[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * FURIA.java |
---|
| 19 | * Copyright (C) 2008,2009 Jens Christian Huehn |
---|
| 20 | * |
---|
| 21 | * (based upon) JRip.java |
---|
| 22 | * Copyright (C) 2001 Xin Xu, Eibe Frank |
---|
| 23 | */ |
---|
| 24 | |
---|
| 25 | package weka.classifiers.rules; |
---|
| 26 | |
---|
| 27 | import java.io.Serializable; |
---|
| 28 | import java.util.Enumeration; |
---|
| 29 | import java.util.Random; |
---|
| 30 | import java.util.Vector; |
---|
| 31 | |
---|
| 32 | import weka.classifiers.AbstractClassifier; |
---|
| 33 | import weka.core.AdditionalMeasureProducer; |
---|
| 34 | import weka.core.Attribute; |
---|
| 35 | import weka.core.Capabilities; |
---|
| 36 | import weka.core.Copyable; |
---|
| 37 | import weka.core.FastVector; |
---|
| 38 | import weka.core.Instance; |
---|
| 39 | import weka.core.Instances; |
---|
| 40 | import weka.core.Option; |
---|
| 41 | import weka.core.OptionHandler; |
---|
| 42 | import weka.core.SelectedTag; |
---|
| 43 | import weka.core.Tag; |
---|
| 44 | import weka.core.TechnicalInformation; |
---|
| 45 | import weka.core.TechnicalInformationHandler; |
---|
| 46 | import weka.core.Utils; |
---|
| 47 | import weka.core.WeightedInstancesHandler; |
---|
| 48 | import weka.core.Capabilities.Capability; |
---|
| 49 | import weka.core.TechnicalInformation.Field; |
---|
| 50 | import weka.core.TechnicalInformation.Type; |
---|
| 51 | |
---|
| 52 | /** |
---|
| 53 | <!-- globalinfo-start --> |
---|
| 54 | * FURIA: Fuzzy Unordered Rule Induction Algorithm<br/> |
---|
| 55 | * <br/> |
---|
| 56 | * Details please see:<br/> |
---|
| 57 | * <br/> |
---|
| 58 | * Jens Christian Huehn, Eyke Huellermeier (2009). FURIA: An Algorithm for Unordered Fuzzy Rule Induction. Data Mining and Knowledge Discovery..<br/> |
---|
| 59 | * <br/> |
---|
| 60 | * <p/> |
---|
| 61 | <!-- globalinfo-end --> |
---|
| 62 | * |
---|
| 63 | <!-- technical-bibtex-start --> |
---|
| 64 | * BibTeX: |
---|
| 65 | * <pre> |
---|
| 66 | * @article{Huehn2009, |
---|
| 67 | * author = {Jens Christian Huehn and Eyke Huellermeier}, |
---|
| 68 | * journal = {Data Mining and Knowledge Discovery}, |
---|
| 69 | * title = {FURIA: An Algorithm for Unordered Fuzzy Rule Induction}, |
---|
| 70 | * year = {2009} |
---|
| 71 | * } |
---|
| 72 | * </pre> |
---|
| 73 | * <p/> |
---|
| 74 | <!-- technical-bibtex-end --> |
---|
| 75 | * |
---|
| 76 | <!-- options-start --> |
---|
| 77 | * Valid options are: <p/> |
---|
| 78 | * |
---|
| 79 | * <pre> -F <number of folds> |
---|
| 80 | * Set number of folds for REP |
---|
| 81 | * One fold is used as pruning set. |
---|
| 82 | * (default 3)</pre> |
---|
| 83 | * |
---|
| 84 | * <pre> -N <min. weights> |
---|
| 85 | * Set the minimal weights of instances |
---|
| 86 | * within a split. |
---|
| 87 | * (default 2.0)</pre> |
---|
| 88 | * |
---|
| 89 | * <pre> -O <number of runs> |
---|
| 90 | * Set the number of runs of |
---|
| 91 | * optimizations. (Default: 2)</pre> |
---|
| 92 | * |
---|
| 93 | * <pre> -D |
---|
| 94 | * Set whether turn on the |
---|
| 95 | * debug mode (Default: false)</pre> |
---|
| 96 | * |
---|
| 97 | * <pre> -S <seed> |
---|
| 98 | * The seed of randomization |
---|
| 99 | * (Default: 1)</pre> |
---|
| 100 | * |
---|
| 101 | * <pre> -E |
---|
| 102 | * Whether NOT check the error rate>=0.5 |
---|
| 103 | * in stopping criteria (default: check)</pre> |
---|
| 104 | * |
---|
| 105 | * <pre> -s |
---|
| 106 | * The action performed for uncovered instances. |
---|
| 107 | * (default: use stretching)</pre> |
---|
| 108 | * |
---|
| 109 | * <pre> -p |
---|
| 110 | * The T-norm used as fuzzy AND-operator. |
---|
| 111 | * (default: Product T-norm)</pre> |
---|
| 112 | * |
---|
| 113 | <!-- options-end --> |
---|
| 114 | * |
---|
| 115 | * @author Jens Christian Hühn (huehn@gmx.net) |
---|
| 116 | * @author Xin Xu (xx5@cs.waikato.ac.nz) |
---|
| 117 | * @author Eibe Frank (eibe@cs.waikato.ac.nz) |
---|
| 118 | * @version $Revision: 5964 $ |
---|
| 119 | */ |
---|
| 120 | public class FURIA |
---|
| 121 | extends AbstractClassifier |
---|
| 122 | implements OptionHandler, AdditionalMeasureProducer, WeightedInstancesHandler, |
---|
| 123 | TechnicalInformationHandler { |
---|
| 124 | |
---|
| 125 | /** for serialization */ |
---|
| 126 | static final long serialVersionUID = -6589312996832147161L; |
---|
| 127 | |
---|
| 128 | /** The limit of description length surplus in ruleset generation */ |
---|
| 129 | private static double MAX_DL_SURPLUS = 64.0; |
---|
| 130 | |
---|
| 131 | /** The class attribute of the data*/ |
---|
| 132 | private Attribute m_Class; |
---|
| 133 | |
---|
| 134 | /** The ruleset */ |
---|
| 135 | private FastVector m_Ruleset; |
---|
| 136 | |
---|
| 137 | /** The predicted class distribution */ |
---|
| 138 | private FastVector m_Distributions; |
---|
| 139 | |
---|
| 140 | /** Runs of optimizations */ |
---|
| 141 | private int m_Optimizations = 2; |
---|
| 142 | |
---|
| 143 | /** Random object used in this class */ |
---|
| 144 | private Random m_Random = null; |
---|
| 145 | |
---|
| 146 | /** # of all the possible conditions in a rule */ |
---|
| 147 | private double m_Total = 0; |
---|
| 148 | |
---|
| 149 | /** The seed to perform randomization */ |
---|
| 150 | private long m_Seed = 1; |
---|
| 151 | |
---|
| 152 | /** The number of folds to split data into Grow and Prune for IREP */ |
---|
| 153 | private int m_Folds = 3; |
---|
| 154 | |
---|
| 155 | /** The minimal number of instance weights within a split*/ |
---|
| 156 | private double m_MinNo = 2.0; |
---|
| 157 | |
---|
| 158 | /** Whether in a debug mode */ |
---|
| 159 | private boolean m_Debug = false; |
---|
| 160 | |
---|
| 161 | /** Whether check the error rate >= 0.5 in stopping criteria */ |
---|
| 162 | private boolean m_CheckErr = true; |
---|
| 163 | |
---|
| 164 | /** The class distribution of the training data*/ |
---|
| 165 | private double[] aprioriDistribution; |
---|
| 166 | |
---|
| 167 | /** The RuleStats for the ruleset of each class value */ |
---|
| 168 | private FastVector m_RulesetStats; |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | /** What to do if instance is uncovered */ |
---|
| 172 | private int m_uncovAction = UNCOVACTION_STRETCH; |
---|
| 173 | |
---|
| 174 | /** An uncovered instance is covered using rule stretching. */ |
---|
| 175 | private static final int UNCOVACTION_STRETCH = 0; |
---|
| 176 | |
---|
| 177 | /** An uncovered instance is classified according to the training data class distribution. */ |
---|
| 178 | private static final int UNCOVACTION_APRIORI = 1; |
---|
| 179 | |
---|
| 180 | /** An uncovered instance is not classified at all. */ |
---|
| 181 | private static final int UNCOVACTION_REJECT = 2; |
---|
| 182 | |
---|
| 183 | /** The tags explaining the uncovered action. */ |
---|
| 184 | private static final Tag [] TAGS_UNCOVACTION = { |
---|
| 185 | new Tag(UNCOVACTION_STRETCH, "Apply rule stretching (standard)"), |
---|
| 186 | new Tag(UNCOVACTION_APRIORI, "Vote for the most frequent class"), |
---|
| 187 | new Tag(UNCOVACTION_REJECT, "Reject the decision and abstain") |
---|
| 188 | }; |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | /** Whether using product T-norm (or else min T-norm) */ |
---|
| 192 | private int m_tNorm = TNORM_PROD; |
---|
| 193 | |
---|
| 194 | /** The Product T-Norm flag. */ |
---|
| 195 | private static final int TNORM_PROD = 0; |
---|
| 196 | |
---|
| 197 | /** The Minimum T-Norm flag. */ |
---|
| 198 | private static final int TNORM_MIN = 1; |
---|
| 199 | |
---|
| 200 | /** The tags describing the T-norms */ |
---|
| 201 | private static final Tag [] TAGS_TNORM = { |
---|
| 202 | new Tag(TNORM_PROD, "Product T-Norm (standard)"), |
---|
| 203 | new Tag(TNORM_MIN, "Minimum T-Norm") |
---|
| 204 | }; |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | /** |
---|
| 208 | * Returns a string describing classifier |
---|
| 209 | * @return a description suitable for |
---|
| 210 | * displaying in the explorer/experimenter gui |
---|
| 211 | */ |
---|
| 212 | public String globalInfo() { |
---|
| 213 | |
---|
| 214 | return "FURIA: Fuzzy Unordered Rule Induction Algorithm\n\n" |
---|
| 215 | + "Details please see:\n\n" |
---|
| 216 | + getTechnicalInformation().toString() + "\n\n"; |
---|
| 217 | } |
