1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * DecisionStump.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.trees; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.Sourcable; |
---|
28 | import weka.core.Attribute; |
---|
29 | import weka.core.Capabilities; |
---|
30 | import weka.core.ContingencyTables; |
---|
31 | import weka.core.Instance; |
---|
32 | import weka.core.Instances; |
---|
33 | import weka.core.RevisionUtils; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.WeightedInstancesHandler; |
---|
36 | import weka.core.Capabilities.Capability; |
---|
37 | |
---|
38 | /** |
---|
39 | <!-- globalinfo-start --> |
---|
40 | * Class for building and using a decision stump. Usually used in conjunction with a boosting algorithm. Does regression (based on mean-squared error) or classification (based on entropy). Missing is treated as a separate value. |
---|
41 | * <p/> |
---|
42 | <!-- globalinfo-end --> |
---|
43 | * |
---|
44 | * Typical usage: <p> |
---|
45 | * <code>java weka.classifiers.meta.LogitBoost -I 100 -W weka.classifiers.trees.DecisionStump |
---|
46 | * -t training_data </code><p> |
---|
47 | * |
---|
48 | <!-- options-start --> |
---|
49 | * Valid options are: <p/> |
---|
50 | * |
---|
51 | * <pre> -D |
---|
52 | * If set, classifier is run in debug mode and |
---|
53 | * may output additional info to the console</pre> |
---|
54 | * |
---|
55 | <!-- options-end --> |
---|
56 | * |
---|
57 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
58 | * @version $Revision: 5928 $ |
---|
59 | */ |
---|
60 | public class DecisionStump |
---|
61 | extends AbstractClassifier |
---|
62 | implements WeightedInstancesHandler, Sourcable { |
---|
63 | |
---|
64 | /** for serialization */ |
---|
65 | static final long serialVersionUID = 1618384535950391L; |
---|
66 | |
---|
67 | /** The attribute used for classification. */ |
---|
68 | private int m_AttIndex; |
---|
69 | |
---|
70 | /** The split point (index respectively). */ |
---|
71 | private double m_SplitPoint; |
---|
72 | |
---|
73 | /** The distribution of class values or the means in each subset. */ |
---|
74 | private double[][] m_Distribution; |
---|
75 | |
---|
76 | /** The instances used for training. */ |
---|
77 | private Instances m_Instances; |
---|
78 | |
---|
79 | /** a ZeroR model in case no model can be built from the data */ |
---|
80 | private Classifier m_ZeroR; |
---|
81 | |
---|
82 | /** |
---|
83 | * Returns a string describing classifier |
---|
84 | * @return a description suitable for |
---|
85 | * displaying in the explorer/experimenter gui |
---|
86 | */ |
---|
87 | public String globalInfo() { |
---|
88 | |
---|
89 | return "Class for building and using a decision stump. Usually used in " |
---|
90 | + "conjunction with a boosting algorithm. Does regression (based on " |
---|
91 | + "mean-squared error) or classification (based on entropy). Missing " |
---|
92 | + "is treated as a separate value."; |
---|
93 | } |
---|
94 | |
---|
95 | /** |
---|
96 | * Returns default capabilities of the classifier. |
---|
97 | * |
---|
98 | * @return the capabilities of this classifier |
---|
99 | */ |
---|
100 | public Capabilities getCapabilities() { |
---|
101 | Capabilities result = super.getCapabilities(); |
---|
102 | result.disableAll(); |
---|
103 | |
---|
104 | // attributes |
---|
105 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
106 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
107 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
108 | result.enable(Capability.MISSING_VALUES); |
---|
109 | |
---|
110 | // class |
---|
111 | result.enable(Capability.NOMINAL_CLASS); |
---|
112 | result.enable(Capability.NUMERIC_CLASS); |
---|
113 | result.enable(Capability.DATE_CLASS); |
---|
