[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * DecisionStump.java |
---|
| 19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.classifiers.trees; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.classifiers.Sourcable; |
---|
| 28 | import weka.core.Attribute; |
---|
| 29 | import weka.core.Capabilities; |
---|
| 30 | import weka.core.ContingencyTables; |
---|
| 31 | import weka.core.Instance; |
---|
| 32 | import weka.core.Instances; |
---|
| 33 | import weka.core.RevisionUtils; |
---|
| 34 | import weka.core.Utils; |
---|
| 35 | import weka.core.WeightedInstancesHandler; |
---|
| 36 | import weka.core.Capabilities.Capability; |
---|
| 37 | |
---|
| 38 | /** |
---|
| 39 | <!-- globalinfo-start --> |
---|
| 40 | * Class for building and using a decision stump. Usually used in conjunction with a boosting algorithm. Does regression (based on mean-squared error) or classification (based on entropy). Missing is treated as a separate value. |
---|
| 41 | * <p/> |
---|
| 42 | <!-- globalinfo-end --> |
---|
| 43 | * |
---|
| 44 | * Typical usage: <p> |
---|
| 45 | * <code>java weka.classifiers.meta.LogitBoost -I 100 -W weka.classifiers.trees.DecisionStump |
---|
| 46 | * -t training_data </code><p> |
---|
| 47 | * |
---|
| 48 | <!-- options-start --> |
---|
| 49 | * Valid options are: <p/> |
---|
| 50 | * |
---|
| 51 | * <pre> -D |
---|
| 52 | * If set, classifier is run in debug mode and |
---|
| 53 | * may output additional info to the console</pre> |
---|
| 54 | * |
---|
| 55 | <!-- options-end --> |
---|
| 56 | * |
---|
| 57 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 58 | * @version $Revision: 5928 $ |
---|
| 59 | */ |
---|
| 60 | public class DecisionStump |
---|
| 61 | extends AbstractClassifier |
---|
| 62 | implements WeightedInstancesHandler, Sourcable { |
---|
| 63 | |
---|
| 64 | /** for serialization */ |
---|
| 65 | static final long serialVersionUID = 1618384535950391L; |
---|
| 66 | |
---|
| 67 | /** The attribute used for classification. */ |
---|
| 68 | private int m_AttIndex; |
---|
| 69 | |
---|
| 70 | /** The split point (index respectively). */ |
---|
| 71 | private double m_SplitPoint; |
---|
| 72 | |
---|
| 73 | /** The distribution of class values or the means in each subset. */ |
---|
| 74 | private double[][] m_Distribution; |
---|
| 75 | |
---|
| 76 | /** The instances used for training. */ |
---|
| 77 | private Instances m_Instances; |
---|
| 78 | |
---|
| 79 | /** a ZeroR model in case no model can be built from the data */ |
---|
| 80 | private Classifier m_ZeroR; |
---|
| 81 | |
---|
| 82 | /** |
---|
| 83 | * Returns a string describing classifier |
---|
| 84 | * @return a description suitable for |
---|
| 85 | * displaying in the explorer/experimenter gui |
---|
| 86 | */ |
---|
| 87 | public String globalInfo() { |
---|
| 88 | |
---|
| 89 | return "Class for building and using a decision stump. Usually used in " |
---|
| 90 | + "conjunction with a boosting algorithm. Does regression (based on " |
---|
| 91 | + "mean-squared error) or classification (based on entropy). Missing " |
---|
| 92 | + "is treated as a separate value."; |
---|
| 93 | } |
---|
| 94 | |
---|
| 95 | /** |
---|
| 96 | * Returns default capabilities of the classifier. |
---|
| 97 | * |
---|
| 98 | * @return the capabilities of this classifier |
---|
| 99 | */ |
---|
| 100 | public Capabilities getCapabilities() { |
---|
| 101 | Capabilities result = super.getCapabilities(); |
---|
| 102 | result.disableAll(); |
---|
| 103 | |
---|
| 104 | // attributes |
---|
| 105 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 106 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 107 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 108 | result.enable(Capability.MISSING_VALUES); |
---|
| 109 | |
---|
| 110 | // class |
---|
| 111 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 112 | result.enable(Capability.NUMERIC_CLASS); |
---|
| 113 | result.enable(Capability.DATE_CLASS); |
---|