---|
| 218 | |
---|
| 219 | /** |
---|
| 220 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 221 | * detailed information about the technical background of this class, |
---|
| 222 | * e.g., paper reference or book this class is based on. |
---|
| 223 | * |
---|
| 224 | * @return the technical information about this class |
---|
| 225 | */ |
---|
| 226 | public TechnicalInformation getTechnicalInformation() { |
---|
| 227 | TechnicalInformation result; |
---|
| 228 | |
---|
| 229 | result = new TechnicalInformation(Type.ARTICLE); |
---|
| 230 | result.setValue(Field.AUTHOR, "Jens Christian Huehn and Eyke Huellermeier"); |
---|
| 231 | result.setValue(Field.TITLE, "FURIA: An Algorithm for Unordered Fuzzy Rule Induction"); |
---|
| 232 | result.setValue(Field.YEAR, "2009"); |
---|
| 233 | result.setValue(Field.JOURNAL, "Data Mining and Knowledge Discovery"); |
---|
| 234 | return result; |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /** |
---|
| 238 | * Returns an enumeration describing the available options |
---|
| 239 | * Valid options are: <p> |
---|
| 240 | * |
---|
| 241 | * -F number <br> |
---|
| 242 | * The number of folds for reduced error pruning. One fold is |
---|
| 243 | * used as the pruning set. (Default: 3) <p> |
---|
| 244 | * |
---|
| 245 | * -N number <br> |
---|
| 246 | * The minimal weights of instances within a split. |
---|
| 247 | * (Default: 2) <p> |
---|
| 248 | * |
---|
| 249 | * -O number <br> |
---|
| 250 | * Set the number of runs of optimizations. (Default: 2)<p> |
---|
| 251 | * |
---|
| 252 | * -D <br> |
---|
| 253 | * Whether turn on the debug mode |
---|
| 254 | * |
---|
| 255 | * -S number <br> |
---|
| 256 | * The seed of randomization used in FURIA.(Default: 1)<p> |
---|
| 257 | * |
---|
| 258 | * -E <br> |
---|
| 259 | * Whether NOT check the error rate >= 0.5 in stopping criteria. |
---|
| 260 | * (default: check)<p> |
---|
| 261 | * |
---|
| 262 | * -s <br> |
---|
| 263 | * The action performed for uncovered instances. |
---|
| 264 | * (default: use rule stretching)<p> |
---|
| 265 | * |
---|
| 266 | * -p <br> |
---|
| 267 | * The T-Norm used as fuzzy AND-operator. |
---|
| 268 | * (default: Product T-Norm)<p> |
---|
| 269 | * |
---|
| 270 | * @return an enumeration of all the available options |
---|
| 271 | */ |
---|
| 272 | public Enumeration listOptions() { |
---|
| 273 | Vector newVector = new Vector(8); |
---|
| 274 | newVector.addElement(new Option("\tSet number of folds for REP\n" + |
---|
| 275 | "\tOne fold is used as pruning set.\n" + |
---|
| 276 | "\t(default 3)","F", 1, "-F <number of folds>")); |
---|
| 277 | |
---|
| 278 | newVector.addElement(new Option("\tSet the minimal weights of instances\n" + |
---|
| 279 | "\twithin a split.\n" + |
---|
| 280 | "\t(default 2.0)","N", 1, "-N <min. weights>")); |
---|
| 281 | |
---|
| 282 | newVector.addElement(new Option("\tSet the number of runs of\n"+ |
---|
| 283 | "\toptimizations. (Default: 2)", "O", |
---|
| 284 | 1,"-O <number of runs>")); |
---|
| 285 | |
---|
| 286 | newVector.addElement(new Option("\tSet whether turn on the\n"+ |
---|
| 287 | "\tdebug mode (Default: false)", "D", |
---|
| 288 | 0,"-D")); |
---|
| 289 | |
---|
| 290 | newVector.addElement(new Option("\tThe seed of randomization\n"+ |
---|
| 291 | "\t(Default: 1)", "S", |
---|
| 292 | 1,"-S <seed>")); |
---|
| 293 | |
---|
| 294 | newVector.addElement(new Option("\tWhether NOT check the error rate>=0.5\n" |
---|
| 295 | +"\tin stopping criteria " |
---|
| 296 | +"\t(default: check)", "E", |
---|
| 297 | 0, "-E")); |
---|
| 298 | |
---|
| 299 | newVector.addElement(new Option("\tThe action performed for uncovered instances.\n" |
---|
| 300 | +"\t(default: use stretching)", "s", |
---|
| 301 | 1, "-s")); |
---|
| 302 | |
---|
| 303 | newVector.addElement(new Option("\tThe T-norm used as fuzzy AND-operator.\n" |
---|
| 304 | +"\t(default: Product T-norm)", "p", |
---|
| 305 | 1, "-p")); |
---|
| 306 | |
---|
| 307 | return newVector.elements(); |
---|
| 308 | } |
---|
| 309 | |
---|
| 310 | /** |
---|
| 311 | * Parses a given list of options. <p/> |
---|
| 312 | * |
---|
| 313 | <!-- options-start --> |
---|
| 314 | * Valid options are: <p/> |
---|
| 315 | * |
---|
| 316 | * <pre> -F <number of folds> |
---|
| 317 | * Set number of folds for REP |
---|
| 318 | * One fold is used as pruning set. |
---|
| 319 | * (default 3)</pre> |
---|
| 320 | * |
---|
| 321 | * <pre> -N <min. weights> |
---|
| 322 | * Set the minimal weights of instances |
---|
| 323 | * within a split. |
---|
| 324 | * (default 2.0)</pre> |
---|
| 325 | * |
---|
| 326 | * <pre> -O <number of runs> |
---|
| 327 | * Set the number of runs of |
---|
| 328 | * optimizations. (Default: 2)</pre> |
---|
| 329 | * |
---|
| 330 | * <pre> -D |
---|
| 331 | * Set whether turn on the |
---|
| 332 | * debug mode (Default: false)</pre> |
---|
| 333 | * |
---|
| 334 | * <pre> -S <seed> |
---|
| 335 | * The seed of randomization |
---|
| 336 | * (Default: 1)</pre> |
---|
| 337 | * |
---|
| 338 | * <pre> -E |
---|
| 339 | * Whether NOT check the error rate>=0.5 |
---|
| 340 | * in stopping criteria (default: check)</pre> |
---|
| 341 | * |
---|
| 342 | * <pre> -s |
---|
| 343 | * The action performed for uncovered instances. |
---|
| 344 | * (default: use stretching)</pre> |
---|
| 345 | * |
---|
| 346 | * <pre> -p |
---|
| 347 | * The T-norm used as fuzzy AND-operator. |
---|
| 348 | * (default: Product T-norm)</pre> |
---|
| 349 | * |
---|
| 350 | <!-- options-end --> |
---|
| 351 | * |
---|
| 352 | * @param options the list of options as an array of strings |
---|
| 353 | * @throws Exception if an option is not supported |
---|
| 354 | */ |
---|
| 355 | public void setOptions(String[] options) throws Exception { |
---|
| 356 | String numFoldsString = Utils.getOption('F', options); |
---|
| 357 | if (numFoldsString.length() != 0) |
---|
| 358 | m_Folds = Integer.parseInt(numFoldsString); |
---|
| 359 | else |
---|
| 360 | m_Folds = 3; |
---|
| 361 | |
---|
| 362 | String minNoString = Utils.getOption('N', options); |
---|
| 363 | if (minNoString.length() != 0) |
---|
| 364 | m_MinNo = Double.parseDouble(minNoString); |
---|
| 365 | else |
---|
| 366 | m_MinNo = 2.0; |
---|
| 367 | |
---|
| 368 | String seedString = Utils.getOption('S', options); |
---|
| 369 | if (seedString.length() != 0) |
---|
| 370 | m_Seed = Long.parseLong(seedString); |
---|
| 371 | else |
---|
| 372 | m_Seed = 1; |
---|
| 373 | |
---|
| 374 | String runString = Utils.getOption('O', options); |
---|
| 375 | if (runString.length() != 0) |
---|
| 376 | m_Optimizations = Integer.parseInt(runString); |
---|
| 377 | else |
---|
| 378 | m_Optimizations = 2; |
---|
| 379 | |
---|
| 380 | String tNormString = Utils.getOption('p', options); |
---|
| 381 | if (tNormString.length() != 0) |
---|
| 382 | m_tNorm = Integer.parseInt(tNormString); |
---|
| 383 | else |
---|
| 384 | m_tNorm = TNORM_PROD; |
---|
| 385 | |
---|
| 386 | String uncovActionString = Utils.getOption('s', options); |
---|
| 387 | if (uncovActionString.length() != 0) |
---|
| 388 | m_uncovAction = Integer.parseInt(uncovActionString); |
---|
| 389 | else |
---|
| 390 | m_uncovAction = UNCOVACTION_STRETCH; |
---|
| 391 | |
---|
| 392 | m_Debug = Utils.getFlag('D', options); |
---|
| 393 | |
---|
| 394 | m_CheckErr = !Utils.getFlag('E', options); |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | /** |
---|
| 398 | * Gets the current settings of the Classifier. |
---|
| 399 | * |
---|
| 400 | * @return an array of strings suitable for passing to setOptions |
---|
| 401 | */ |
---|
| 402 | public String [] getOptions() { |
---|
| 403 | |
---|
| 404 | String [] options = new String [14]; |
---|
| 405 | int current = 0; |
---|
| 406 | options[current++] = "-F"; options[current++] = "" + m_Folds; |
---|
| 407 | options[current++] = "-N"; options[current++] = "" + m_MinNo; |
---|
| 408 | options[current++] = "-O"; options[current++] = "" + m_Optimizations; |
---|
| 409 | options[current++] = "-S"; options[current++] = "" + m_Seed; |
---|
| 410 | options[current++] = "-p"; options[current++] = "" + m_tNorm; |
---|
| 411 | options[current++] = "-s"; options[current++] = "" + m_uncovAction; |
---|
| 412 | |
---|
| 413 | if(m_Debug) |
---|
| 414 | options[current++] = "-D"; |
---|
| 415 | |
---|
| 416 | if(!m_CheckErr) |