114 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
115 | |
---|
116 | return result; |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Generates the classifier. |
---|
121 | * |
---|
122 | * @param instances set of instances serving as training data |
---|
123 | * @throws Exception if the classifier has not been generated successfully |
---|
124 | */ |
---|
125 | public void buildClassifier(Instances instances) throws Exception { |
---|
126 | |
---|
127 | double bestVal = Double.MAX_VALUE, currVal; |
---|
128 | double bestPoint = -Double.MAX_VALUE; |
---|
129 | int bestAtt = -1, numClasses; |
---|
130 | |
---|
131 | // can classifier handle the data? |
---|
132 | getCapabilities().testWithFail(instances); |
---|
133 | |
---|
134 | // remove instances with missing class |
---|
135 | instances = new Instances(instances); |
---|
136 | instances.deleteWithMissingClass(); |
---|
137 | |
---|
138 | // only class? -> build ZeroR model |
---|
139 | if (instances.numAttributes() == 1) { |
---|
140 | System.err.println( |
---|
141 | "Cannot build model (only class attribute present in data!), " |
---|
142 | + "using ZeroR model instead!"); |
---|
143 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
144 | m_ZeroR.buildClassifier(instances); |
---|
145 | return; |
---|
146 | } |
---|
147 | else { |
---|
148 | m_ZeroR = null; |
---|
149 | } |
---|
150 | |
---|
151 | double[][] bestDist = new double[3][instances.numClasses()]; |
---|
152 | |
---|
153 | m_Instances = new Instances(instances); |
---|
154 | |
---|
155 | if (m_Instances.classAttribute().isNominal()) { |
---|
156 | numClasses = m_Instances.numClasses(); |
---|
157 | } else { |
---|
158 | numClasses = 1; |
---|
159 | } |
---|
160 | |
---|
161 | // For each attribute |
---|
162 | boolean first = true; |
---|
163 | for (int i = 0; i < m_Instances.numAttributes(); i++) { |
---|
164 | if (i != m_Instances.classIndex()) { |
---|
165 | |
---|
166 | // Reserve space for distribution. |
---|
167 | m_Distribution = new double[3][numClasses]; |
---|
168 | |
---|
169 | // Compute value of criterion for best split on attribute |
---|
170 | if (m_Instances.attribute(i).isNominal()) { |
---|
171 | currVal = findSplitNominal(i); |
---|
172 | } else { |
---|
173 | currVal = findSplitNumeric(i); |
---|
174 | } |
---|
175 | if ((first) || (currVal < bestVal)) { |
---|
176 | bestVal = currVal; |
---|
177 | bestAtt = i; |
---|
178 | bestPoint = m_SplitPoint; |
---|
179 | for (int j = 0; j < 3; j++) { |
---|
180 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
181 | numClasses); |
---|
182 | } |
---|
183 | } |
---|
184 | |
---|
185 | // First attribute has been investigated |
---|
186 | first = false; |
---|
187 | } |
---|
188 | } |
---|
189 | |
---|
190 | // Set attribute, split point and distribution. |
---|
191 | m_AttIndex = bestAtt; |
---|
192 | m_SplitPoint = bestPoint; |
---|
193 | m_Distribution = bestDist; |
---|
194 | if (m_Instances.classAttribute().isNominal()) { |
---|
195 | for (int i = 0; i < m_Distribution.length; i++) { |
---|
196 | double sumCounts = Utils.sum(m_Distribution[i]); |
---|
197 | if (sumCounts == 0) { // This means there were only missing attribute values |
---|
198 | System.arraycopy(m_Distribution[2], 0, m_Distribution[i], 0, |
---|
199 | m_Distribution[2].length); |
---|
200 | Utils.normalize(m_Distribution[i]); |
---|
201 | } else { |
---|
202 | Utils.normalize(m_Distribution[i], sumCounts); |
---|
203 | } |
---|
204 | } |
---|
205 | } |
---|
206 | |
---|
207 | // Save memory |
---|
208 | m_Instances = new Instances(m_Instances, 0); |
---|
209 | } |
---|
210 | |
---|
211 | /** |
---|
212 | * Calculates the class membership probabilities for the given test instance. |
---|
213 | * |
---|
214 | * @param instance the instance to be classified |
