---|
26 | import weka.clusterers.forOPTICSAndDBScan.DataObjects.DataObject; |
---|
27 | import weka.clusterers.forOPTICSAndDBScan.Databases.Database; |
---|
28 | import weka.core.Capabilities; |
---|
29 | import weka.core.Instance; |
---|
30 | import weka.core.Instances; |
---|
31 | import weka.core.Option; |
---|
32 | import weka.core.OptionHandler; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.TechnicalInformation; |
---|
35 | import weka.core.TechnicalInformationHandler; |
---|
36 | import weka.core.Utils; |
---|
37 | import weka.core.Capabilities.Capability; |
---|
38 | import weka.core.TechnicalInformation.Field; |
---|
39 | import weka.core.TechnicalInformation.Type; |
---|
40 | import weka.filters.Filter; |
---|
41 | import weka.filters.unsupervised.attribute.ReplaceMissingValues; |
---|
42 | |
---|
43 | import java.lang.reflect.Constructor; |
---|
44 | import java.lang.reflect.InvocationTargetException; |
---|
45 | import java.text.DecimalFormat; |
---|
46 | import java.util.Enumeration; |
---|
47 | import java.util.Iterator; |
---|
48 | import java.util.List; |
---|
49 | import java.util.Vector; |
---|
50 | |
---|
51 | /** |
---|
52 | <!-- globalinfo-start --> |
---|
53 | * Martin Ester, Hans-Peter Kriegel, Joerg Sander, Xiaowei Xu: A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Second International Conference on Knowledge Discovery and Data Mining, 226-231, 1996. |
---|
54 | * <p/> |
---|
55 | <!-- globalinfo-end --> |
---|
56 | * |
---|
57 | <!-- technical-bibtex-start --> |
---|
58 | * BibTeX: |
---|
59 | * <pre> |
---|
60 | * @inproceedings{Ester1996, |
---|
61 | * author = {Martin Ester and Hans-Peter Kriegel and Joerg Sander and Xiaowei Xu}, |
---|
62 | * booktitle = {Second International Conference on Knowledge Discovery and Data Mining}, |
---|
63 | * editor = {Evangelos Simoudis and Jiawei Han and Usama M. Fayyad}, |
---|
64 | * pages = {226-231}, |
---|
65 | * publisher = {AAAI Press}, |
---|
66 | * title = {A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise}, |
---|
67 | * year = {1996} |
---|
68 | * } |
---|
69 | * </pre> |
---|
70 | * <p/> |
---|
71 | <!-- technical-bibtex-end --> |
---|
72 | * |
---|
73 | <!-- options-start --> |
---|
74 | * Valid options are: <p/> |
---|
75 | * |
---|
76 | * <pre> -E <double> |
---|
77 | * epsilon (default = 0.9)</pre> |
---|
78 | * |
---|
79 | * <pre> -M <int> |
---|
80 | * minPoints (default = 6)</pre> |
---|
81 | * |
---|
82 | * <pre> -I <String> |
---|
83 | * index (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)</pre> |
---|
84 | * |
---|
85 | * <pre> -D <String> |
---|
86 | * distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)</pre> |
---|
87 | * |
---|
88 | <!-- options-end --> |
---|
89 | * |
---|
90 | * @author Matthias Schubert (schubert@dbs.ifi.lmu.de) |
---|
91 | * @author Zhanna Melnikova-Albrecht (melnikov@cip.ifi.lmu.de) |
---|
92 | * @author Rainer Holzmann (holzmann@cip.ifi.lmu.de) |
---|
93 | * @version $Revision: 5488 $ |
---|
94 | */ |
---|
95 | public class DBScan |
---|
96 | extends AbstractClusterer |
---|
97 | implements OptionHandler, TechnicalInformationHandler { |
---|
98 | |
---|
99 | /** for serialization */ |
---|
100 | static final long serialVersionUID = -1666498248451219728L; |
---|
101 | |
---|
102 | /** |
---|
103 | * Specifies the radius for a range-query |
---|
104 | */ |
---|
105 | private double epsilon = 0.9; |
---|
106 | |
---|
107 | /** |
---|
108 | * Specifies the density (the range-query must contain at least minPoints DataObjects) |
---|
109 | */ |
---|
110 | private int minPoints = 6; |
---|
111 | |
---|
112 | /** |
---|