---|
| 417 | options[current++] = "-E"; |
---|
| 418 | |
---|
| 419 | while(current < options.length) |
---|
| 420 | options[current++] = ""; |
---|
| 421 | |
---|
| 422 | return options; |
---|
| 423 | } |
---|
| 424 | |
---|
| 425 | /** |
---|
| 426 | * Returns an enumeration of the additional measure names |
---|
| 427 | * @return an enumeration of the measure names |
---|
| 428 | */ |
---|
| 429 | public Enumeration enumerateMeasures() { |
---|
| 430 | Vector newVector = new Vector(1); |
---|
| 431 | newVector.addElement("measureNumRules"); |
---|
| 432 | return newVector.elements(); |
---|
| 433 | } |
---|
| 434 | |
---|
| 435 | /** |
---|
| 436 | * Returns the value of the named measure |
---|
| 437 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 438 | * @return the value of the named measure |
---|
| 439 | * @throws IllegalArgumentException if the named measure is not supported |
---|
| 440 | */ |
---|
| 441 | public double getMeasure(String additionalMeasureName) { |
---|
| 442 | if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) |
---|
| 443 | return m_Ruleset.size(); |
---|
| 444 | else |
---|
| 445 | throw new IllegalArgumentException(additionalMeasureName+" not supported (FURIA)"); |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | /** |
---|
| 449 | * Returns the tip text for this property |
---|
| 450 | * @return tip text for this property suitable for |
---|
| 451 | * displaying in the explorer/experimenter gui |
---|
| 452 | */ |
---|
| 453 | public String foldsTipText() { |
---|
| 454 | return "Determines the amount of data used for pruning. One fold is used for " |
---|
| 455 | + "pruning, the rest for growing the rules."; |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | /** |
---|
| 459 | * Sets the number of folds to use |
---|
| 460 | * |
---|
| 461 | * @param fold the number of folds |
---|
| 462 | */ |
---|
| 463 | public void setFolds(int fold) { |
---|
| 464 | m_Folds = fold; |
---|
| 465 | } |
---|
| 466 | |
---|
| 467 | /** |
---|
| 468 | * Gets the number of folds |
---|
| 469 | * |
---|
| 470 | * @return the number of folds |
---|
| 471 | */ |
---|
| 472 | public int getFolds(){ |
---|
| 473 | return m_Folds; |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /** |
---|
| 477 | * Returns the tip text for this property |
---|
| 478 | * @return tip text for this property suitable for |
---|
| 479 | * displaying in the explorer/experimenter gui |
---|
| 480 | */ |
---|
| 481 | public String minNoTipText() { |
---|
| 482 | return "The minimum total weight of the instances in a rule."; |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | /** |
---|
| 486 | * Sets the minimum total weight of the instances in a rule |
---|
| 487 | * |
---|
| 488 | * @param m the minimum total weight of the instances in a rule |
---|
| 489 | */ |
---|
| 490 | public void setMinNo(double m) { |
---|
| 491 | m_MinNo = m; |
---|
| 492 | } |
---|
| 493 | |
---|
| 494 | /** |
---|
| 495 | * Gets the minimum total weight of the instances in a rule |
---|
| 496 | * |
---|
| 497 | * @return the minimum total weight of the instances in a rule |
---|
| 498 | */ |
---|
| 499 | public double getMinNo(){ |
---|
| 500 | return m_MinNo; |
---|
| 501 | } |
---|
| 502 | |
---|
| 503 | /** |
---|
| 504 | * Returns the tip text for this property |
---|
| 505 | * @return tip text for this property suitable for |
---|
| 506 | * displaying in the explorer/experimenter gui |
---|
| 507 | */ |
---|
| 508 | public String seedTipText() { |
---|
| 509 | return "The seed used for randomizing the data."; |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | /** |
---|
| 513 | * Sets the seed value to use in randomizing the data |
---|
| 514 | * |
---|
| 515 | * @param s the new seed value |
---|
| 516 | */ |
---|
| 517 | public void setSeed(long s) { |
---|
| 518 | m_Seed = s; |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | /** |
---|
| 522 | * Gets the current seed value to use in randomizing the data |
---|
| 523 | * |
---|
| 524 | * @return the seed value |
---|
| 525 | */ |
---|
| 526 | public long getSeed(){ |
---|
| 527 | return m_Seed; |
---|
| 528 | } |
---|
| 529 | |
---|
| 530 | /** |
---|
| 531 | * Returns the tip text for this property |
---|
| 532 | * @return tip text for this property suitable for |
---|
| 533 | * displaying in the explorer/experimenter gui |
---|
| 534 | */ |
---|
| 535 | public String optimizationsTipText() { |
---|
| 536 | return "The number of optimization runs."; |
---|
| 537 | } |
---|
| 538 | |
---|
| 539 | /** |
---|
| 540 | * Sets the number of optimization runs |
---|
| 541 | * |
---|
| 542 | * @param run the number of optimization runs |
---|
| 543 | */ |
---|
| 544 | public void setOptimizations(int run) { |
---|
| 545 | m_Optimizations = run; |
---|
| 546 | } |
---|
| 547 | |
---|
| 548 | /** |
---|
| 549 | * Gets the the number of optimization runs |
---|
| 550 | * |
---|
| 551 | * @return the number of optimization runs |
---|
| 552 | */ |
---|
| 553 | public int getOptimizations() { |
---|
| 554 | return m_Optimizations; |
---|
| 555 | } |
---|
| 556 | |
---|
| 557 | /** |
---|
| 558 | * Returns the tip text for this property |
---|
| 559 | * @return tip text for this property suitable for |
---|
| 560 | * displaying in the explorer/experimenter gui |
---|
| 561 | */ |
---|
| 562 | public String debugTipText() { |
---|
| 563 | return "Whether debug information is output to the console."; |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | /** |
---|
| 567 | * Sets whether debug information is output to the console |
---|
| 568 | * |
---|
| 569 | * @param d whether debug information is output to the console |
---|
| 570 | */ |
---|
| 571 | public void setDebug(boolean d) { |
---|
| 572 | m_Debug = d; |
---|
| 573 | } |
---|
| 574 | |
---|
| 575 | /** |
---|
| 576 | * Gets whether debug information is output to the console |
---|
| 577 | * |
---|
| 578 | * @return whether debug information is output to the console |
---|
| 579 | */ |
---|
| 580 | public boolean getDebug(){ |
---|
| 581 | return m_Debug; |
---|
| 582 | } |
---|
| 583 | |
---|
| 584 | /** |
---|
| 585 | * Returns the tip text for this property |
---|
| 586 | * @return tip text for this property suitable for |
---|
| 587 | * displaying in the explorer/experimenter gui |
---|
| 588 | */ |
---|
| 589 | public String checkErrorRateTipText() { |
---|
| 590 | return "Whether check for error rate >= 1/2 is included" + |
---|
| 591 | " in stopping criterion."; |
---|
| 592 | } |
---|
| 593 | |
---|
| 594 | /** |
---|
| 595 | * Sets whether to check for error rate is in stopping criterion |
---|
| 596 | * |
---|
| 597 | * @param d whether to check for error rate is in stopping criterion |
---|
| 598 | */ |
---|
| 599 | public void setCheckErrorRate(boolean d) { |
---|
| 600 | m_CheckErr = d; |
---|
| 601 | } |
---|
| 602 | |
---|
| 603 | /** |
---|
| 604 | * Gets whether to check for error rate is in stopping criterion |
---|
| 605 | * |
---|
| 606 | * @return true if checking for error rate is in stopping criterion |
---|
| 607 | */ |
---|
| 608 | public boolean getCheckErrorRate(){ |
---|
| 609 | return m_CheckErr; |
---|
| 610 | } |
---|
| 611 | |
---|
| 612 | /** |
---|
| 613 | * Returns the tip text for this property |
---|
| 614 | * @return tip text for this property suitable for |
---|
| 615 | * displaying in the explorer/experimenter gui |
---|
| 616 | */ |
---|
| 617 | public String uncovActionTipText() { |
---|
| 618 | return "Selet the action that is performed for uncovered instances."; |
---|
| 619 | } |
---|
| 620 | |
---|
| 621 | /** |
---|
| 622 | * Gets the action that is performed for uncovered instances. |
---|
| 623 | * It can be UNCOVACTION_STRETCH, UNCOVACTION_APRIORI or |
---|
| 624 | * UNCOVACTION_REJECT. |
---|
| 625 | * @return the current TNorm. |
---|
| 626 | */ |
---|
| 627 | public SelectedTag getUncovAction() { |
---|
| 628 | return new SelectedTag(m_uncovAction, TAGS_UNCOVACTION); |
---|
| 629 | } |
---|
| 630 | |
---|
| 631 | /** |
---|
| 632 | * Sets the action that is performed for uncovered instances. |
---|
| 633 | * It can be UNCOVACTION_STRETCH, UNCOVACTION_APRIORI or |
---|
| 634 | * UNCOVACTION_REJECT. |
---|
| 635 | * @param newUncovAction the new action. |
---|
| 636 | */ |
---|