| 114 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 115 | |
---|
| 116 | return result; |
---|
| 117 | } |
---|
| 118 | |
---|
| 119 | /** |
---|
| 120 | * Generates the classifier. |
---|
| 121 | * |
---|
| 122 | * @param instances set of instances serving as training data |
---|
| 123 | * @throws Exception if the classifier has not been generated successfully |
---|
| 124 | */ |
---|
| 125 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 126 | |
---|
| 127 | double bestVal = Double.MAX_VALUE, currVal; |
---|
| 128 | double bestPoint = -Double.MAX_VALUE; |
---|
| 129 | int bestAtt = -1, numClasses; |
---|
| 130 | |
---|
| 131 | // can classifier handle the data? |
---|
| 132 | getCapabilities().testWithFail(instances); |
---|
| 133 | |
---|
| 134 | // remove instances with missing class |
---|
| 135 | instances = new Instances(instances); |
---|
| 136 | instances.deleteWithMissingClass(); |
---|
| 137 | |
---|
| 138 | // only class? -> build ZeroR model |
---|
| 139 | if (instances.numAttributes() == 1) { |
---|
| 140 | System.err.println( |
---|
| 141 | "Cannot build model (only class attribute present in data!), " |
---|
| 142 | + "using ZeroR model instead!"); |
---|
| 143 | m_ZeroR = new weka.classifiers.rules.ZeroR(); |
---|
| 144 | m_ZeroR.buildClassifier(instances); |
---|
| 145 | return; |
---|
| 146 | } |
---|
| 147 | else { |
---|
| 148 | m_ZeroR = null; |
---|
| 149 | } |
---|
| 150 | |
---|
| 151 | double[][] bestDist = new double[3][instances.numClasses()]; |
---|
| 152 | |
---|
| 153 | m_Instances = new Instances(instances); |
---|
| 154 | |
---|
| 155 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 156 | numClasses = m_Instances.numClasses(); |
---|
| 157 | } else { |
---|
| 158 | numClasses = 1; |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | // For each attribute |
---|
| 162 | boolean first = true; |
---|
| 163 | for (int i = 0; i < m_Instances.numAttributes(); i++) { |
---|
| 164 | if (i != m_Instances.classIndex()) { |
---|
| 165 | |
---|
| 166 | // Reserve space for distribution. |
---|
| 167 | m_Distribution = new double[3][numClasses]; |
---|
| 168 | |
---|
| 169 | // Compute value of criterion for best split on attribute |
---|
| 170 | if (m_Instances.attribute(i).isNominal()) { |
---|
| 171 | currVal = findSplitNominal(i); |
---|
| 172 | } else { |
---|
| 173 | currVal = findSplitNumeric(i); |
---|
| 174 | } |
---|
| 175 | if ((first) || (currVal < bestVal)) { |
---|
| 176 | bestVal = currVal; |
---|
| 177 | bestAtt = i; |
---|
| 178 | bestPoint = m_SplitPoint; |
---|
| 179 | for (int j = 0; j < 3; j++) { |
---|
| 180 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
| 181 | numClasses); |
---|
| 182 | } |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | // First attribute has been investigated |
---|
| 186 | first = false; |
---|
| 187 | } |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | // Set attribute, split point and distribution. |
---|
| 191 | m_AttIndex = bestAtt; |
---|
| 192 | m_SplitPoint = bestPoint; |
---|
| 193 | m_Distribution = bestDist; |
---|
| 194 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 195 | for (int i = 0; i < m_Distribution.length; i++) { |
---|
| 196 | double sumCounts = Utils.sum(m_Distribution[i]); |
---|
| 197 | if (sumCounts == 0) { // This means there were only missing attribute values |
---|
| 198 | System.arraycopy(m_Distribution[2], 0, m_Distribution[i], 0, |
---|
| 199 | m_Distribution[2].length); |
---|
| 200 | Utils.normalize(m_Distribution[i]); |
---|
| 201 | } else { |
---|
| 202 | Utils.normalize(m_Distribution[i], sumCounts); |
---|
| 203 | } |
---|
| 204 | } |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | // Save memory |
---|
| 208 | m_Instances = new Instances(m_Instances, 0); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | /** |
---|
| 212 | * Calculates the class membership probabilities for the given test instance. |
---|
| 213 | * |
---|
| 214 | * @param instance the instance to be classified |
---|