113 | * Replace missing values in training instances |
---|
114 | */ |
---|
115 | private ReplaceMissingValues replaceMissingValues_Filter; |
---|
116 | |
---|
117 | /** |
---|
118 | * Holds the number of clusters generated |
---|
119 | */ |
---|
120 | private int numberOfGeneratedClusters; |
---|
121 | |
---|
122 | /** |
---|
123 | * Holds the distance-type that is used |
---|
124 | * (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject) |
---|
125 | */ |
---|
126 | private String database_distanceType = "weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject"; |
---|
127 | |
---|
128 | /** |
---|
129 | * Holds the type of the used database |
---|
130 | * (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase) |
---|
131 | */ |
---|
132 | private String database_Type = "weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase"; |
---|
133 | |
---|
134 | /** |
---|
135 | * The database that is used for DBScan |
---|
136 | */ |
---|
137 | private Database database; |
---|
138 | |
---|
139 | /** |
---|
140 | * Holds the current clusterID |
---|
141 | */ |
---|
142 | private int clusterID; |
---|
143 | |
---|
144 | /** |
---|
145 | * Counter for the processed instances |
---|
146 | */ |
---|
147 | private int processed_InstanceID; |
---|
148 | |
---|
149 | /** |
---|
150 | * Holds the time-value (seconds) for the duration of the clustering-process |
---|
151 | */ |
---|
152 | private double elapsedTime; |
---|
153 | |
---|
154 | /** |
---|
155 | * Returns default capabilities of the clusterer. |
---|
156 | * |
---|
157 | * @return the capabilities of this clusterer |
---|
158 | */ |
---|
159 | public Capabilities getCapabilities() { |
---|
160 | Capabilities result = super.getCapabilities(); |
---|
161 | result.disableAll(); |
---|
162 | result.enable(Capability.NO_CLASS); |
---|
163 | |
---|
164 | // attributes |
---|
165 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
166 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
167 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
168 | result.enable(Capability.MISSING_VALUES); |
---|
169 | |
---|
170 | return result; |
---|
171 | } |
---|
172 | |
---|
173 | // ***************************************************************************************************************** |
---|
174 | // constructors |
---|
175 | // ***************************************************************************************************************** |
---|
176 | |
---|
177 | // ***************************************************************************************************************** |
---|
178 | // methods |
---|
179 | // ***************************************************************************************************************** |
---|
180 | |
---|
181 | /** |
---|
182 | * Generate Clustering via DBScan |
---|
183 | * @param instances The instances that need to be clustered |
---|
184 | * @throws java.lang.Exception If clustering was not successful |
---|
185 | */ |
---|
186 | public void buildClusterer(Instances instances) throws Exception { |
---|
187 | // can clusterer handle the data? |
---|
188 | getCapabilities().testWithFail(instances); |
---|
189 | |
---|
190 | long time_1 = System.currentTimeMillis(); |
---|
191 | |
---|
192 | processed_InstanceID = 0; |
---|
193 | numberOfGeneratedClusters = 0; |
---|
194 | clusterID = 0; |
---|
195 | |
---|
196 | replaceMissingValues_Filter = new ReplaceMissingValues(); |
---|
197 | replaceMissingValues_Filter.setInputFormat(instances); |
---|
198 | Instances filteredInstances = Filter.useFilter(instances, replaceMissingValues_Filter); |
---|
199 | |
---|
200 | database = databaseForName(getDatabase_Type(), filteredInstances); |