| 637 | public void setUncovAction(SelectedTag newUncovAction) { |
---|
| 638 | if (newUncovAction.getTags() == TAGS_UNCOVACTION) { |
---|
| 639 | m_uncovAction = newUncovAction.getSelectedTag().getID(); |
---|
| 640 | } |
---|
| 641 | } |
---|
| 642 | |
---|
| 643 | /** |
---|
| 644 | * Returns the tip text for this property |
---|
| 645 | * @return tip text for this property suitable for |
---|
| 646 | * displaying in the explorer/experimenter gui |
---|
| 647 | */ |
---|
| 648 | public String TNormTipText() { |
---|
| 649 | return "Choose the T-Norm that is used as fuzzy AND-operator."; |
---|
| 650 | } |
---|
| 651 | |
---|
| 652 | /** |
---|
| 653 | * Gets the TNorm used. Will be either TNORM_PROD or TNORM_MIN. |
---|
| 654 | * |
---|
| 655 | * @return the current TNorm. |
---|
| 656 | */ |
---|
| 657 | public SelectedTag getTNorm() { |
---|
| 658 | return new SelectedTag(m_tNorm, TAGS_TNORM); |
---|
| 659 | } |
---|
| 660 | |
---|
| 661 | /** |
---|
| 662 | * Sets the TNorm used. Will be either TNORM_PROD or TNORM_MIN. |
---|
| 663 | * |
---|
| 664 | * @param newTNorm the new TNorm. |
---|
| 665 | */ |
---|
| 666 | public void setTNorm(SelectedTag newTNorm) { |
---|
| 667 | if (newTNorm.getTags() == TAGS_TNORM) { |
---|
| 668 | m_tNorm = newTNorm.getSelectedTag().getID(); |
---|
| 669 | } |
---|
| 670 | } |
---|
| 671 | |
---|
| 672 | |
---|
| 673 | /** |
---|
| 674 | * Get the ruleset generated by FURIA |
---|
| 675 | * |
---|
| 676 | * @return the ruleset |
---|
| 677 | */ |
---|
| 678 | public FastVector getRuleset(){ return m_Ruleset; } |
---|
| 679 | |
---|
| 680 | /** |
---|
| 681 | * Get the statistics of the ruleset in the given position |
---|
| 682 | * |
---|
| 683 | * @param pos the position of the stats, assuming correct |
---|
| 684 | * @return the statistics of the ruleset in the given position |
---|
| 685 | */ |
---|
| 686 | public RuleStats getRuleStats(int pos) { |
---|
| 687 | return (RuleStats)m_RulesetStats.elementAt(pos); |
---|
| 688 | } |
---|
| 689 | |
---|
| 690 | /** |
---|
| 691 | * The single antecedent in the rule, which is composed of an attribute and |
---|
| 692 | * the corresponding value. There are two inherited classes, namely NumericAntd |
---|
| 693 | * and NominalAntd in which the attributes are numeric and nominal respectively. |
---|
| 694 | */ |
---|
| 695 | protected abstract class Antd |
---|
| 696 | implements WeightedInstancesHandler, Copyable, Serializable { |
---|
| 697 | |
---|
| 698 | /** The attribute of the antecedent */ |
---|
| 699 | public Attribute att; |
---|
| 700 | |
---|
| 701 | /** The attribute value of the antecedent. |
---|
| 702 | For numeric attribute, value is either 0(1st bag) or 1(2nd bag) */ |
---|
| 703 | public double value; |
---|
| 704 | |
---|
| 705 | /** The maximum infoGain achieved by this antecedent test |
---|
| 706 | * in the growing data */ |
---|
| 707 | protected double maxInfoGain; |
---|
| 708 | |
---|
| 709 | /** The accurate rate of this antecedent test on the growing data */ |
---|
| 710 | protected double accuRate; |
---|
| 711 | |
---|
| 712 | /** The coverage of this antecedent in the growing data */ |
---|
| 713 | protected double cover; |
---|
| 714 | |
---|
| 715 | /** The accurate data for this antecedent in the growing data */ |
---|
| 716 | protected double accu; |
---|
| 717 | |
---|
| 718 | |
---|
| 719 | /** Confidence / weight of this rule for the rule stretching procedure that |
---|
| 720 | * is returned when this is the last antecedent of the rule. */ |
---|
| 721 | double weightOfTheRuleWhenItIsPrunedAfterThisAntecedent = 0; |
---|
| 722 | |
---|
| 723 | /** Confidence / weight of this antecedent. */ |
---|
| 724 | public double m_confidence = 0.0; |
---|
| 725 | |
---|
| 726 | /** |
---|
| 727 | * Constructor |
---|
| 728 | */ |
---|
| 729 | public Antd(Attribute a){ |
---|
| 730 | att=a; |
---|
| 731 | value=Double.NaN; |
---|
| 732 | maxInfoGain = 0; |
---|
| 733 | accuRate = Double.NaN; |
---|
| 734 | cover = Double.NaN; |
---|
| 735 | accu = Double.NaN; |
---|
| 736 | } |
---|
| 737 | |
---|
| 738 | /* The abstract members for inheritance */ |
---|
| 739 | public abstract Instances[] splitData(Instances data, double defAcRt, |
---|
| 740 | double cla); |
---|
| 741 | public abstract double covers(Instance inst); |
---|
| 742 | public abstract String toString(); |
---|
| 743 | |
---|
| 744 | /** |
---|
| 745 | * Implements Copyable |
---|
| 746 | * |
---|
| 747 | * @return a copy of this object |
---|
| 748 | */ |
---|
| 749 | public abstract Object copy(); |
---|
| 750 | |
---|
| 751 | /* Get functions of this antecedent */ |
---|
| 752 | public Attribute getAttr(){ return att; } |
---|
| 753 | public double getAttrValue(){ return value; } |
---|
| 754 | public double getMaxInfoGain(){ return maxInfoGain; } |
---|
| 755 | public double getAccuRate(){ return accuRate; } |
---|
| 756 | public double getAccu(){ return accu; } |
---|
| 757 | public double getCover(){ return cover; } |
---|
| 758 | } |
---|
| 759 | |
---|
| 760 | /** |
---|
| 761 | * The antecedent with numeric attribute |
---|
| 762 | */ |
---|
| 763 | public class |
---|
| 764 | NumericAntd extends Antd { |
---|
| 765 | |
---|
| 766 | /** for serialization */ |
---|
| 767 | static final long serialVersionUID = 5699457269983735442L; |
---|
| 768 | |
---|
| 769 | /** The split point for this numeric antecedent */ |
---|
| 770 | public double splitPoint; |
---|
| 771 | |
---|
| 772 | /** The edge point for the fuzzy set of this numeric antecedent */ |
---|
| 773 | public double supportBound; |
---|
| 774 | |
---|
| 775 | /** A flag determining whether this antecedent was successfully fuzzified yet*/ |
---|
| 776 | public boolean fuzzyYet = false; |
---|
| 777 | |
---|
| 778 | |
---|
| 779 | /** |
---|
| 780 | * Constructor |
---|
| 781 | */ |
---|
| 782 | public NumericAntd(Attribute a){ |
---|
| 783 | super(a); |
---|
| 784 | splitPoint = Double.NaN; |
---|
| 785 | supportBound = Double.NaN; |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | /** |
---|
| 789 | * Get split point of this numeric antecedent |
---|
| 790 | * |
---|
| 791 | * @return the split point of this numeric antecedent |
---|
| 792 | */ |
---|
| 793 | public double getSplitPoint(){ |
---|
| 794 | return splitPoint; |
---|
| 795 | } |
---|
| 796 | |
---|
| 797 | /** |
---|
| 798 | * Implements Copyable |
---|
| 799 | * |
---|
| 800 | * @return a copy of this object |
---|
| 801 | */ |
---|
| 802 | public Object copy(){ |
---|
| 803 | NumericAntd na = new NumericAntd(getAttr()); |
---|
| 804 | na.m_confidence = m_confidence; |
---|
| 805 | na.value = this.value; |
---|
| 806 | na.splitPoint = this.splitPoint; |
---|
| 807 | na.supportBound = this.supportBound; |
---|
| 808 | na.fuzzyYet = this.fuzzyYet; |
---|
| 809 | return na; |
---|
| 810 | } |
---|
| 811 | |
---|
| 812 | |
---|
| 813 | |
---|
| 814 | /** |
---|
| 815 | * Implements the splitData function. |
---|
| 816 | * This procedure is to split the data into two bags according |
---|
| 817 | * to the information gain of the numeric attribute value |
---|
| 818 | * The maximum infoGain is also calculated. |
---|
| 819 | * |
---|
| 820 | * @param insts the data to be split |
---|
| 821 | * @param defAcRt the default accuracy rate for data |
---|
| 822 | * @param cl the class label to be predicted |
---|
| 823 | * @return the array of data after split |
---|
| 824 | */ |
---|
| 825 | public Instances[] splitData(Instances insts, double defAcRt, |
---|
| 826 | double cl){ |
---|
| 827 | Instances data = insts; |
---|
| 828 | int total=data.numInstances();// Total number of instances without |
---|
| 829 | // missing value for att |
---|
| 830 | |
---|
| 831 | int split=1; // Current split position |
---|
| 832 | int prev=0; // Previous split position |
---|
| 833 | int finalSplit=split; // Final split position |
---|
| 834 | maxInfoGain = 0; |
---|
| 835 | value = 0; |
---|
| 836 | |
---|
| 837 | double fstCover=0, sndCover=0, fstAccu=0, sndAccu=0; |
---|
| 838 | |
---|
| 839 | data.sort(att); |
---|
| 840 | // Find the las instance without missing value |
---|
| 841 | for(int x=0; x<data.numInstances(); x++){ |
---|
| 842 | Instance inst = data.instance(x); |
---|
| 843 | if(inst.isMissing(att)){ |
---|
| 844 | total = x; |
---|
| 845 | break; |
---|
| 846 | } |
---|
| 847 | |
---|