| 215 | * @return predicted class probability distribution |
---|
| 216 | * @throws Exception if distribution can't be computed |
---|
| 217 | */ |
---|
| 218 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 219 | |
---|
| 220 | // default model? |
---|
| 221 | if (m_ZeroR != null) { |
---|
| 222 | return m_ZeroR.distributionForInstance(instance); |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | return m_Distribution[whichSubset(instance)]; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /** |
---|
| 229 | * Returns the decision tree as Java source code. |
---|
| 230 | * |
---|
| 231 | * @param className the classname of the generated code |
---|
| 232 | * @return the tree as Java source code |
---|
| 233 | * @throws Exception if something goes wrong |
---|
| 234 | */ |
---|
| 235 | public String toSource(String className) throws Exception { |
---|
| 236 | |
---|
| 237 | StringBuffer text = new StringBuffer("class "); |
---|
| 238 | Attribute c = m_Instances.classAttribute(); |
---|
| 239 | text.append(className) |
---|
| 240 | .append(" {\n" |
---|
| 241 | +" public static double classify(Object[] i) {\n"); |
---|
| 242 | text.append(" /* " + m_Instances.attribute(m_AttIndex).name() + " */\n"); |
---|
| 243 | text.append(" if (i[").append(m_AttIndex); |
---|
| 244 | text.append("] == null) { return "); |
---|
| 245 | text.append(sourceClass(c, m_Distribution[2])).append(";"); |
---|
| 246 | if (m_Instances.attribute(m_AttIndex).isNominal()) { |
---|
| 247 | text.append(" } else if (((String)i[").append(m_AttIndex); |
---|
| 248 | text.append("]).equals(\""); |
---|
| 249 | text.append(m_Instances.attribute(m_AttIndex).value((int)m_SplitPoint)); |
---|
| 250 | text.append("\")"); |
---|
| 251 | } else { |
---|
| 252 | text.append(" } else if (((Double)i[").append(m_AttIndex); |
---|
| 253 | text.append("]).doubleValue() <= ").append(m_SplitPoint); |
---|
| 254 | } |
---|
| 255 | text.append(") { return "); |
---|
| 256 | text.append(sourceClass(c, m_Distribution[0])).append(";"); |
---|
| 257 | text.append(" } else { return "); |
---|
| 258 | text.append(sourceClass(c, m_Distribution[1])).append(";"); |
---|
| 259 | text.append(" }\n }\n}\n"); |
---|
| 260 | return text.toString(); |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | /** |
---|
| 264 | * Returns the value as string out of the given distribution |
---|
| 265 | * |
---|
| 266 | * @param c the attribute to get the value for |
---|
| 267 | * @param dist the distribution to extract the value |
---|
| 268 | * @return the value |
---|
| 269 | */ |
---|
| 270 | private String sourceClass(Attribute c, double []dist) { |
---|
| 271 | |
---|
| 272 | if (c.isNominal()) { |
---|
| 273 | return Integer.toString(Utils.maxIndex(dist)); |
---|
| 274 | } else { |
---|
| 275 | return Double.toString(dist[0]); |
---|
| 276 | } |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | /** |
---|
| 280 | * Returns a description of the classifier. |
---|
| 281 | * |
---|
| 282 | * @return a description of the classifier as a string. |
---|
| 283 | */ |
---|
| 284 | public String toString(){ |
---|
| 285 | |
---|
| 286 | // only ZeroR model? |
---|
| 287 | if (m_ZeroR != null) { |
---|
| 288 | StringBuffer buf = new StringBuffer(); |
---|
| 289 | buf.append(this.getClass().getName().replaceAll(".*\\.", "") + "\n"); |
---|
| 290 | buf.append(this.getClass().getName().replaceAll(".*\\.", "").replaceAll(".", "=") + "\n\n"); |
---|
| 291 | buf.append("Warning: No model could be built, hence ZeroR model is used:\n\n"); |
---|
| 292 | buf.append(m_ZeroR.toString()); |
---|
| 293 | return buf.toString(); |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | if (m_Instances == null) { |
---|
| 297 | return "Decision Stump: No model built yet."; |
---|
| 298 | } |
---|
| 299 | try { |
---|
| 300 | StringBuffer text = new StringBuffer(); |
---|
| 301 | |
---|
| 302 | text.append("Decision Stump\n\n"); |
---|
| 303 | text.append("Classifications\n\n"); |
---|