---|
201 | for (int i = 0; i < database.getInstances().numInstances(); i++) { |
---|
202 | DataObject dataObject = dataObjectForName(getDatabase_distanceType(), |
---|
203 | database.getInstances().instance(i), |
---|
204 | Integer.toString(i), |
---|
205 | database); |
---|
206 | database.insert(dataObject); |
---|
207 | } |
---|
208 | database.setMinMaxValues(); |
---|
209 | |
---|
210 | Iterator iterator = database.dataObjectIterator(); |
---|
211 | while (iterator.hasNext()) { |
---|
212 | DataObject dataObject = (DataObject) iterator.next(); |
---|
213 | if (dataObject.getClusterLabel() == DataObject.UNCLASSIFIED) { |
---|
214 | if (expandCluster(dataObject)) { |
---|
215 | clusterID++; |
---|
216 | numberOfGeneratedClusters++; |
---|
217 | } |
---|
218 | } |
---|
219 | } |
---|
220 | |
---|
221 | long time_2 = System.currentTimeMillis(); |
---|
222 | elapsedTime = (double) (time_2 - time_1) / 1000.0; |
---|
223 | } |
---|
224 | |
---|
225 | /** |
---|
226 | * Assigns this dataObject to a cluster or remains it as NOISE |
---|
227 | * @param dataObject The DataObject that needs to be assigned |
---|
228 | * @return true, if the DataObject could be assigned, else false |
---|
229 | */ |
---|
230 | private boolean expandCluster(DataObject dataObject) { |
---|
231 | List seedList = database.epsilonRangeQuery(getEpsilon(), dataObject); |
---|
232 | /** dataObject is NO coreObject */ |
---|
233 | if (seedList.size() < getMinPoints()) { |
---|
234 | dataObject.setClusterLabel(DataObject.NOISE); |
---|
235 | return false; |
---|
236 | } |
---|
237 | |
---|
238 | /** dataObject is coreObject */ |
---|
239 | for (int i = 0; i < seedList.size(); i++) { |
---|
240 | DataObject seedListDataObject = (DataObject) seedList.get(i); |
---|
241 | /** label this seedListDataObject with the current clusterID, because it is in epsilon-range */ |
---|
242 | seedListDataObject.setClusterLabel(clusterID); |
---|
243 | if (seedListDataObject.equals(dataObject)) { |
---|
244 | seedList.remove(i); |
---|
245 | i--; |
---|
246 | } |
---|
247 | } |
---|
248 | |
---|
249 | /** Iterate the seedList of the startDataObject */ |
---|
250 | for (int j = 0; j < seedList.size(); j++) { |
---|
251 | DataObject seedListDataObject = (DataObject) seedList.get(j); |
---|
252 | List seedListDataObject_Neighbourhood = database.epsilonRangeQuery(getEpsilon(), seedListDataObject); |
---|
253 | |
---|
254 | /** seedListDataObject is coreObject */ |
---|
255 | if (seedListDataObject_Neighbourhood.size() >= getMinPoints()) { |
---|
256 | for (int i = 0; i < seedListDataObject_Neighbourhood.size(); i++) { |
---|
257 | DataObject p = (DataObject) seedListDataObject_Neighbourhood.get(i); |
---|
258 | if (p.getClusterLabel() == DataObject.UNCLASSIFIED || p.getClusterLabel() == DataObject.NOISE) { |
---|
259 | if (p.getClusterLabel() == DataObject.UNCLASSIFIED) { |
---|
260 | seedList.add(p); |
---|
261 | } |
---|
262 | p.setClusterLabel(clusterID); |
---|
263 | } |
---|
264 | } |
---|
265 | } |
---|
266 | seedList.remove(j); |
---|
267 | j--; |
---|
268 | } |
---|
269 | |
---|
270 | return true; |
---|
271 | } |
---|
272 | |
---|
273 | /** |
---|
274 | * Classifies a given instance. |
---|
275 | * |
---|
276 | * @param instance The instance to be assigned to a cluster |
---|
277 | * @return int The number of the assigned cluster as an integer |
---|
278 | * @throws java.lang.Exception If instance could not be clustered |
---|
279 | * successfully |
---|
280 | */ |
---|
281 | public int clusterInstance(Instance instance) throws Exception { |
---|
282 | if (processed_InstanceID >= database.size()) processed_InstanceID = 0; |