| 848 | sndCover += inst.weight(); |
---|
| 849 | if(Utils.eq(inst.classValue(), cl)) |
---|
| 850 | sndAccu += inst.weight(); |
---|
| 851 | } |
---|
| 852 | |
---|
| 853 | if(total == 0) return null; // Data all missing for the attribute |
---|
| 854 | splitPoint = data.instance(total-1).value(att); |
---|
| 855 | |
---|
| 856 | for(; split <= total; split++){ |
---|
| 857 | if((split == total) || |
---|
| 858 | (data.instance(split).value(att) > // Can't split within |
---|
| 859 | data.instance(prev).value(att))){ // same value |
---|
| 860 | |
---|
| 861 | for(int y=prev; y<split; y++){ |
---|
| 862 | Instance inst = data.instance(y); |
---|
| 863 | fstCover += inst.weight(); |
---|
| 864 | if(Utils.eq(data.instance(y).classValue(), cl)){ |
---|
| 865 | fstAccu += inst.weight(); // First bag positive# ++ |
---|
| 866 | } |
---|
| 867 | } |
---|
| 868 | |
---|
| 869 | double fstAccuRate = (fstAccu+1.0)/(fstCover+1.0), |
---|
| 870 | sndAccuRate = (sndAccu+1.0)/(sndCover+1.0); |
---|
| 871 | |
---|
| 872 | /* Which bag has higher information gain? */ |
---|
| 873 | boolean isFirst; |
---|
| 874 | double fstInfoGain, sndInfoGain; |
---|
| 875 | double accRate, infoGain, coverage, accurate; |
---|
| 876 | |
---|
| 877 | fstInfoGain = |
---|
| 878 | //Utils.eq(defAcRt, 1.0) ? |
---|
| 879 | //fstAccu/(double)numConds : |
---|
| 880 | fstAccu*(Utils.log2(fstAccuRate)-Utils.log2(defAcRt)); |
---|
| 881 | |
---|
| 882 | sndInfoGain = |
---|
| 883 | //Utils.eq(defAcRt, 1.0) ? |
---|
| 884 | //sndAccu/(double)numConds : |
---|
| 885 | sndAccu*(Utils.log2(sndAccuRate)-Utils.log2(defAcRt)); |
---|
| 886 | |
---|
| 887 | if(fstInfoGain > sndInfoGain){ |
---|
| 888 | isFirst = true; |
---|
| 889 | infoGain = fstInfoGain; |
---|
| 890 | accRate = fstAccuRate; |
---|
| 891 | accurate = fstAccu; |
---|
| 892 | coverage = fstCover; |
---|
| 893 | } |
---|
| 894 | else{ |
---|
| 895 | isFirst = false; |
---|
| 896 | infoGain = sndInfoGain; |
---|
| 897 | accRate = sndAccuRate; |
---|
| 898 | accurate = sndAccu; |
---|
| 899 | coverage = sndCover; |
---|
| 900 | } |
---|
| 901 | |
---|
| 902 | /* Check whether so far the max infoGain */ |
---|
| 903 | if(infoGain > maxInfoGain){ |
---|
| 904 | splitPoint = data.instance(prev).value(att); |
---|
| 905 | value = (isFirst) ? 0 : 1; |
---|
| 906 | accuRate = accRate; |
---|
| 907 | accu = accurate; |
---|
| 908 | cover = coverage; |
---|
| 909 | maxInfoGain = infoGain; |
---|
| 910 | finalSplit = (isFirst) ? split : prev; |
---|
| 911 | } |
---|
| 912 | |
---|
| 913 | for(int y=prev; y<split; y++){ |
---|
| 914 | Instance inst = data.instance(y); |
---|
| 915 | sndCover -= inst.weight(); |
---|
| 916 | if(Utils.eq(data.instance(y).classValue(), cl)){ |
---|
| 917 | sndAccu -= inst.weight(); // Second bag positive# -- |
---|
| 918 | } |
---|
| 919 | } |
---|
| 920 | prev=split; |
---|
| 921 | } |
---|
| 922 | } |
---|
| 923 | |
---|
| 924 | /* Split the data */ |
---|
| 925 | Instances[] splitData = new Instances[2]; |
---|
| 926 | splitData[0] = new Instances(data, 0, finalSplit); |
---|
| 927 | splitData[1] = new Instances(data, finalSplit, total-finalSplit); |
---|
| 928 | |
---|
| 929 | return splitData; |
---|
| 930 | } |
---|
| 931 | |
---|
| 932 | |
---|
| 933 | /** |
---|
| 934 | * The degree of coverage for the instance given that antecedent |
---|
| 935 | * |
---|
| 936 | * @param inst the instance in question |
---|
| 937 | * @return the numeric value indicating the membership of the instance |
---|
| 938 | * for this antecedent |
---|
| 939 | */ |
---|
| 940 | public double covers(Instance inst){ |
---|
| 941 | double isCover=0; |
---|
| 942 | if(!inst.isMissing(att)){ |
---|
| 943 | if((int)value == 0){ // First bag |
---|
| 944 | if(inst.value(att) <= splitPoint) |
---|
| 945 | isCover=1; |
---|
| 946 | else if(fuzzyYet && (inst.value(att) > splitPoint) && (inst.value(att) < supportBound )) |
---|
| 947 | isCover= 1-((inst.value(att) - splitPoint)/(supportBound-splitPoint)); |
---|
| 948 | }else{ |
---|
| 949 | if(inst.value(att) >= splitPoint) // Second bag |
---|
| 950 | isCover=1; |
---|
| 951 | else if(fuzzyYet && inst.value(att) < splitPoint && (inst.value(att) > supportBound )) |
---|
| 952 | isCover= 1-((splitPoint - inst.value(att)) /(splitPoint-supportBound)); |
---|
| 953 | } |
---|
| 954 | } |
---|
| 955 | |
---|
| 956 | return isCover; |
---|
| 957 | } |
---|
| 958 | |
---|
| 959 | /** |
---|
| 960 | * Prints this antecedent |
---|
| 961 | * |
---|
| 962 | * @return a textual description of this antecedent |
---|
| 963 | */ |
---|
| 964 | public String toString() { |
---|
| 965 | if (value == 0){ |
---|
| 966 | if (fuzzyYet){ |
---|
| 967 | return (att.name() + " in [-inf, -inf, " + Utils.doubleToString(splitPoint, 6) + ", " + Utils.doubleToString(supportBound, 6) + "]"); |
---|
| 968 | } |
---|
| 969 | return (att.name() + " in [-inf, " + Utils.doubleToString(splitPoint, 6) + "]"); |
---|
| 970 | }else{ |
---|
| 971 | if (fuzzyYet){ |
---|
| 972 | return (att.name() + " in [" + Utils.doubleToString(supportBound, 6) + ", " + Utils.doubleToString(splitPoint, 6) + ", inf, inf]"); |
---|
| 973 | } |
---|
| 974 | return (att.name() + " in [" + Utils.doubleToString(splitPoint, 6) + ", inf]"); |
---|
| 975 | } |
---|
| 976 | |
---|
| 977 | } |
---|
| 978 | |
---|
| 979 | } |
---|
| 980 | |
---|
| 981 | |
---|
| 982 | /** |
---|
| 983 | * The antecedent with nominal attribute |
---|
| 984 | */ |
---|
| 985 | protected class NominalAntd |
---|
| 986 | extends Antd{ |
---|
| 987 | |
---|
| 988 | /** for serialization */ |
---|
| 989 | static final long serialVersionUID = -9102297038837585135L; |
---|
| 990 | |
---|
| 991 | /* The parameters of infoGain calculated for each attribute value |
---|
| 992 | * in the growing data */ |
---|
| 993 | private double[] accurate; |
---|
| 994 | private double[] coverage; |
---|
| 995 | |
---|
| 996 | /** |
---|
| 997 | * Constructor |
---|
| 998 | */ |
---|
| 999 | public NominalAntd(Attribute a){ |
---|
| 1000 | super(a); |
---|
| 1001 | int bag = att.numValues(); |
---|
| 1002 | accurate = new double[bag]; |
---|
| 1003 | coverage = new double[bag]; |
---|
| 1004 | } |
---|
| 1005 | |
---|
| 1006 | /** |
---|
| 1007 | * Implements Copyable |
---|
| 1008 | * |
---|
| 1009 | * @return a copy of this object |
---|
| 1010 | */ |
---|
| 1011 | public Object copy(){ |
---|
| 1012 | Antd antec = new NominalAntd(getAttr()); |
---|
| 1013 | antec.m_confidence = m_confidence; |
---|
| 1014 | antec.value = this.value; |
---|
| 1015 | return antec; |
---|
| 1016 | } |
---|
| 1017 | |
---|
| 1018 | /** |
---|
| 1019 | * Implements the splitData function. |
---|
| 1020 | * This procedure is to split the data into bags according |
---|
| 1021 | * to the nominal attribute value |
---|
| 1022 | * The infoGain for each bag is also calculated. |
---|
| 1023 | * |
---|
| 1024 | * @param data the data to be split |
---|
| 1025 | * @param defAcRt the default accuracy rate for data |
---|
| 1026 | * @param cl the class label to be predicted |
---|
| 1027 | * @return the array of data after split |
---|
| 1028 | */ |
---|
| 1029 | public Instances[] splitData(Instances data, double defAcRt, |
---|
| 1030 | double cl){ |
---|
| 1031 | int bag = att.numValues(); |
---|
| 1032 | Instances[] splitData = new Instances[bag]; |
---|
| 1033 | |
---|
| 1034 | for(int x=0; x<bag; x++){ |
---|
| 1035 | splitData[x] = new Instances(data, data.numInstances()); |
---|
| 1036 | accurate[x] = 0; |
---|
| 1037 | coverage[x] = 0; |
---|
| 1038 | } |
---|
| 1039 | |
---|
| 1040 | for(int x=0; x<data.numInstances(); x++){ |
---|
| 1041 | Instance inst=data.instance(x); |
---|
| 1042 | if(!inst.isMissing(att)){ |
---|
| 1043 | int v = (int)inst.value(att); |
---|
| 1044 | splitData[v].add(inst); |
---|
| 1045 | coverage[v] += inst.weight(); |
---|
| 1046 | if((int)inst.classValue() == (int)cl) |
---|
| 1047 | accurate[v] += inst.weight(); |
---|
| 1048 | } |
---|
| 1049 | } |
---|
| 1050 | |
---|
| 1051 | for(int x=0; x<bag; x++){ |
---|
| 1052 | double t = coverage[x]+1.0; |
---|
| 1053 | double p = accurate[x] + 1.0; |
---|
| 1054 | double infoGain = |
---|
| 1055 | //Utils.eq(defAcRt, 1.0) ? |
---|
| 1056 | //accurate[x]/(double)numConds : |
---|
| 1057 | accurate[x]*(Utils.log2(p/t)-Utils.log2(defAcRt)); |
---|
| 1058 | |
---|