| 304 | Attribute att = m_Instances.attribute(m_AttIndex); |
---|
| 305 | if (att.isNominal()) { |
---|
| 306 | text.append(att.name() + " = " + att.value((int)m_SplitPoint) + |
---|
| 307 | " : "); |
---|
| 308 | text.append(printClass(m_Distribution[0])); |
---|
| 309 | text.append(att.name() + " != " + att.value((int)m_SplitPoint) + |
---|
| 310 | " : "); |
---|
| 311 | text.append(printClass(m_Distribution[1])); |
---|
| 312 | } else { |
---|
| 313 | text.append(att.name() + " <= " + m_SplitPoint + " : "); |
---|
| 314 | text.append(printClass(m_Distribution[0])); |
---|
| 315 | text.append(att.name() + " > " + m_SplitPoint + " : "); |
---|
| 316 | text.append(printClass(m_Distribution[1])); |
---|
| 317 | } |
---|
| 318 | text.append(att.name() + " is missing : "); |
---|
| 319 | text.append(printClass(m_Distribution[2])); |
---|
| 320 | |
---|
| 321 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 322 | text.append("\nClass distributions\n\n"); |
---|
| 323 | if (att.isNominal()) { |
---|
| 324 | text.append(att.name() + " = " + att.value((int)m_SplitPoint) + |
---|
| 325 | "\n"); |
---|
| 326 | text.append(printDist(m_Distribution[0])); |
---|
| 327 | text.append(att.name() + " != " + att.value((int)m_SplitPoint) + |
---|
| 328 | "\n"); |
---|
| 329 | text.append(printDist(m_Distribution[1])); |
---|
| 330 | } else { |
---|
| 331 | text.append(att.name() + " <= " + m_SplitPoint + "\n"); |
---|
| 332 | text.append(printDist(m_Distribution[0])); |
---|
| 333 | text.append(att.name() + " > " + m_SplitPoint + "\n"); |
---|
| 334 | text.append(printDist(m_Distribution[1])); |
---|
| 335 | } |
---|
| 336 | text.append(att.name() + " is missing\n"); |
---|
| 337 | text.append(printDist(m_Distribution[2])); |
---|
| 338 | } |
---|
| 339 | |
---|
| 340 | return text.toString(); |
---|
| 341 | } catch (Exception e) { |
---|
| 342 | return "Can't print decision stump classifier!"; |
---|
| 343 | } |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | /** |
---|
| 347 | * Prints a class distribution. |
---|
| 348 | * |
---|
| 349 | * @param dist the class distribution to print |
---|
| 350 | * @return the distribution as a string |
---|
| 351 | * @throws Exception if distribution can't be printed |
---|
| 352 | */ |
---|
| 353 | private String printDist(double[] dist) throws Exception { |
---|
| 354 | |
---|
| 355 | StringBuffer text = new StringBuffer(); |
---|
| 356 | |
---|
| 357 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 358 | for (int i = 0; i < m_Instances.numClasses(); i++) { |
---|
| 359 | text.append(m_Instances.classAttribute().value(i) + "\t"); |
---|
| 360 | } |
---|
| 361 | text.append("\n"); |
---|
| 362 | for (int i = 0; i < m_Instances.numClasses(); i++) { |
---|
| 363 | text.append(dist[i] + "\t"); |
---|
| 364 | } |
---|
| 365 | text.append("\n"); |
---|
| 366 | } |
---|
| 367 | |
---|
| 368 | return text.toString(); |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | /** |
---|
| 372 | * Prints a classification. |
---|
| 373 | * |
---|
| 374 | * @param dist the class distribution |
---|
| 375 | * @return the classificationn as a string |
---|
| 376 | * @throws Exception if the classification can't be printed |
---|
| 377 | */ |
---|
| 378 | private String printClass(double[] dist) throws Exception { |
---|
| 379 | |
---|
| 380 | StringBuffer text = new StringBuffer(); |
---|
| 381 | |
---|
| 382 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 383 | text.append(m_Instances.classAttribute().value(Utils.maxIndex(dist))); |
---|
| 384 | } else { |
---|
| 385 | text.append(dist[0]); |
---|
| 386 | } |
---|
| 387 | |
---|
| 388 | return text.toString() + "\n"; |
---|
| 389 | } |
---|
| 390 | |
---|
| 391 | /** |
---|
| 392 | * Finds best split for nominal attribute and returns value. |
---|
| 393 | * |
---|
| 394 | * @param index attribute index |
---|
| 395 | * @return value of criterion for the best split |
---|
| 396 | * @throws Exception if something goes wrong |
---|
| 397 | */ |
---|