---|
283 | int cnum = (database.getDataObject(Integer.toString(processed_InstanceID++))).getClusterLabel(); |
---|
284 | if (cnum == DataObject.NOISE) |
---|
285 | throw new Exception(); |
---|
286 | else |
---|
287 | return cnum; |
---|
288 | } |
---|
289 | |
---|
290 | /** |
---|
291 | * Returns the number of clusters. |
---|
292 | * |
---|
293 | * @return int The number of clusters generated for a training dataset. |
---|
294 | * @throws java.lang.Exception if number of clusters could not be returned |
---|
295 | * successfully |
---|
296 | */ |
---|
297 | public int numberOfClusters() throws Exception { |
---|
298 | return numberOfGeneratedClusters; |
---|
299 | } |
---|
300 | |
---|
301 | /** |
---|
302 | * Returns an enumeration of all the available options.. |
---|
303 | * |
---|
304 | * @return Enumeration An enumeration of all available options. |
---|
305 | */ |
---|
306 | public Enumeration listOptions() { |
---|
307 | Vector vector = new Vector(); |
---|
308 | |
---|
309 | vector.addElement( |
---|
310 | new Option("\tepsilon (default = 0.9)", |
---|
311 | "E", |
---|
312 | 1, |
---|
313 | "-E <double>")); |
---|
314 | vector.addElement( |
---|
315 | new Option("\tminPoints (default = 6)", |
---|
316 | "M", |
---|
317 | 1, |
---|
318 | "-M <int>")); |
---|
319 | vector.addElement( |
---|
320 | new Option("\tindex (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)", |
---|
321 | "I", |
---|
322 | 1, |
---|
323 | "-I <String>")); |
---|
324 | vector.addElement( |
---|
325 | new Option("\tdistance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)", |
---|
326 | "D", |
---|
327 | 1, |
---|
328 | "-D <String>")); |
---|
329 | return vector.elements(); |
---|
330 | } |
---|
331 | |
---|
332 | /** |
---|
333 | * Sets the OptionHandler's options using the given list. All options |
---|
334 | * will be set (or reset) during this call (i.e. incremental setting |
---|
335 | * of options is not possible). <p/> |
---|
336 | * |
---|
337 | <!-- options-start --> |
---|
338 | * Valid options are: <p/> |
---|
339 | * |
---|
340 | * <pre> -E <double> |
---|
341 | * epsilon (default = 0.9)</pre> |
---|
342 | * |
---|
343 | * <pre> -M <int> |
---|
344 | * minPoints (default = 6)</pre> |
---|
345 | * |
---|
346 | * <pre> -I <String> |
---|
347 | * index (database) used for DBScan (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase)</pre> |
---|
348 | * |
---|
349 | * <pre> -D <String> |
---|
350 | * distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject)</pre> |
---|
351 | * |
---|
352 | <!-- options-end --> |
---|
353 | * |
---|
354 | * @param options The list of options as an array of strings |
---|
355 | * @throws java.lang.Exception If an option is not supported |
---|
356 | */ |
---|
357 | public void setOptions(String[] options) throws Exception { |
---|
358 | String optionString = Utils.getOption('E', options); |
---|
359 | if (optionString.length() != 0) { |
---|
360 | setEpsilon(Double.parseDouble(optionString)); |
---|
361 | } |
---|
362 | |
---|
363 | optionString = Utils.getOption('M', options); |
---|
364 | if (optionString.length() != 0) { |
---|
365 | setMinPoints(Integer.parseInt(optionString)); |
---|
366 | } |
---|
367 | |
---|
368 | optionString = Utils.getOption('I', options); |
---|
369 | if (optionString.length() != 0) { |
---|
370 | setDatabase_Type(optionString); |
---|
371 | } |
---|
372 | |
---|
373 | optionString = Utils.getOption('D', options); |
---|
374 | if (optionString.length() != 0) { |
---|
375 | setDatabase_distanceType(optionString); |
---|
376 | } |
---|
377 | } |
---|
378 | |
---|
379 | /** |
---|