---|
215 | * @return predicted class probability distribution |
---|
216 | * @throws Exception if distribution can't be computed |
---|
217 | */ |
---|
218 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
219 | |
---|
220 | // default model? |
---|
221 | if (m_ZeroR != null) { |
---|
222 | return m_ZeroR.distributionForInstance(instance); |
---|
223 | } |
---|
224 | |
---|
225 | return m_Distribution[whichSubset(instance)]; |
---|
226 | } |
---|
227 | |
---|
228 | /** |
---|
229 | * Returns the decision tree as Java source code. |
---|
230 | * |
---|
231 | * @param className the classname of the generated code |
---|
232 | * @return the tree as Java source code |
---|
233 | * @throws Exception if something goes wrong |
---|
234 | */ |
---|
235 | public String toSource(String className) throws Exception { |
---|
236 | |
---|
237 | StringBuffer text = new StringBuffer("class "); |
---|
238 | Attribute c = m_Instances.classAttribute(); |
---|
239 | text.append(className) |
---|
240 | .append(" {\n" |
---|
241 | +" public static double classify(Object[] i) {\n"); |
---|
242 | text.append(" /* " + m_Instances.attribute(m_AttIndex).name() + " */\n"); |
---|
243 | text.append(" if (i[").append(m_AttIndex); |
---|
244 | text.append("] == null) { return "); |
---|
245 | text.append(sourceClass(c, m_Distribution[2])).append(";"); |
---|
246 | if (m_Instances.attribute(m_AttIndex).isNominal()) { |
---|
247 | text.append(" } else if (((String)i[").append(m_AttIndex); |
---|
248 | text.append("]).equals(\""); |
---|
249 | text.append(m_Instances.attribute(m_AttIndex).value((int)m_SplitPoint)); |
---|
250 | text.append("\")"); |
---|
251 | } else { |
---|
252 | text.append(" } else if (((Double)i[").append(m_AttIndex); |
---|
253 | text.append("]).doubleValue() <= ").append(m_SplitPoint); |
---|
254 | } |
---|
255 | text.append(") { return "); |
---|
256 | text.append(sourceClass(c, m_Distribution[0])).append(";"); |
---|
257 | text.append(" } else { return "); |
---|
258 | text.append(sourceClass(c, m_Distribution[1])).append(";"); |
---|
259 | text.append(" }\n }\n}\n"); |
---|
260 | return text.toString(); |
---|
261 | } |
---|
262 | |
---|
263 | /** |
---|
264 | * Returns the value as string out of the given distribution |
---|
265 | * |
---|
266 | * @param c the attribute to get the value for |
---|
267 | * @param dist the distribution to extract the value |
---|
268 | * @return the value |
---|
269 | */ |
---|
270 | private String sourceClass(Attribute c, double []dist) { |
---|
271 | |
---|
272 | if (c.isNominal()) { |
---|
273 | return Integer.toString(Utils.maxIndex(dist)); |
---|
274 | } else { |
---|
275 | return Double.toString(dist[0]); |
---|
276 | } |
---|
277 | } |
---|
278 | |
---|
279 | /** |
---|
280 | * Returns a description of the classifier. |
---|
281 | * |
---|
282 | * @return a description of the classifier as a string. |
---|
283 | */ |
---|
284 | public String toString(){ |
---|
285 | |
---|
286 | // only ZeroR model? |
---|
287 | if (m_ZeroR != null) { |
---|
288 | StringBuffer buf = new StringBuffer(); |
---|
289 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
290 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
291 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
292 | buf.append(m_ZeroR.toString()); |
---|
293 | return buf.toString(); |
---|
294 | } |
---|
295 | |
---|
296 | if (m_Instances == null) { |
---|
297 | return "Decision Stump: No model built yet."; |
---|
298 | } |
---|
299 | try { |
---|
300 | StringBuffer text = new StringBuffer(); |
---|
301 | |
---|
302 | text.append("Decision Stump\n\n"); |
---|
303 | text.append("Classifications\n\n"); |
---|
304 | Attribute att = m_Instances.attribute(m_AttIndex); |
---|
305 | if (att.isNominal()) { |
---|