| 398 | private double findSplitNominal(int index) throws Exception { |
---|
| 399 | |
---|
| 400 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 401 | return findSplitNominalNominal(index); |
---|
| 402 | } else { |
---|
| 403 | return findSplitNominalNumeric(index); |
---|
| 404 | } |
---|
| 405 | } |
---|
| 406 | |
---|
| 407 | /** |
---|
| 408 | * Finds best split for nominal attribute and nominal class |
---|
| 409 | * and returns value. |
---|
| 410 | * |
---|
| 411 | * @param index attribute index |
---|
| 412 | * @return value of criterion for the best split |
---|
| 413 | * @throws Exception if something goes wrong |
---|
| 414 | */ |
---|
| 415 | private double findSplitNominalNominal(int index) throws Exception { |
---|
| 416 | |
---|
| 417 | double bestVal = Double.MAX_VALUE, currVal; |
---|
| 418 | double[][] counts = new double[m_Instances.attribute(index).numValues() |
---|
| 419 | + 1][m_Instances.numClasses()]; |
---|
| 420 | double[] sumCounts = new double[m_Instances.numClasses()]; |
---|
| 421 | double[][] bestDist = new double[3][m_Instances.numClasses()]; |
---|
| 422 | int numMissing = 0; |
---|
| 423 | |
---|
| 424 | // Compute counts for all the values |
---|
| 425 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 426 | Instance inst = m_Instances.instance(i); |
---|
| 427 | if (inst.isMissing(index)) { |
---|
| 428 | numMissing++; |
---|
| 429 | counts[m_Instances.attribute(index).numValues()] |
---|
| 430 | [(int)inst.classValue()] += inst.weight(); |
---|
| 431 | } else { |
---|
| 432 | counts[(int)inst.value(index)][(int)inst.classValue()] += inst |
---|
| 433 | .weight(); |
---|
| 434 | } |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | // Compute sum of counts |
---|
| 438 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
| 439 | for (int j = 0; j < m_Instances.numClasses(); j++) { |
---|
| 440 | sumCounts[j] += counts[i][j]; |
---|
| 441 | } |
---|
| 442 | } |
---|
| 443 | |
---|
| 444 | // Make split counts for each possible split and evaluate |
---|
| 445 | System.arraycopy(counts[m_Instances.attribute(index).numValues()], 0, |
---|
| 446 | m_Distribution[2], 0, m_Instances.numClasses()); |
---|
| 447 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
| 448 | for (int j = 0; j < m_Instances.numClasses(); j++) { |
---|
| 449 | m_Distribution[0][j] = counts[i][j]; |
---|
| 450 | m_Distribution[1][j] = sumCounts[j] - counts[i][j]; |
---|
| 451 | } |
---|
| 452 | currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution); |
---|
| 453 | if (currVal < bestVal) { |
---|
| 454 | bestVal = currVal; |
---|
| 455 | m_SplitPoint = (double)i; |
---|
| 456 | for (int j = 0; j < 3; j++) { |
---|
| 457 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
| 458 | m_Instances.numClasses()); |
---|
| 459 | } |
---|
| 460 | } |
---|
| 461 | } |
---|
| 462 | |
---|
| 463 | // No missing values in training data. |
---|
| 464 | if (numMissing == 0) { |
---|
| 465 | System.arraycopy(sumCounts, 0, bestDist[2], 0, |
---|
| 466 | m_Instances.numClasses()); |
---|
| 467 | } |
---|
| 468 | |
---|
| 469 | m_Distribution = bestDist; |
---|
| 470 | return bestVal; |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | /** |
---|
| 474 | * Finds best split for nominal attribute and numeric class |
---|
| 475 | * and returns value. |
---|
| 476 | * |
---|
| 477 | * @param index attribute index |
---|
| 478 | * @return value of criterion for the best split |
---|
| 479 | * @throws Exception if something goes wrong |
---|
| 480 | */ |
---|
| 481 | private double findSplitNominalNumeric(int index) throws Exception { |
---|
| 482 | |
---|
| 483 | double bestVal = Double.MAX_VALUE, currVal; |
---|
| 484 | double[] sumsSquaresPerValue = |
---|
| 485 | new double[m_Instances.attribute(index).numValues()], |
---|
| 486 | sumsPerValue = new double[m_Instances.attribute(index).numValues()], |
---|
| 487 | weightsPerValue = new double[m_Instances.attribute(index).numValues()]; |
---|