| 1059 | if(infoGain > maxInfoGain){ |
---|
| 1060 | maxInfoGain = infoGain; |
---|
| 1061 | cover = coverage[x]; |
---|
| 1062 | accu = accurate[x]; |
---|
| 1063 | accuRate = p/t; |
---|
| 1064 | value = (double)x; |
---|
| 1065 | } |
---|
| 1066 | } |
---|
| 1067 | |
---|
| 1068 | return splitData; |
---|
| 1069 | } |
---|
| 1070 | |
---|
| 1071 | /** |
---|
| 1072 | * Whether the instance is covered by this antecedent |
---|
| 1073 | * |
---|
| 1074 | * @param inst the instance in question |
---|
| 1075 | * @return the boolean value indicating whether the instance is |
---|
| 1076 | * covered by this antecedent |
---|
| 1077 | */ |
---|
| 1078 | public double covers(Instance inst){ |
---|
| 1079 | double isCover=0; |
---|
| 1080 | if(!inst.isMissing(att)){ |
---|
| 1081 | if((int)inst.value(att) == (int)value) |
---|
| 1082 | isCover=1; |
---|
| 1083 | } |
---|
| 1084 | return isCover; |
---|
| 1085 | } |
---|
| 1086 | |
---|
| 1087 | /** |
---|
| 1088 | * Prints this antecedent |
---|
| 1089 | * |
---|
| 1090 | * @return a textual description of this antecedent |
---|
| 1091 | */ |
---|
| 1092 | public String toString() { |
---|
| 1093 | return (att.name() + " = " +att.value((int)value)); |
---|
| 1094 | } |
---|
| 1095 | } |
---|
| 1096 | |
---|
| 1097 | |
---|
| 1098 | /** |
---|
| 1099 | * This class implements a single rule that predicts specified class. |
---|
| 1100 | * |
---|
| 1101 | * A rule consists of antecedents "AND"ed together and the consequent |
---|
| 1102 | * (class value) for the classification. |
---|
| 1103 | * In this class, the Information Gain (p*[log(p/t) - log(P/T)]) is used to |
---|
| 1104 | * select an antecedent and Reduced Error Prunning (REP) with the metric |
---|
| 1105 | * of accuracy rate p/(p+n) or (TP+TN)/(P+N) is used to prune the rule. |
---|
| 1106 | */ |
---|
| 1107 | public class RipperRule |
---|
| 1108 | extends Rule{ |
---|
| 1109 | |
---|
| 1110 | /** for serialization */ |
---|
| 1111 | static final long serialVersionUID = -2410020717305262952L; |
---|
| 1112 | |
---|
| 1113 | /** The internal representation of the class label to be predicted */ |
---|
| 1114 | double m_Consequent = -1; |
---|
| 1115 | |
---|
| 1116 | /** The vector of antecedents of this rule*/ |
---|
| 1117 | public FastVector m_Antds = null; |
---|
| 1118 | |
---|
| 1119 | /** Constructor */ |
---|
| 1120 | public RipperRule(){ |
---|
| 1121 | m_Antds = new FastVector(); |
---|
| 1122 | } |
---|
| 1123 | |
---|
| 1124 | /** |
---|
| 1125 | * Sets the internal representation of the class label to be predicted |
---|
| 1126 | * |
---|
| 1127 | * @param cl the internal representation of the class label to be predicted |
---|
| 1128 | */ |
---|
| 1129 | public void setConsequent(double cl) { |
---|
| 1130 | m_Consequent = cl; |
---|
| 1131 | } |
---|
| 1132 | |
---|
| 1133 | /** |
---|
| 1134 | * Gets the internal representation of the class label to be predicted |
---|
| 1135 | * |
---|
| 1136 | * @return the internal representation of the class label to be predicted |
---|
| 1137 | */ |
---|
| 1138 | public double getConsequent() { |
---|
| 1139 | return m_Consequent; |
---|
| 1140 | } |
---|
| 1141 | |
---|
| 1142 | /** |
---|
| 1143 | * Get a shallow copy of this rule |
---|
| 1144 | * |
---|
| 1145 | * @return the copy |
---|
| 1146 | */ |
---|
| 1147 | public Object copy(){ |
---|
| 1148 | RipperRule copy = new RipperRule(); |
---|
| 1149 | copy.setConsequent(getConsequent()); |
---|
| 1150 | copy.m_Antds = (FastVector)this.m_Antds.copyElements(); |
---|
| 1151 | return copy; |
---|
| 1152 | } |
---|
| 1153 | |
---|
| 1154 | |
---|
| 1155 | |
---|
| 1156 | /** |
---|
| 1157 | * The degree of coverage instance covered by this rule |
---|
| 1158 | * |
---|
| 1159 | * @param datum the instance in question |
---|
| 1160 | * @return the degree to which the instance |
---|
| 1161 | * is covered by this rule |
---|
| 1162 | */ |
---|
| 1163 | public double coverageDegree(Instance datum){ |
---|
| 1164 | double coverage = 1; |
---|
| 1165 | |
---|
| 1166 | for(int i=0; i<m_Antds.size(); i++){ |
---|
| 1167 | Antd antd = (Antd)m_Antds.elementAt(i); |
---|
| 1168 | if(m_tNorm == TNORM_PROD){ |
---|
| 1169 | // Product T-Norm |
---|
| 1170 | if (antd instanceof NumericAntd) |
---|
| 1171 | coverage *= ((NumericAntd)antd).covers(datum); |
---|
| 1172 | else |
---|
| 1173 | coverage *= antd.covers(datum); |
---|
| 1174 | }else{ |
---|
| 1175 | // Min T-Norm |
---|
| 1176 | if (antd instanceof NumericAntd) |
---|
| 1177 | coverage = Math.min(coverage, ((NumericAntd)antd).covers(datum)); |
---|
| 1178 | else |
---|
| 1179 | coverage = Math.min(coverage, antd.covers(datum)); |
---|
| 1180 | } |
---|
| 1181 | |
---|
| 1182 | } |
---|
| 1183 | |
---|
| 1184 | return coverage; |
---|
| 1185 | } |
---|
| 1186 | |
---|
| 1187 | /** |
---|
| 1188 | * Whether the instance covered by this rule |
---|
| 1189 | * |
---|
| 1190 | * @param datum the instance in question |
---|
| 1191 | * @return the boolean value indicating whether the instance |
---|
| 1192 | * is covered by this rule |
---|
| 1193 | */ |
---|
| 1194 | public boolean covers(Instance datum){ |
---|
| 1195 | if (coverageDegree(datum) == 0){ |
---|
| 1196 | return false; |
---|
| 1197 | }else{ |
---|
| 1198 | return true; |
---|
| 1199 | } |
---|
| 1200 | } |
---|
| 1201 | |
---|
| 1202 | /** |
---|
| 1203 | * Whether this rule has antecedents, i.e. whether it is a default rule |
---|
| 1204 | * |
---|
| 1205 | * @return the boolean value indicating whether the rule has antecedents |
---|
| 1206 | */ |
---|
| 1207 | public boolean hasAntds(){ |
---|
| 1208 | if (m_Antds == null) |
---|
| 1209 | return false; |
---|
| 1210 | else |
---|
| 1211 | return (m_Antds.size() > 0); |
---|
| 1212 | } |
---|
| 1213 | |
---|
| 1214 | /** |
---|
| 1215 | * the number of antecedents of the rule |
---|
| 1216 | * |
---|
| 1217 | * @return the size of this rule |
---|
| 1218 | */ |
---|
| 1219 | public double size(){ return (double)m_Antds.size(); } |
---|
| 1220 | |
---|
| 1221 | |
---|
| 1222 | /** |
---|
| 1223 | * Private function to compute default number of accurate instances |
---|
| 1224 | * in the specified data for the consequent of the rule |
---|
| 1225 | * |
---|
| 1226 | * @param data the data in question |
---|
| 1227 | * @return the default accuracy number |
---|
| 1228 | */ |
---|
| 1229 | private double computeDefAccu(Instances data){ |
---|
| 1230 | double defAccu=0; |
---|
| 1231 | for(int i=0; i<data.numInstances(); i++){ |
---|
| 1232 | Instance inst = data.instance(i); |
---|
| 1233 | if((int)inst.classValue() == (int)m_Consequent) |
---|
| 1234 | defAccu += inst.weight(); |
---|
| 1235 | } |
---|
| 1236 | return defAccu; |
---|
| 1237 | } |
---|
| 1238 | |
---|
| 1239 | |
---|
| 1240 | /** |
---|
| 1241 | * Build one rule using the growing data |
---|
| 1242 | * |
---|
| 1243 | * @param data the growing data used to build the rule |
---|
| 1244 | * @throws Exception if the consequent is not set yet |
---|
| 1245 | */ |
---|
| 1246 | public void grow(Instances data) throws Exception { |
---|
| 1247 | if(m_Consequent == -1) |
---|
| 1248 | throw new Exception(" Consequent not set yet."); |
---|
| 1249 | |
---|
| 1250 | Instances growData = data; |
---|
| 1251 | double sumOfWeights = growData.sumOfWeights(); |
---|
| 1252 | if(!Utils.gr(sumOfWeights, 0.0)) |
---|
| 1253 | return; |
---|
| 1254 | |
---|
| 1255 | /* Compute the default accurate rate of the growing data */ |
---|
| 1256 | double defAccu = computeDefAccu(growData); |
---|
| 1257 | double defAcRt = (defAccu+1.0)/(sumOfWeights+1.0); |
---|
| 1258 | |
---|
| 1259 | /* Keep the record of which attributes have already been used*/ |
---|
| 1260 | boolean[] used=new boolean [growData.numAttributes()]; |
---|
| 1261 | for (int k=0; k<used.length; k++) |
---|
| 1262 | used[k]=false; |
---|
| 1263 | int numUnused=used.length; |
---|
| 1264 | |
---|
| 1265 | // If there are already antecedents existing |
---|
| 1266 | for(int j=0; j < m_Antds.size(); j++){ |
---|
| 1267 | Antd antdj = (Antd)m_Antds.elementAt(j); |
---|
| 1268 | if(!antdj.getAttr().isNumeric()){ |
---|
| 1269 | used[antdj.getAttr().index()]=true; |
---|
| 1270 | numUnused--; |
---|
| 1271 | } |
---|
| 1272 | } |
---|
| 1273 | |
---|
| 1274 | double maxInfoGain; |
---|
| 1275 | while (Utils.gr(growData.numInstances(), 0.0) && |