306 | text.append(att.name() + " = " + att.value((int)m_SplitPoint) + |
---|
307 | " : "); |
---|
308 | text.append(printClass(m_Distribution[0])); |
---|
309 | text.append(att.name() + " != " + att.value((int)m_SplitPoint) + |
---|
310 | " : "); |
---|
311 | text.append(printClass(m_Distribution[1])); |
---|
312 | } else { |
---|
313 | text.append(att.name() + " <= " + m_SplitPoint + " : "); |
---|
314 | text.append(printClass(m_Distribution[0])); |
---|
315 | text.append(att.name() + " > " + m_SplitPoint + " : "); |
---|
316 | text.append(printClass(m_Distribution[1])); |
---|
317 | } |
---|
318 | text.append(att.name() + " is missing : "); |
---|
319 | text.append(printClass(m_Distribution[2])); |
---|
320 | |
---|
321 | if (m_Instances.classAttribute().isNominal()) { |
---|
322 | text.append("\nClass distributions\n\n"); |
---|
323 | if (att.isNominal()) { |
---|
324 | text.append(att.name() + " = " + att.value((int)m_SplitPoint) + |
---|
325 | "\n"); |
---|
326 | text.append(printDist(m_Distribution[0])); |
---|
327 | text.append(att.name() + " != " + att.value((int)m_SplitPoint) + |
---|
328 | "\n"); |
---|
329 | text.append(printDist(m_Distribution[1])); |
---|
330 | } else { |
---|
331 | text.append(att.name() + " <= " + m_SplitPoint + "\n"); |
---|
332 | text.append(printDist(m_Distribution[0])); |
---|
333 | text.append(att.name() + " > " + m_SplitPoint + "\n"); |
---|
334 | text.append(printDist(m_Distribution[1])); |
---|
335 | } |
---|
336 | text.append(att.name() + " is missing\n"); |
---|
337 | text.append(printDist(m_Distribution[2])); |
---|
338 | } |
---|
339 | |
---|
340 | return text.toString(); |
---|
341 | } catch (Exception e) { |
---|
342 | return "Can't print decision stump classifier!"; |
---|
343 | } |
---|
344 | } |
---|
345 | |
---|
346 | /** |
---|
347 | * Prints a class distribution. |
---|
348 | * |
---|
349 | * @param dist the class distribution to print |
---|
350 | * @return the distribution as a string |
---|
351 | * @throws Exception if distribution can't be printed |
---|
352 | */ |
---|
353 | private String printDist(double[] dist) throws Exception { |
---|
354 | |
---|
355 | StringBuffer text = new StringBuffer(); |
---|
356 | |
---|
357 | if (m_Instances.classAttribute().isNominal()) { |
---|
358 | for (int i = 0; i < m_Instances.numClasses(); i++) { |
---|
359 | text.append(m_Instances.classAttribute().value(i) + "\t"); |
---|
360 | } |
---|
361 | text.append("\n"); |
---|
362 | for (int i = 0; i < m_Instances.numClasses(); i++) { |
---|
363 | text.append(dist[i] + "\t"); |
---|
364 | } |
---|
365 | text.append("\n"); |
---|
366 | } |
---|
367 | |
---|
368 | return text.toString(); |
---|
369 | } |
---|
370 | |
---|
371 | /** |
---|
372 | * Prints a classification. |
---|
373 | * |
---|
374 | * @param dist the class distribution |
---|
375 | * @return the classificationn as a string |
---|
376 | * @throws Exception if the classification can't be printed |
---|
377 | */ |
---|
378 | private String printClass(double[] dist) throws Exception { |
---|
379 | |
---|
380 | StringBuffer text = new StringBuffer(); |
---|
381 | |
---|
382 | if (m_Instances.classAttribute().isNominal()) { |
---|
383 | text.append(m_Instances.classAttribute().value(Utils.maxIndex(dist))); |
---|
384 | } else { |
---|
385 | text.append(dist[0]); |
---|
386 | } |
---|
387 | |
---|
388 | return text.toString() + "\n"; |
---|
389 | } |
---|
390 | |
---|
391 | /** |
---|
392 | * Finds best split for nominal attribute and returns value. |
---|
393 | * |
---|
394 | * @param index attribute index |
---|
395 | * @return value of criterion for the best split |
---|
396 | * @throws Exception if something goes wrong |
---|
397 | */ |
---|
398 | private double findSplitNominal(int index) throws Exception { |
---|