| 488 | double totalSumSquaresW = 0, totalSumW = 0, totalSumOfWeightsW = 0, |
---|
| 489 | totalSumOfWeights = 0, totalSum = 0; |
---|
| 490 | double[] sumsSquares = new double[3], sumOfWeights = new double[3]; |
---|
| 491 | double[][] bestDist = new double[3][1]; |
---|
| 492 | |
---|
| 493 | // Compute counts for all the values |
---|
| 494 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 495 | Instance inst = m_Instances.instance(i); |
---|
| 496 | if (inst.isMissing(index)) { |
---|
| 497 | m_Distribution[2][0] += inst.classValue() * inst.weight(); |
---|
| 498 | sumsSquares[2] += inst.classValue() * inst.classValue() |
---|
| 499 | * inst.weight(); |
---|
| 500 | sumOfWeights[2] += inst.weight(); |
---|
| 501 | } else { |
---|
| 502 | weightsPerValue[(int)inst.value(index)] += inst.weight(); |
---|
| 503 | sumsPerValue[(int)inst.value(index)] += inst.classValue() |
---|
| 504 | * inst.weight(); |
---|
| 505 | sumsSquaresPerValue[(int)inst.value(index)] += |
---|
| 506 | inst.classValue() * inst.classValue() * inst.weight(); |
---|
| 507 | } |
---|
| 508 | totalSumOfWeights += inst.weight(); |
---|
| 509 | totalSum += inst.classValue() * inst.weight(); |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | // Check if the total weight is zero |
---|
| 513 | if (totalSumOfWeights <= 0) { |
---|
| 514 | return bestVal; |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | // Compute sum of counts without missing ones |
---|
| 518 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
| 519 | totalSumOfWeightsW += weightsPerValue[i]; |
---|
| 520 | totalSumSquaresW += sumsSquaresPerValue[i]; |
---|
| 521 | totalSumW += sumsPerValue[i]; |
---|
| 522 | } |
---|
| 523 | |
---|
| 524 | // Make split counts for each possible split and evaluate |
---|
| 525 | for (int i = 0; i < m_Instances.attribute(index).numValues(); i++) { |
---|
| 526 | |
---|
| 527 | m_Distribution[0][0] = sumsPerValue[i]; |
---|
| 528 | sumsSquares[0] = sumsSquaresPerValue[i]; |
---|
| 529 | sumOfWeights[0] = weightsPerValue[i]; |
---|
| 530 | m_Distribution[1][0] = totalSumW - sumsPerValue[i]; |
---|
| 531 | sumsSquares[1] = totalSumSquaresW - sumsSquaresPerValue[i]; |
---|
| 532 | sumOfWeights[1] = totalSumOfWeightsW - weightsPerValue[i]; |
---|
| 533 | |
---|
| 534 | currVal = variance(m_Distribution, sumsSquares, sumOfWeights); |
---|
| 535 | |
---|
| 536 | if (currVal < bestVal) { |
---|
| 537 | bestVal = currVal; |
---|
| 538 | m_SplitPoint = (double)i; |
---|
| 539 | for (int j = 0; j < 3; j++) { |
---|
| 540 | if (sumOfWeights[j] > 0) { |
---|
| 541 | bestDist[j][0] = m_Distribution[j][0] / sumOfWeights[j]; |
---|
| 542 | } else { |
---|
| 543 | bestDist[j][0] = totalSum / totalSumOfWeights; |
---|
| 544 | } |
---|
| 545 | } |
---|
| 546 | } |
---|
| 547 | } |
---|
| 548 | |
---|
| 549 | m_Distribution = bestDist; |
---|
| 550 | return bestVal; |
---|
| 551 | } |
---|
| 552 | |
---|
| 553 | /** |
---|
| 554 | * Finds best split for numeric attribute and returns value. |
---|
| 555 | * |
---|
| 556 | * @param index attribute index |
---|
| 557 | * @return value of criterion for the best split |
---|
| 558 | * @throws Exception if something goes wrong |
---|
| 559 | */ |
---|
| 560 | private double findSplitNumeric(int index) throws Exception { |
---|
| 561 | |
---|
| 562 | if (m_Instances.classAttribute().isNominal()) { |
---|
| 563 | return findSplitNumericNominal(index); |
---|
| 564 | } else { |
---|
| 565 | return findSplitNumericNumeric(index); |
---|
| 566 | } |
---|
| 567 | } |
---|
| 568 | |
---|
| 569 | /** |
---|
| 570 | * Finds best split for numeric attribute and nominal class |
---|
| 571 | * and returns value. |
---|
| 572 | * |
---|
| 573 | * @param index attribute index |
---|
| 574 | * @return value of criterion for the best split |
---|
| 575 | * @throws Exception if something goes wrong |
---|
| 576 | */ |
---|
| 577 | private double findSplitNumericNominal(int index) throws Exception { |
---|
| 578 | |
---|
| 579 | double bestVal = Double.MAX_VALUE, currVal, currCutPoint; |