380 | * Gets the current option settings for the OptionHandler. |
---|
381 | * |
---|
382 | * @return String[] The list of current option settings as an array of strings |
---|
383 | */ |
---|
384 | public String[] getOptions() { |
---|
385 | String[] options = new String[8]; |
---|
386 | int current = 0; |
---|
387 | |
---|
388 | options[current++] = "-E"; |
---|
389 | options[current++] = "" + getEpsilon(); |
---|
390 | options[current++] = "-M"; |
---|
391 | options[current++] = "" + getMinPoints(); |
---|
392 | options[current++] = "-I"; |
---|
393 | options[current++] = "" + getDatabase_Type(); |
---|
394 | options[current++] = "-D"; |
---|
395 | options[current++] = "" + getDatabase_distanceType(); |
---|
396 | |
---|
397 | return options; |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * Returns a new Class-Instance of the specified database |
---|
402 | * @param database_Type String of the specified database |
---|
403 | * @param instances Instances that were delivered from WEKA |
---|
404 | * @return Database New constructed Database |
---|
405 | */ |
---|
406 | public Database databaseForName(String database_Type, Instances instances) { |
---|
407 | Object o = null; |
---|
408 | |
---|
409 | Constructor co = null; |
---|
410 | try { |
---|
411 | co = (Class.forName(database_Type)).getConstructor(new Class[]{Instances.class}); |
---|
412 | o = co.newInstance(new Object[]{instances}); |
---|
413 | } catch (NoSuchMethodException e) { |
---|
414 | e.printStackTrace(); |
---|
415 | } catch (SecurityException e) { |
---|
416 | e.printStackTrace(); |
---|
417 | } catch (ClassNotFoundException e) { |
---|
418 | e.printStackTrace(); |
---|
419 | } catch (InstantiationException e) { |
---|
420 | e.printStackTrace(); |
---|
421 | } catch (IllegalAccessException e) { |
---|
422 | e.printStackTrace(); |
---|
423 | } catch (InvocationTargetException e) { |
---|
424 | e.printStackTrace(); |
---|
425 | } |
---|
426 | |
---|
427 | return (Database) o; |
---|
428 | } |
---|
429 | |
---|
430 | /** |
---|
431 | * Returns a new Class-Instance of the specified database |
---|
432 | * @param database_distanceType String of the specified distance-type |
---|
433 | * @param instance The original instance that needs to hold by this DataObject |
---|
434 | * @param key Key for this DataObject |
---|
435 | * @param database Link to the database |
---|
436 | * @return DataObject New constructed DataObject |
---|
437 | */ |
---|
438 | public DataObject dataObjectForName(String database_distanceType, Instance instance, String key, Database database) { |
---|
439 | Object o = null; |
---|
440 | |
---|
441 | Constructor co = null; |
---|
442 | try { |
---|
443 | co = (Class.forName(database_distanceType)). |
---|
444 | getConstructor(new Class[]{Instance.class, String.class, Database.class}); |
---|
445 | o = co.newInstance(new Object[]{instance, key, database}); |
---|
446 | } catch (NoSuchMethodException e) { |
---|
447 | e.printStackTrace(); |
---|
448 | } catch (SecurityException e) { |
---|
449 | e.printStackTrace(); |
---|
450 | } catch (ClassNotFoundException e) { |
---|
451 | e.printStackTrace(); |
---|
452 | } catch (InstantiationException e) { |
---|
453 | e.printStackTrace(); |
---|
454 | } catch (IllegalAccessException e) { |
---|
455 | e.printStackTrace(); |
---|
456 | } catch (InvocationTargetException e) { |
---|
457 | e.printStackTrace(); |
---|
458 | } |
---|
459 | |
---|
460 | return (DataObject) o; |
---|
461 | } |
---|
462 | |
---|
463 | /** |
---|
464 | * Sets a new value for minPoints |
---|
465 | * @param minPoints MinPoints |
---|
466 | */ |
---|
467 | public void setMinPoints(int minPoints) { |