---|
| 1276 | (numUnused > 0) |
---|
| 1277 | && Utils.sm(defAcRt, 1.0) |
---|
| 1278 | ){ |
---|
| 1279 | |
---|
| 1280 | // We require that infoGain be positive |
---|
| 1281 | /*if(numAntds == originalSize) |
---|
| 1282 | maxInfoGain = 0.0; // At least one condition allowed |
---|
| 1283 | else |
---|
| 1284 | maxInfoGain = Utils.eq(defAcRt, 1.0) ? |
---|
| 1285 | defAccu/(double)numAntds : 0.0; */ |
---|
| 1286 | maxInfoGain = 0.0; |
---|
| 1287 | |
---|
| 1288 | /* Build a list of antecedents */ |
---|
| 1289 | Antd oneAntd=null; |
---|
| 1290 | Instances coverData = null; |
---|
| 1291 | Enumeration enumAttr=growData.enumerateAttributes(); |
---|
| 1292 | |
---|
| 1293 | /* Build one condition based on all attributes not used yet*/ |
---|
| 1294 | while (enumAttr.hasMoreElements()){ |
---|
| 1295 | Attribute att= (Attribute)(enumAttr.nextElement()); |
---|
| 1296 | |
---|
| 1297 | if(m_Debug) |
---|
| 1298 | System.err.println("\nOne condition: size = " |
---|
| 1299 | + growData.sumOfWeights()); |
---|
| 1300 | |
---|
| 1301 | Antd antd =null; |
---|
| 1302 | if(att.isNumeric()) |
---|
| 1303 | antd = new NumericAntd(att); |
---|
| 1304 | else |
---|
| 1305 | antd = new NominalAntd(att); |
---|
| 1306 | |
---|
| 1307 | if(!used[att.index()]){ |
---|
| 1308 | /* Compute the best information gain for each attribute, |
---|
| 1309 | it's stored in the antecedent formed by this attribute. |
---|
| 1310 | This procedure returns the data covered by the antecedent*/ |
---|
| 1311 | Instances coveredData = computeInfoGain(growData, defAcRt, |
---|
| 1312 | antd); |
---|
| 1313 | if(coveredData != null){ |
---|
| 1314 | double infoGain = antd.getMaxInfoGain(); |
---|
| 1315 | if(m_Debug) |
---|
| 1316 | System.err.println("Test of \'"+antd.toString()+ |
---|
| 1317 | "\': infoGain = "+ |
---|
| 1318 | infoGain + " | Accuracy = " + |
---|
| 1319 | antd.getAccuRate()+ |
---|
| 1320 | "="+antd.getAccu() |
---|
| 1321 | +"/"+antd.getCover()+ |
---|
| 1322 | " def. accuracy: "+defAcRt); |
---|
| 1323 | |
---|
| 1324 | if(infoGain > maxInfoGain){ |
---|
| 1325 | oneAntd=antd; |
---|
| 1326 | coverData = coveredData; |
---|
| 1327 | maxInfoGain = infoGain; |
---|
| 1328 | } |
---|
| 1329 | } |
---|
| 1330 | } |
---|
| 1331 | } |
---|
| 1332 | |
---|
| 1333 | if(oneAntd == null) break; // Cannot find antds |
---|
| 1334 | if(Utils.sm(oneAntd.getAccu(), m_MinNo)) break;// Too low coverage |
---|
| 1335 | |
---|
| 1336 | //Numeric attributes can be used more than once |
---|
| 1337 | if(!oneAntd.getAttr().isNumeric()){ |
---|
| 1338 | used[oneAntd.getAttr().index()]=true; |
---|
| 1339 | numUnused--; |
---|
| 1340 | } |
---|
| 1341 | |
---|
| 1342 | m_Antds.addElement(oneAntd); |
---|
| 1343 | |
---|
| 1344 | |
---|
| 1345 | growData = coverData;// Grow data size is shrinking |
---|
| 1346 | defAcRt = oneAntd.getAccuRate(); |
---|
| 1347 | } |
---|
| 1348 | } |
---|
| 1349 | |
---|
| 1350 | |
---|
| 1351 | /** |
---|
| 1352 | * Compute the best information gain for the specified antecedent |
---|
| 1353 | * |
---|
| 1354 | * @param instances the data based on which the infoGain is computed |
---|
| 1355 | * @param defAcRt the default accuracy rate of data |
---|
| 1356 | * @param antd the specific antecedent |
---|
| 1357 | * @return the data covered by the antecedent |
---|
| 1358 | */ |
---|
| 1359 | private Instances computeInfoGain(Instances instances, double defAcRt, |
---|
| 1360 | Antd antd){ |
---|
| 1361 | Instances data = instances; |
---|
| 1362 | |
---|
| 1363 | /* Split the data into bags. |
---|
| 1364 | The information gain of each bag is also calculated in this procedure */ |
---|
| 1365 | Instances[] splitData = antd.splitData(data, defAcRt, |
---|
| 1366 | m_Consequent); |
---|
| 1367 | |
---|
| 1368 | /* Get the bag of data to be used for next antecedents */ |
---|
| 1369 | if(splitData != null) |
---|
| 1370 | return splitData[(int)antd.getAttrValue()]; |
---|
| 1371 | else return null; |
---|
| 1372 | } |
---|
| 1373 | |
---|
| 1374 | /** |
---|
| 1375 | * Prune all the possible final sequences of the rule using the |
---|
| 1376 | * pruning data. The measure used to prune the rule is based on |
---|
| 1377 | * flag given. |
---|
| 1378 | * |
---|
| 1379 | * @param pruneData the pruning data used to prune the rule |
---|
| 1380 | * @param useWhole flag to indicate whether use the error rate of |
---|
| 1381 | * the whole pruning data instead of the data covered |
---|
| 1382 | */ |
---|
| 1383 | public void prune(Instances pruneData, boolean useWhole){ |
---|
| 1384 | Instances data = pruneData; |
---|
| 1385 | |
---|
| 1386 | double total = data.sumOfWeights(); |
---|
| 1387 | if(!Utils.gr(total, 0.0)) |
---|
| 1388 | return; |
---|
| 1389 | |
---|
| 1390 | /* The default accurate # and rate on pruning data */ |
---|
| 1391 | double defAccu=computeDefAccu(data); |
---|
| 1392 | |
---|
| 1393 | if(m_Debug) |
---|
| 1394 | System.err.println("Pruning with " + defAccu + |
---|
| 1395 | " positive data out of " + total + |
---|
| 1396 | " instances"); |
---|
| 1397 | |
---|
| 1398 | int size=m_Antds.size(); |
---|
| 1399 | if(size == 0) return; // Default rule before pruning |
---|
| 1400 | |
---|
| 1401 | double[] worthRt = new double[size]; |
---|
| 1402 | double[] coverage = new double[size]; |
---|
| 1403 | double[] worthValue = new double[size]; |
---|
| 1404 | for(int w=0; w<size; w++){ |
---|
| 1405 | worthRt[w]=coverage[w]=worthValue[w]=0.0; |
---|
| 1406 | } |
---|
| 1407 | |
---|
| 1408 | /* Calculate accuracy parameters for all the antecedents in this rule */ |
---|
| 1409 | double tn = 0.0; // True negative if useWhole |
---|
| 1410 | for(int x=0; x<size; x++){ |
---|
| 1411 | Antd antd=(Antd)m_Antds.elementAt(x); |
---|
| 1412 | Instances newData = data; |
---|
| 1413 | data = new Instances(newData, 0); // Make data empty |
---|
| 1414 | |
---|
| 1415 | for(int y=0; y<newData.numInstances(); y++){ |
---|
| 1416 | Instance ins=newData.instance(y); |
---|
| 1417 | |
---|
| 1418 | if(antd.covers(ins)>0){ // Covered by this antecedent |
---|
| 1419 | coverage[x] += ins.weight(); |
---|
| 1420 | data.add(ins); // Add to data for further pruning |
---|
| 1421 | if((int)ins.classValue() == (int)m_Consequent) // Accurate prediction |
---|
| 1422 | worthValue[x] += ins.weight(); |
---|
| 1423 | } |
---|
| 1424 | else if(useWhole){ // Not covered |
---|
| 1425 | if((int)ins.classValue() != (int)m_Consequent) |
---|
| 1426 | tn += ins.weight(); |
---|
| 1427 | } |
---|
| 1428 | } |
---|
| 1429 | |
---|
| 1430 | if(useWhole){ |
---|
| 1431 | worthValue[x] += tn; |
---|
| 1432 | worthRt[x] = worthValue[x] / total; |
---|
| 1433 | } |
---|
| 1434 | else // Note if coverage is 0, accuracy is 0.5 |
---|
| 1435 | worthRt[x] = (worthValue[x]+1.0)/(coverage[x]+2.0); |
---|
| 1436 | } |
---|
| 1437 | |
---|
| 1438 | double maxValue = (defAccu+1.0)/(total+2.0); |
---|
| 1439 | int maxIndex = -1; |
---|
| 1440 | for(int i=0; i<worthValue.length; i++){ |
---|
| 1441 | if(m_Debug){ |
---|
| 1442 | double denom = useWhole ? total : coverage[i]; |
---|
| 1443 | System.err.println(i+"(useAccuray? "+!useWhole+"): " |
---|
| 1444 | + worthRt[i] + |
---|
| 1445 | "="+worthValue[i]+ |
---|
| 1446 | "/"+denom); |
---|
| 1447 | } |
---|
| 1448 | if(worthRt[i] > maxValue){ // Prefer to the |
---|
| 1449 | maxValue = worthRt[i]; // shorter rule |
---|
| 1450 | maxIndex = i; |
---|
| 1451 | } |
---|
| 1452 | } |
---|
| 1453 | |
---|
| 1454 | if (maxIndex==-1) return; |
---|
| 1455 | |
---|
| 1456 | /* Prune the antecedents according to the accuracy parameters */ |
---|
| 1457 | for(int z=size-1;z>maxIndex;z--) |
---|
| 1458 | m_Antds.removeElementAt(z); |
---|
| 1459 | } |
---|
| 1460 | |
---|
| 1461 | /** |
---|
| 1462 | * Prints this rule |
---|
| 1463 | * |
---|
| 1464 | * @param classAttr the class attribute in the data |
---|
| 1465 | * @return a textual description of this rule |
---|
| 1466 | */ |
---|
| 1467 | public String toString(Attribute classAttr) { |
---|
| 1468 | StringBuffer text = new StringBuffer(); |
---|
| 1469 | if(m_Antds.size() > 0){ |
---|
| 1470 | for(int j=0; j< (m_Antds.size()-1); j++) |
---|
| 1471 | text.append("(" + ((Antd)(m_Antds.elementAt(j))).toString()+ ") and "); |
---|
| 1472 | text.append("("+((Antd)(m_Antds.lastElement())).toString() + ")"); |