399 | |
---|
400 | if (m_Instances.classAttribute().isNominal()) { |
---|
401 | return findSplitNominalNominal(index); |
---|
402 | } else { |
---|
403 | return findSplitNominalNumeric(index); |
---|
404 | } |
---|
405 | } |
---|
406 | |
---|
407 | /** |
---|
408 | * Finds best split for nominal attribute and nominal class |
---|
409 | * and returns value. |
---|
410 | * |
---|
411 | * @param index attribute index |
---|
412 | * @return value of criterion for the best split |
---|
413 | * @throws Exception if something goes wrong |
---|
414 | */ |
---|
415 | private double findSplitNominalNominal(int index) throws Exception { |
---|
416 | |
---|
417 | double bestVal = Double.MAX_VALUE, currVal; |
---|
418 | double[][] counts = new double[m_Instances.attribute(index).numValues() |
---|
419 | + 1][m_Instances.numClasses()]; |
---|
420 | double[] sumCounts = new double[m_Instances.numClasses()]; |
---|
421 | double[][] bestDist = new double[3][m_Instances.numClasses()]; |
---|
422 | int numMissing = 0; |
---|
423 | |
---|
424 | // Compute counts for all the values |
---|
425 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
426 | Instance inst = m_Instances.instance(i); |
---|
427 | if (inst.isMissing(index)) { |
---|
428 | numMissing++; |
---|
429 | counts[m_Instances.attribute(index).numValues()] |
---|
430 | [(int)inst.classValue()] += inst.weight(); |
---|
431 | } else { |
---|
432 | counts[(int)inst.value(index)][(int)inst.classValue()] += inst |
---|
433 | .weight(); |
---|
434 | } |
---|
435 | } |
---|
436 | |
---|
437 | // Compute sum of counts |
---|
438 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
439 | for (int j = 0; j < m_Instances.numClasses(); j++) { |
---|
440 | sumCounts[j] += counts[i][j]; |
---|
441 | } |
---|
442 | } |
---|
443 | |
---|
444 | // Make split counts for each possible split and evaluate |
---|
445 | System.arraycopy(counts[m_Instances.attribute(index).numValues()], 0, |
---|
446 | m_Distribution[2], 0, m_Instances.numClasses()); |
---|
447 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
448 | for (int j = 0; j < m_Instances.numClasses(); j++) { |
---|
449 | m_Distribution[0][j] = counts[i][j]; |
---|
450 | m_Distribution[1][j] = sumCounts[j] - counts[i][j]; |
---|
451 | } |
---|
452 | currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution); |
---|
453 | if (currVal < bestVal) { |
---|
454 | bestVal = currVal; |
---|
455 | m_SplitPoint = (double)i; |
---|
456 | for (int j = 0; j < 3; j++) { |
---|
457 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
458 | m_Instances.numClasses()); |
---|
459 | } |
---|
460 | } |
---|
461 | } |
---|
462 | |
---|
463 | // No missing values in training data. |
---|
464 | if (numMissing == 0) { |
---|
465 | System.arraycopy(sumCounts, 0, bestDist[2], 0, |
---|
466 | m_Instances.numClasses()); |
---|
467 | } |
---|
468 | |
---|
469 | m_Distribution = bestDist; |
---|
470 | return bestVal; |
---|
471 | } |
---|
472 | |
---|
473 | /** |
---|
474 | * Finds best split for nominal attribute and numeric class |
---|
475 | * and returns value. |
---|
476 | * |
---|
477 | * @param index attribute index |
---|
478 | * @return value of criterion for the best split |
---|
479 | * @throws Exception if something goes wrong |
---|
480 | */ |
---|
481 | private double findSplitNominalNumeric(int index) throws Exception { |
---|
482 | |
---|
483 | double bestVal = Double.MAX_VALUE, currVal; |
---|
484 | double[] sumsSquaresPerValue = |
---|
485 | new double[m_Instances.attribute(index).numValues()], |
---|
486 | sumsPerValue = new double[m_Instances.attribute(index).numValues()], |
---|
487 | weightsPerValue = new double[m_Instances.attribute(index).numValues()]; |
---|
488 | double totalSumSquaresW = 0, totalSumW = 0, totalSumOfWeightsW = 0, |