---|
468 | this.minPoints = minPoints; |
---|
469 | } |
---|
470 | |
---|
471 | /** |
---|
472 | * Sets a new value for epsilon |
---|
473 | * @param epsilon Epsilon |
---|
474 | */ |
---|
475 | public void setEpsilon(double epsilon) { |
---|
476 | this.epsilon = epsilon; |
---|
477 | } |
---|
478 | |
---|
479 | /** |
---|
480 | * Returns the value of epsilon |
---|
481 | * @return double Epsilon |
---|
482 | */ |
---|
483 | public double getEpsilon() { |
---|
484 | return epsilon; |
---|
485 | } |
---|
486 | |
---|
487 | /** |
---|
488 | * Returns the value of minPoints |
---|
489 | * @return int MinPoints |
---|
490 | */ |
---|
491 | public int getMinPoints() { |
---|
492 | return minPoints; |
---|
493 | } |
---|
494 | |
---|
495 | /** |
---|
496 | * Returns the distance-type |
---|
497 | * @return String Distance-type |
---|
498 | */ |
---|
499 | public String getDatabase_distanceType() { |
---|
500 | return database_distanceType; |
---|
501 | } |
---|
502 | |
---|
503 | /** |
---|
504 | * Returns the type of the used index (database) |
---|
505 | * @return String Index-type |
---|
506 | */ |
---|
507 | public String getDatabase_Type() { |
---|
508 | return database_Type; |
---|
509 | } |
---|
510 | |
---|
511 | /** |
---|
512 | * Sets a new distance-type |
---|
513 | * @param database_distanceType The new distance-type |
---|
514 | */ |
---|
515 | public void setDatabase_distanceType(String database_distanceType) { |
---|
516 | this.database_distanceType = database_distanceType; |
---|
517 | } |
---|
518 | |
---|
519 | /** |
---|
520 | * Sets a new database-type |
---|
521 | * @param database_Type The new database-type |
---|
522 | */ |
---|
523 | public void setDatabase_Type(String database_Type) { |
---|
524 | this.database_Type = database_Type; |
---|
525 | } |
---|
526 | |
---|
527 | /** |
---|
528 | * Returns the tip text for this property |
---|
529 | * @return tip text for this property suitable for |
---|
530 | * displaying in the explorer/experimenter gui |
---|
531 | */ |
---|
532 | public String epsilonTipText() { |
---|
533 | return "radius of the epsilon-range-queries"; |
---|
534 | } |
---|
535 | |
---|
536 | /** |
---|
537 | * Returns the tip text for this property |
---|
538 | * @return tip text for this property suitable for |
---|
539 | * displaying in the explorer/experimenter gui |
---|
540 | */ |
---|
541 | public String minPointsTipText() { |
---|
542 | return "minimun number of DataObjects required in an epsilon-range-query"; |
---|
543 | } |
---|
544 | |
---|
545 | /** |
---|
546 | * Returns the tip text for this property |
---|
547 | * @return tip text for this property suitable for |
---|
548 | * displaying in the explorer/experimenter gui |
---|
549 | */ |
---|
550 | public String database_TypeTipText() { |
---|
551 | return "used database"; |
---|
552 | } |
---|
553 | |
---|
554 | /** |
---|
555 | * Returns the tip text for this property |
---|
556 | * @return tip text for this property suitable for |
---|
557 | * displaying in the explorer/experimenter gui |
---|
558 | */ |
---|
559 | public String database_distanceTypeTipText() { |
---|
560 | return "used distance-type"; |
---|
561 | } |
---|
562 | |
---|
563 | /** |
---|
564 | * Returns a string describing this DataMining-Algorithm |
---|
565 | * @return String Information for the gui-explorer |
---|
566 | */ |
---|
567 | public String globalInfo() { |
---|
568 | return getTechnicalInformation().toString(); |
---|
569 | } |
---|
570 | |
---|
571 | /** |
---|
572 | * Returns an instance of a TechnicalInformation object, containing |
---|
573 | * detailed information about the technical background of this class, |