---|
| 580 | int numMissing = 0; |
---|
| 581 | double[] sum = new double[m_Instances.numClasses()]; |
---|
| 582 | double[][] bestDist = new double[3][m_Instances.numClasses()]; |
---|
| 583 | |
---|
| 584 | // Compute counts for all the values |
---|
| 585 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 586 | Instance inst = m_Instances.instance(i); |
---|
| 587 | if (!inst.isMissing(index)) { |
---|
| 588 | m_Distribution[1][(int)inst.classValue()] += inst.weight(); |
---|
| 589 | } else { |
---|
| 590 | m_Distribution[2][(int)inst.classValue()] += inst.weight(); |
---|
| 591 | numMissing++; |
---|
| 592 | } |
---|
| 593 | } |
---|
| 594 | System.arraycopy(m_Distribution[1], 0, sum, 0, m_Instances.numClasses()); |
---|
| 595 | |
---|
| 596 | // Save current distribution as best distribution |
---|
| 597 | for (int j = 0; j < 3; j++) { |
---|
| 598 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
| 599 | m_Instances.numClasses()); |
---|
| 600 | } |
---|
| 601 | |
---|
| 602 | // Sort instances |
---|
| 603 | m_Instances.sort(index); |
---|
| 604 | |
---|
| 605 | // Make split counts for each possible split and evaluate |
---|
| 606 | for (int i = 0; i < m_Instances.numInstances() - (numMissing + 1); i++) { |
---|
| 607 | Instance inst = m_Instances.instance(i); |
---|
| 608 | Instance instPlusOne = m_Instances.instance(i + 1); |
---|
| 609 | m_Distribution[0][(int)inst.classValue()] += inst.weight(); |
---|
| 610 | m_Distribution[1][(int)inst.classValue()] -= inst.weight(); |
---|
| 611 | if (inst.value(index) < instPlusOne.value(index)) { |
---|
| 612 | currCutPoint = (inst.value(index) + instPlusOne.value(index)) / 2.0; |
---|
| 613 | currVal = ContingencyTables.entropyConditionedOnRows(m_Distribution); |
---|
| 614 | if (currVal < bestVal) { |
---|
| 615 | m_SplitPoint = currCutPoint; |
---|
| 616 | bestVal = currVal; |
---|
| 617 | for (int j = 0; j < 3; j++) { |
---|
| 618 | System.arraycopy(m_Distribution[j], 0, bestDist[j], 0, |
---|
| 619 | m_Instances.numClasses()); |
---|
| 620 | } |
---|
| 621 | } |
---|
| 622 | } |
---|
| 623 | } |
---|
| 624 | |
---|
| 625 | // No missing values in training data. |
---|
| 626 | if (numMissing == 0) { |
---|
| 627 | System.arraycopy(sum, 0, bestDist[2], 0, m_Instances.numClasses()); |
---|
| 628 | } |
---|
| 629 | |
---|
| 630 | m_Distribution = bestDist; |
---|
| 631 | return bestVal; |
---|
| 632 | } |
---|
| 633 | |
---|
| 634 | /** |
---|
| 635 | * Finds best split for numeric attribute and numeric class |
---|
| 636 | * and returns value. |
---|
| 637 | * |
---|
| 638 | * @param index attribute index |
---|
| 639 | * @return value of criterion for the best split |
---|
| 640 | * @throws Exception if something goes wrong |
---|
| 641 | */ |
---|
| 642 | private double findSplitNumericNumeric(int index) throws Exception { |
---|
| 643 | |
---|
| 644 | double bestVal = Double.MAX_VALUE, currVal, currCutPoint; |
---|
| 645 | int numMissing = 0; |
---|
| 646 | double[] sumsSquares = new double[3], sumOfWeights = new double[3]; |
---|
| 647 | double[][] bestDist = new double[3][1]; |
---|
| 648 | double totalSum = 0, totalSumOfWeights = 0; |
---|
| 649 | |
---|
| 650 | // Compute counts for all the values |
---|
| 651 | for (int i = 0; i < m_Instances.numInstances(); i++) { |
---|
| 652 | Instance inst = m_Instances.instance(i); |
---|
| 653 | if (!inst.isMissing(index)) { |
---|
| 654 | m_Distribution[1][0] += inst.classValue() * inst.weight(); |
---|
| 655 | sumsSquares[1] += inst.classValue() * inst.classValue() |
---|
| 656 | * inst.weight(); |
---|
| 657 | sumOfWeights[1] += inst.weight(); |
---|
| 658 | } else { |
---|
| 659 | m_Distribution[2][0] += inst.classValue() * inst.weight(); |
---|
| 660 | sumsSquares[2] += inst.classValue() * inst.classValue() |
---|
| 661 | * inst.weight(); |
---|
| 662 | sumOfWeights[2] += inst.weight(); |
---|
| 663 | numMissing++; |
---|
| 664 | } |
---|
| 665 | totalSumOfWeights += inst.weight(); |
---|