---|
489 | totalSumOfWeights = 0, totalSum = 0; |
---|
490 | double[] sumsSquares = new double[3], sumOfWeights = new double[3]; |
---|
491 | double[][] bestDist = new double[3][1]; |
---|
492 | |
---|
493 | // Compute counts for all the values |
---|
494 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
495 | Instance inst = m_Instances.instance(i); |
---|
496 | if (inst.isMissing(index)) { |
---|
497 | m_Distribution[2][0] += inst.classValue() * inst.weight(); |
---|
498 | sumsSquares[2] += inst.classValue() * inst.classValue() |
---|
499 | * inst.weight(); |
---|
500 | sumOfWeights[2] += inst.weight(); |
---|
501 | } else { |
---|
502 | weightsPerValue[(int)inst.value(index)] += inst.weight(); |
---|
503 | sumsPerValue[(int)inst.value(index)] += inst.classValue() |
---|
504 | * inst.weight(); |
---|
505 | sumsSquaresPerValue[(int)inst.value(index)] += |
---|
506 | inst.classValue() * inst.classValue() * inst.weight(); |
---|
507 | } |
---|
508 | totalSumOfWeights += inst.weight(); |
---|
509 | totalSum += inst.classValue() * inst.weight(); |
---|
510 | } |
---|
511 | |
---|
512 | // Check if the total weight is zero |
---|
513 | if (totalSumOfWeights <= 0) { |
---|
514 | return bestVal; |
---|
515 | } |
---|
516 | |
---|
517 | // Compute sum of counts without missing ones |
---|
518 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
519 | totalSumOfWeightsW += weightsPerValue[i]; |
---|
520 | totalSumSquaresW += sumsSquaresPerValue[i]; |
---|
521 | totalSumW += sumsPerValue[i]; |
---|
522 | } |
---|
523 | |
---|
524 | // Make split counts for each possible split and evaluate |
---|
525 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
526 | |
---|
527 | m_Distribution[0][0] = sumsPerValue[i]; |
---|
528 | sumsSquares[0] = sumsSquaresPerValue[i]; |
---|
529 | sumOfWeights[0] = weightsPerValue[i]; |
---|
530 | m_Distribution[1][0] = totalSumW - sumsPerValue[i]; |
---|
531 | sumsSquares[1] = totalSumSquaresW - sumsSquaresPerValue[i]; |
---|
532 | sumOfWeights[1] = totalSumOfWeightsW - weightsPerValue[i]; |
---|
533 | |
---|
534 | currVal = variance(m_Distribution, sumsSquares, sumOfWeights); |
---|
535 | |
---|
536 | if (currVal < bestVal) { |
---|
537 | bestVal = currVal; |
---|
538 | m_SplitPoint = (double)i; |
---|
539 | for (int j = 0; j < 3; j++) { |
---|
540 | if (sumOfWeights[j] > 0) { |
---|
541 | bestDist[j][0] = m_Distribution[j][0] / sumOfWeights[j]; |
---|
542 | } else { |
---|
543 | bestDist[j][0] = totalSum / totalSumOfWeights; |
---|
544 | } |
---|
545 | } |
---|
546 | } |
---|
547 | } |
---|
548 | |
---|
549 | m_Distribution = bestDist; |
---|
550 | return bestVal; |
---|
551 | } |
---|
552 | |
---|
553 | /** |
---|
554 | * Finds best split for numeric attribute and returns value. |
---|
555 | * |
---|
556 | * @param index attribute index |
---|
557 | * @return value of criterion for the best split |
---|
558 | * @throws Exception if something goes wrong |
---|
559 | */ |
---|
560 | private double findSplitNumeric(int index) throws Exception { |
---|
561 | |
---|
562 | if (m_Instances.classAttribute().isNominal()) { |
---|
563 | return findSplitNumericNominal(index); |
---|
564 | } else { |
---|
565 | return findSplitNumericNumeric(index); |
---|
566 | } |
---|
567 | } |
---|
568 | |
---|
569 | /** |
---|
570 | * Finds best split for numeric attribute and nominal class |
---|
571 | * and returns value. |
---|
572 | * |
---|
573 | * @param index attribute index |
---|
574 | * @return value of criterion for the best split |
---|
575 | * @throws Exception if something goes wrong |
---|
576 | */ |
---|
577 | private double findSplitNumericNominal(int index) throws Exception { |
---|
578 | |
---|
579 | double bestVal = Double.MAX_VALUE, currVal, currCutPoint; |
---|