---|
574 | * e.g., paper reference or book this class is based on. |
---|
575 | * |
---|
576 | * @return the technical information about this class |
---|
577 | */ |
---|
578 | public TechnicalInformation getTechnicalInformation() { |
---|
579 | TechnicalInformation result; |
---|
580 | |
---|
581 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
582 | result.setValue(Field.AUTHOR, "Martin Ester and Hans-Peter Kriegel and Joerg Sander and Xiaowei Xu"); |
---|
583 | result.setValue(Field.TITLE, "A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise"); |
---|
584 | result.setValue(Field.BOOKTITLE, "Second International Conference on Knowledge Discovery and Data Mining"); |
---|
585 | result.setValue(Field.EDITOR, "Evangelos Simoudis and Jiawei Han and Usama M. Fayyad"); |
---|
586 | result.setValue(Field.YEAR, "1996"); |
---|
587 | result.setValue(Field.PAGES, "226-231"); |
---|
588 | result.setValue(Field.PUBLISHER, "AAAI Press"); |
---|
589 | |
---|
590 | return result; |
---|
591 | } |
---|
592 | |
---|
593 | /** |
---|
594 | * Returns a description of the clusterer |
---|
595 | * |
---|
596 | * @return a string representation of the clusterer |
---|
597 | */ |
---|
598 | public String toString() { |
---|
599 | StringBuffer stringBuffer = new StringBuffer(); |
---|
600 | stringBuffer.append("DBScan clustering results\n" + |
---|
601 | "========================================================================================\n\n"); |
---|
602 | stringBuffer.append("Clustered DataObjects: " + database.size() + "\n"); |
---|
603 | stringBuffer.append("Number of attributes: " + database.getInstances().numAttributes() + "\n"); |
---|
604 | stringBuffer.append("Epsilon: " + getEpsilon() + "; minPoints: " + getMinPoints() + "\n"); |
---|
605 | stringBuffer.append("Index: " + getDatabase_Type() + "\n"); |
---|
606 | stringBuffer.append("Distance-type: " + getDatabase_distanceType() + "\n"); |
---|
607 | stringBuffer.append("Number of generated clusters: " + numberOfGeneratedClusters + "\n"); |
---|
608 | DecimalFormat decimalFormat = new DecimalFormat(".##"); |
---|
609 | stringBuffer.append("Elapsed time: " + decimalFormat.format(elapsedTime) + "\n\n"); |
---|
610 | |
---|
611 | for (int i = 0; i < database.size(); i++) { |
---|
612 | DataObject dataObject = database.getDataObject(Integer.toString(i)); |
---|
613 | stringBuffer.append("(" + Utils.doubleToString(Double.parseDouble(dataObject.getKey()), |
---|
614 | (Integer.toString(database.size()).length()), 0) + ".) " |
---|
615 | + Utils.padRight(dataObject.toString(), 69) + " --> " + |
---|
616 | ((dataObject.getClusterLabel() == DataObject.NOISE) ? |
---|
617 | "NOISE\n" : dataObject.getClusterLabel() + "\n")); |
---|
618 | } |
---|
619 | return stringBuffer.toString() + "\n"; |
---|
620 | } |
---|
621 | |
---|
622 | /** |
---|
623 | * Returns the revision string. |
---|
624 | * |
---|
625 | * @return the revision |
---|
626 | */ |
---|
627 | public String getRevision() { |
---|
628 | return RevisionUtils.extract("$Revision: 5488 $"); |
---|
629 | } |
---|
630 | |
---|
631 | /** |
---|
632 | * Main Method for testing DBScan |
---|
633 | * @param args Valid parameters are: 'E' epsilon (default = 0.9); 'M' minPoints (default = 6); |
---|
634 | * 'I' index-type (default = weka.clusterers.forOPTICSAndDBScan.Databases.SequentialDatabase); |
---|
635 | * 'D' distance-type (default = weka.clusterers.forOPTICSAndDBScan.DataObjects.EuclidianDataObject); |
---|
636 | */ |
---|
637 | public static void main(String[] args) { |
---|
638 | runClusterer(new DBScan(), args); |
---|
639 | } |
---|
640 | } |
---|