| 666 | totalSum += inst.classValue() * inst.weight(); |
---|
| 667 | } |
---|
| 668 | |
---|
| 669 | // Check if the total weight is zero |
---|
| 670 | if (totalSumOfWeights <= 0) { |
---|
| 671 | return bestVal; |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | // Sort instances |
---|
| 675 | m_Instances.sort(index); |
---|
| 676 | |
---|
| 677 | // Make split counts for each possible split and evaluate |
---|
| 678 | for (int i = 0; i < m_Instances.numInstances() - (numMissing + 1); i++) { |
---|
| 679 | Instance inst = m_Instances.instance(i); |
---|
| 680 | Instance instPlusOne = m_Instances.instance(i + 1); |
---|
| 681 | m_Distribution[0][0] += inst.classValue() * inst.weight(); |
---|
| 682 | sumsSquares[0] += inst.classValue() * inst.classValue() * inst.weight(); |
---|
| 683 | sumOfWeights[0] += inst.weight(); |
---|
| 684 | m_Distribution[1][0] -= inst.classValue() * inst.weight(); |
---|
| 685 | sumsSquares[1] -= inst.classValue() * inst.classValue() * inst.weight(); |
---|
| 686 | sumOfWeights[1] -= inst.weight(); |
---|
| 687 | if (inst.value(index) < instPlusOne.value(index)) { |
---|
| 688 | currCutPoint = (inst.value(index) + instPlusOne.value(index)) / 2.0; |
---|
| 689 | currVal = variance(m_Distribution, sumsSquares, sumOfWeights); |
---|
| 690 | if (currVal < bestVal) { |
---|
| 691 | m_SplitPoint = currCutPoint; |
---|
| 692 | bestVal = currVal; |
---|
| 693 | for (int j = 0; j < 3; j++) { |
---|
| 694 | if (sumOfWeights[j] > 0) { |
---|
| 695 | bestDist[j][0] = m_Distribution[j][0] / sumOfWeights[j]; |
---|
| 696 | } else { |
---|
| 697 | bestDist[j][0] = totalSum / totalSumOfWeights; |
---|
| 698 | } |
---|
| 699 | } |
---|
| 700 | } |
---|
| 701 | } |
---|
| 702 | } |
---|
| 703 | |
---|
| 704 | m_Distribution = bestDist; |
---|
| 705 | return bestVal; |
---|
| 706 | } |
---|
| 707 | |
---|
| 708 | /** |
---|
| 709 | * Computes variance for subsets. |
---|
| 710 | * |
---|
| 711 | * @param s |
---|
| 712 | * @param sS |
---|
| 713 | * @param sumOfWeights |
---|
| 714 | * @return the variance |
---|
| 715 | */ |
---|
| 716 | private double variance(double[][] s,double[] sS,double[] sumOfWeights) { |
---|
| 717 | |
---|
| 718 | double var = 0; |
---|
| 719 | |
---|
| 720 | for (int i = 0; i < s.length; i++) { |
---|
| 721 | if (sumOfWeights[i] > 0) { |
---|
| 722 | var += sS[i] - ((s[i][0] * s[i][0]) / (double) sumOfWeights[i]); |
---|
| 723 | } |
---|
| 724 | } |
---|
| 725 | |
---|
| 726 | return var; |
---|
| 727 | } |
---|
| 728 | |
---|
| 729 | /** |
---|
| 730 | * Returns the subset an instance falls into. |
---|
| 731 | * |
---|
| 732 | * @param instance the instance to check |
---|
| 733 | * @return the subset the instance falls into |
---|
| 734 | * @throws Exception if something goes wrong |
---|
| 735 | */ |
---|
| 736 | private int whichSubset(Instance instance) throws Exception { |
---|
| 737 | |
---|
| 738 | if (instance.isMissing(m_AttIndex)) { |
---|
| 739 | return 2; |
---|
| 740 | } else if (instance.attribute(m_AttIndex).isNominal()) { |
---|
| 741 | if ((int)instance.value(m_AttIndex) == m_SplitPoint) { |
---|
| 742 | return 0; |
---|
| 743 | } else { |
---|
| 744 | return 1; |
---|
| 745 | } |
---|
| 746 | } else { |
---|
| 747 | if (instance.value(m_AttIndex) <= m_SplitPoint) { |
---|
| 748 | return 0; |
---|
| 749 | } else { |
---|
| 750 | return 1; |
---|
| 751 | } |
---|
| 752 | } |
---|
| 753 | } |
---|
| 754 | |
---|
| 755 | /** |
---|
| 756 | * Returns the revision string. |
---|
| 757 | * |
---|
| 758 | * @return the revision |
---|
| 759 | */ |
---|
| 760 | public String getRevision() { |
---|
| 761 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
| 762 | } |
---|
| 763 | |
---|
| 764 | /** |
---|
| 765 | * Main method for testing this class. |
---|
| 766 | * |
---|
| 767 | * @param argv the options |
---|
| 768 | */ |
---|
| 769 | public static void main(String [] argv) { |
---|
| 770 | runClassifier(new DecisionStump(), argv); |
---|
| 771 | } |
---|
| 772 | } |
---|