580 | int numMissing = 0; |
---|
581 | double[] sum = new double[m_Instances.numClasses()]; |
---|
582 | double[][] bestDist = new double[3][m_Instances.numClasses()]; |
---|
583 | |
---|
584 | // Compute counts for all the values |
---|
585 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
586 | Instance inst = m_Instances.instance(i); |
---|
587 | if (!inst.isMissing(index)) { |
---|
588 | m_Distribution[1][(int)inst.classValue()] += inst.weight(); |
---|
589 | } else { |
---|
590 | m_Distribution[2][(int)inst.classValue()] += inst.weight(); |
---|
591 | numMissing++; |
---|
592 | } |
---|
593 | } |
---|
594 | System.arraycopy(m_Distribution[1], 0, sum, 0, m_Instances.numClasses()); |
---|
595 | |
---|
596 | // Save current distribution as best distribution |
---|
597 | for (int j = 0; j < 3; j++) { |
---|
598 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
599 | m_Instances.numClasses()); |
---|
600 | } |
---|
601 | |
---|
602 | // Sort instances |
---|
603 | m_Instances.sort(index); |
---|
604 | |
---|
605 | // Make split counts for each possible split and evaluate |
---|
606 | for (int i = 0; i < m_Instances.numInstances() - (numMissing + 1); i++) { |
---|
607 | Instance inst = m_Instances.instance(i); |
---|
608 | Instance instPlusOne = m_Instances.instance(i + 1); |
---|
609 | m_Distribution[0][(int)inst.classValue()] += inst.weight(); |
---|
610 | m_Distribution[1][(int)inst.classValue()] -= inst.weight(); |
---|
611 | if (inst.value(index) < instPlusOne.value(index)) { |
---|
612 | currCutPoint = (inst.value(index) + instPlusOne.value(index)) / 2.0; |
---|
613 | currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution); |
---|
614 | if (currVal < bestVal) { |
---|
615 | m_SplitPoint = currCutPoint; |
---|
616 | bestVal = currVal; |
---|
617 | for (int j = 0; j < 3; j++) { |
---|
618 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
619 | m_Instances.numClasses()); |
---|
620 | } |
---|
621 | } |
---|
622 | } |
---|
623 | } |
---|
624 | |
---|
625 | // No missing values in training data. |
---|
626 | if (numMissing == 0) { |
---|
627 | System.arraycopy(sum, 0, bestDist[2], 0, m_Instances.numClasses()); |
---|
628 | } |
---|
629 | |
---|
630 | m_Distribution = bestDist; |
---|
631 | return bestVal; |
---|
632 | } |
---|
633 | |
---|
634 | /** |
---|
635 | * Finds best split for numeric attribute and numeric class |
---|
636 | * and returns value. |
---|
637 | * |
---|
638 | * @param index attribute index |
---|
639 | * @return value of criterion for the best split |
---|
640 | * @throws Exception if something goes wrong |
---|
641 | */ |
---|
642 | private double findSplitNumericNumeric(int index) throws Exception { |
---|
643 | |
---|
644 | double bestVal = Double.MAX_VALUE, currVal, currCutPoint; |
---|
645 | int numMissing = 0; |
---|
646 | double[] sumsSquares = new double[3], sumOfWeights = new double[3]; |
---|
647 | double[][] bestDist = new double[3][1]; |
---|
648 | double totalSum = 0, totalSumOfWeights = 0; |
---|
649 | |
---|
650 | // Compute counts for all the values |
---|
651 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
652 | Instance inst = m_Instances.instance(i); |
---|
653 | if (!inst.isMissing(index)) { |
---|
654 | m_Distribution[1][0] += inst.classValue() * inst.weight(); |
---|
655 | sumsSquares[1] += inst.classValue() * inst.classValue() |
---|
656 | * inst.weight(); |
---|
657 | sumOfWeights[1] += inst.weight(); |
---|
658 | } else { |
---|
659 | m_Distribution[2][0] += inst.classValue() * inst.weight(); |
---|
660 | sumsSquares[2] += inst.classValue() * inst.classValue() |
---|
661 | * inst.weight(); |
---|
662 | sumOfWeights[2] += inst.weight(); |
---|
663 | numMissing++; |
---|
664 | } |
---|
665 | totalSumOfWeights += inst.weight(); |
---|
666 | totalSum += inst.classValue() * inst.weight(); |
---|
667 | } |
---|
668 | |
---|
669 | // Check if the total weight is zero |
---|
670 | if (totalSumOfWeights <= 0) { |
---|
671 | return bestVal; |
---|
672 | } |
---|
673 | |
---|
674 | // Sort instances |
---|
675 | m_Instances.sort(index); |
---|
676 | |
---|
677 | // Make split counts for each possible split and evaluate |
---|
678 | for (int i = 0; i < m_Instances.numInstances() - (numMissing + 1); i++) { |
---|
679 | Instance inst = m_Instances.instance(i); |
---|
680 | Instance instPlusOne = m_Instances.instance(i + 1); |
---|
681 | m_Distribution[0][0] += inst.classValue() * inst.weight(); |
---|
682 | sumsSquares[0] += inst.classValue() * inst.classValue() * inst.weight(); |
---|
683 | sumOfWeights[0] += inst.weight(); |
---|
684 | m_Distribution[1][0] -= inst.classValue() * inst.weight(); |
---|
685 | sumsSquares[1] -= inst.classValue() * inst.classValue() * inst.weight(); |
---|
686 | sumOfWeights[1] -= inst.weight(); |
---|
687 | if (inst.value(index) < instPlusOne.value(index)) { |
---|
688 | currCutPoint = (inst.value(index) + instPlusOne.value(index)) / 2.0; |
---|
689 | currVal = variance(m_Distribution, sumsSquares, sumOfWeights); |
---|
690 | if (currVal < bestVal) { |
---|
691 | m_SplitPoint = currCutPoint; |
---|
692 | bestVal = currVal; |
---|
693 | for (int j = 0; j < 3; j++) { |
---|
694 | if (sumOfWeights[j] > 0) { |
---|
695 | bestDist[j][0] = m_Distribution[j][0] / sumOfWeights[j]; |
---|
696 | } else { |
---|
697 | bestDist[j][0] = totalSum / totalSumOfWeights; |
---|
698 | } |
---|
699 | } |
---|
700 | } |
---|
701 | } |
---|
702 | } |
---|
703 | |
---|
704 | m_Distribution = bestDist; |
---|
705 | return bestVal; |
---|
706 | } |
---|
707 | |
---|
708 | /** |
---|
709 | * Computes variance for subsets. |
---|
710 | * |
---|
711 | * @param s |
---|
712 | * @param sS |
---|
713 | * @param sumOfWeights |
---|
714 | * @return the variance |
---|
715 | */ |
---|
716 | private double variance(double[][] s,double[] sS,double[] sumOfWeights) { |
---|
717 | |
---|
718 | double var = 0; |
---|
719 | |
---|
720 | for (int i = 0; i < s.length; i++) { |
---|
721 | if (sumOfWeights[i] > 0) { |
---|
722 | var += sS[i] - ((s[i][0] * s[i][0]) / (double) sumOfWeights[i]); |
---|
723 | } |
---|
724 | } |
---|
725 | |
---|
726 | return var; |
---|
727 | } |
---|
728 | |
---|
729 | /** |
---|
730 | * Returns the subset an instance falls into. |
---|
731 | * |
---|
732 | * @param instance the instance to check |
---|
733 | * @return the subset the instance falls into |
---|
734 | * @throws Exception if something goes wrong |
---|
735 | */ |
---|
736 | private int whichSubset(Instance instance) throws Exception { |
---|
737 | |
---|
738 | if (instance.isMissing(m_AttIndex)) { |
---|
739 | return 2; |
---|
740 | } else if (instance.attribute(m_AttIndex).isNominal()) { |
---|
741 | if ((int)instance.value(m_AttIndex) == m_SplitPoint) { |
---|
742 | return 0; |
---|
743 | } else { |
---|
744 | return 1; |
---|
745 | } |
---|
746 | } else { |
---|
747 | if (instance.value(m_AttIndex) <= m_SplitPoint) { |
---|
748 | return 0; |
---|
749 | } else { |
---|
750 | return 1; |
---|
751 | } |
---|
752 | } |
---|
753 | } |
---|
754 | |
---|
755 | /** |
---|
756 | * Returns the revision string. |
---|
757 | * |
---|
758 | * @return the revision |
---|
759 | */ |
---|
760 | public String getRevision() { |
---|
761 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
762 | } |
---|
763 | |
---|
764 | /** |
---|
765 | * Main method for testing this class. |
---|
766 | * |
---|
767 | * @param argv the options |
---|
768 | */ |
---|
769 | public static void main(String [] argv) { |
---|
770 | runClassifier(new DecisionStump(), argv); |
---|
771 | } |
---|
772 | } |
---|