---|
| 1473 | } |
---|
| 1474 | text.append(" => " + classAttr.name() + |
---|
| 1475 | "=" + classAttr.value((int)m_Consequent)); |
---|
| 1476 | |
---|
| 1477 | return text.toString(); |
---|
| 1478 | } |
---|
| 1479 | |
---|
| 1480 | /** |
---|
| 1481 | * The fuzzification procedure |
---|
| 1482 | * @param data training data |
---|
| 1483 | * @param allWeightsAreOne flag whether all instances have weight 1. If this is the case branch-and-bound is possible for speed-up. |
---|
| 1484 | */ |
---|
| 1485 | public void fuzzify(Instances data, boolean allWeightsAreOne){ |
---|
| 1486 | // Determine whether there are numeric antecedents that can be fuzzified. |
---|
| 1487 | if (m_Antds == null) return; |
---|
| 1488 | int numNumericAntds = 0; |
---|
| 1489 | for (int i = 0; i < m_Antds.size(); i++){ |
---|
| 1490 | if (m_Antds.elementAt(i) instanceof NumericAntd) |
---|
| 1491 | numNumericAntds++; |
---|
| 1492 | } |
---|
| 1493 | if (numNumericAntds == 0) |
---|
| 1494 | return; |
---|
| 1495 | |
---|
| 1496 | double maxPurity = Double.NEGATIVE_INFINITY; |
---|
| 1497 | boolean[] finishedAntecedents = new boolean[m_Antds.size()]; |
---|
| 1498 | int numFinishedAntecedents = 0; |
---|
| 1499 | |
---|
| 1500 | // Loop until all antecdents have been fuzzified |
---|
| 1501 | while (numFinishedAntecedents<m_Antds.size()){ |
---|
| 1502 | double maxPurityOfAllAntecedents = Double.NEGATIVE_INFINITY; |
---|
| 1503 | int bestAntecedentsIndex = -1; |
---|
| 1504 | double bestSupportBoundForAllAntecedents = Double.NaN; |
---|
| 1505 | |
---|
| 1506 | Instances relevantData = new Instances(data,0); |
---|
| 1507 | for (int j = 0; j < m_Antds.size(); j++){ |
---|
| 1508 | if(finishedAntecedents[j]) continue; |
---|
| 1509 | |
---|
| 1510 | relevantData = new Instances (data); |
---|
| 1511 | /* |
---|
| 1512 | * Remove instances which are not relevant, because they are not covered |
---|
| 1513 | * by the _other_ antecedents. |
---|
| 1514 | */ |
---|
| 1515 | for (int k = 0; k < m_Antds.size(); k++){ |
---|
| 1516 | if (k==j) continue; |
---|
| 1517 | Antd exclusionAntd = ((Antd)m_Antds.elementAt(k)); |
---|
| 1518 | for (int y = 0; y < relevantData.numInstances(); y++){ |
---|
| 1519 | if (exclusionAntd.covers(relevantData.instance(y)) == 0){ |
---|
| 1520 | relevantData.delete(y--); |
---|
| 1521 | } |
---|
| 1522 | } |
---|
| 1523 | } |
---|
| 1524 | |
---|
| 1525 | // test whether this antecedent is numeric and whether there is data for making it fuzzy |
---|
| 1526 | if (relevantData.attribute(((Antd)m_Antds.elementAt(j)).att.index()).isNumeric() && relevantData.numInstances()>0){ |
---|
| 1527 | // Get a working copy of this antecedent |
---|
| 1528 | NumericAntd currentAntd = (NumericAntd) ((NumericAntd) m_Antds.elementAt(j)).copy(); |
---|
| 1529 | currentAntd.fuzzyYet=true; |
---|
| 1530 | |
---|
| 1531 | relevantData.deleteWithMissing(currentAntd.att.index()); |
---|
| 1532 | |
---|
| 1533 | double sumOfWeights = relevantData.sumOfWeights(); |
---|
| 1534 | if(!Utils.gr(sumOfWeights, 0.0)) |
---|
| 1535 | return; |
---|
| 1536 | |
---|
| 1537 | relevantData.sort(currentAntd.att.index()); |
---|
| 1538 | |
---|
| 1539 | double maxPurityForThisAntecedent = 0; |
---|
| 1540 | double bestFoundSupportBound = Double.NaN; |
---|
| 1541 | |
---|
| 1542 | double lastAccu = 0; |
---|
| 1543 | double lastCover = 0; |
---|
| 1544 | // Test all possible edge points |
---|
| 1545 | if (currentAntd.value == 0){ |
---|
| 1546 | for (int k = 1; k < relevantData.numInstances(); k++){ |
---|
| 1547 | // break the loop if there is no gain (only works when all instances have weight 1) |
---|
| 1548 | if ((lastAccu+(relevantData.numInstances()-k-1))/(lastCover+(relevantData.numInstances()-k-1)) < maxPurityForThisAntecedent && allWeightsAreOne){ |
---|
| 1549 | break; |
---|
| 1550 | } |
---|
| 1551 | |
---|
| 1552 | // Bag 1 |
---|
| 1553 | if (currentAntd.splitPoint < relevantData.instance(k).value(currentAntd.att.index()) |
---|
| 1554 | && relevantData.instance(k).value(currentAntd.att.index()) != relevantData.instance(k-1).value(currentAntd.att.index())){ |
---|
| 1555 | currentAntd.supportBound = relevantData.instance(k).value(currentAntd.att.index()); |
---|
| 1556 | |
---|
| 1557 | // Calculate the purity of this fuzzification |
---|
| 1558 | double[] accuArray = new double[relevantData.numInstances()]; |
---|
| 1559 | double[] coverArray = new double[relevantData.numInstances()]; |
---|
| 1560 | for (int i = 0; i < relevantData.numInstances(); i++){ |
---|
| 1561 | coverArray[i] = relevantData.instance(i).weight(); |
---|
| 1562 | double coverValue = currentAntd.covers(relevantData.instance(i)); |
---|
| 1563 | if (coverArray[i] >= coverValue*relevantData.instance(i).weight()){ |
---|
| 1564 | coverArray[i] = coverValue*relevantData.instance(i).weight(); |
---|
| 1565 | if (relevantData.instance(i).classValue() == m_Consequent){ |
---|
| 1566 | accuArray[i] = coverValue*relevantData.instance(i).weight(); |
---|
| 1567 | } |
---|
| 1568 | } |
---|
| 1569 | } |
---|
| 1570 | |
---|
| 1571 | // Test whether this fuzzification is the best one for this antecedent. |
---|
| 1572 | // Keep it if this is the case. |
---|
| 1573 | double purity = (Utils.sum(accuArray)) / (Utils.sum(coverArray)); |
---|
| 1574 | if (purity >= maxPurityForThisAntecedent){ |
---|
| 1575 | maxPurityForThisAntecedent =purity; |
---|
| 1576 | bestFoundSupportBound = currentAntd.supportBound; |
---|
| 1577 | } |
---|
| 1578 | lastAccu = Utils.sum(accuArray); |
---|
| 1579 | lastCover = Utils.sum(coverArray); |
---|
| 1580 | } |
---|
| 1581 | } |
---|
| 1582 | }else{ |
---|
| 1583 | for (int k = relevantData.numInstances()-2; k >=0; k--){ |
---|
| 1584 | // break the loop if there is no gain (only works when all instances have weight 1) |
---|
| 1585 | if ((lastAccu+(k))/(lastCover+(k)) < maxPurityForThisAntecedent && allWeightsAreOne){ |
---|
| 1586 | break; |
---|
| 1587 | } |
---|
| 1588 | |
---|
| 1589 | //Bag 2 |
---|
| 1590 | if (currentAntd.splitPoint > relevantData.instance(k).value(currentAntd.att.index()) |
---|
| 1591 | && relevantData.instance(k).value(currentAntd.att.index()) != relevantData.instance(k+1).value(currentAntd.att.index())){ |
---|
| 1592 | currentAntd.supportBound = relevantData.instance(k).value(currentAntd.att.index()); |
---|
| 1593 | |
---|
| 1594 | // Calculate the purity of this fuzzification |
---|
| 1595 | double[] accuArray = new double[relevantData.numInstances()]; |
---|
| 1596 | double[] coverArray = new double[relevantData.numInstances()]; |
---|
| 1597 | for (int i = 0; i < relevantData.numInstances(); i++){ |
---|
| 1598 | coverArray[i] = relevantData.instance(i).weight(); |
---|
| 1599 | double coverValue = currentAntd.covers(relevantData.instance(i)); |
---|
| 1600 | if (coverArray[i] >= coverValue*relevantData.instance(i).weight()){ |
---|
| 1601 | coverArray[i] = coverValue*relevantData.instance(i).weight(); |
---|
| 1602 | if (relevantData.instance(i).classValue() == m_Consequent){ |
---|
| 1603 | accuArray[i] = coverValue*relevantData.instance(i).weight(); |
---|
| 1604 | } |
---|
| 1605 | } |
---|
| 1606 | } |
---|
| 1607 | |
---|
| 1608 | // Test whether this fuzzification is the best one for this antecedent. |
---|
| 1609 | // Keep it if this is the case. |
---|
| 1610 | double purity = (Utils.sum(accuArray)) / (Utils.sum(coverArray)); |
---|
| 1611 | if (purity >= maxPurityForThisAntecedent){ |
---|
| 1612 | maxPurityForThisAntecedent =purity; |
---|
| 1613 | bestFoundSupportBound = currentAntd.supportBound; |
---|
| 1614 | } |
---|
| 1615 | lastAccu = Utils.sum(accuArray); |
---|
| 1616 | lastCover = Utils.sum(coverArray); |
---|
| 1617 | } |
---|
| 1618 | } |
---|
| 1619 | |
---|
| 1620 | } |
---|
| 1621 | |
---|
| 1622 | // Test whether the best fuzzification for this antecedent is the best one of all |
---|
| 1623 | // antecedents considered so far. |
---|
| 1624 | // Keep it if this is the case. |
---|
| 1625 | if (maxPurityForThisAntecedent>maxPurityOfAllAntecedents){ |
---|
| 1626 | bestAntecedentsIndex = j; |
---|
| 1627 | bestSupportBoundForAllAntecedents = bestFoundSupportBound; |
---|
| 1628 | maxPurityOfAllAntecedents = maxPurityForThisAntecedent; |
---|
| 1629 | } |
---|
| 1630 | }else{ |
---|
| 1631 | // Deal with a nominal antecedent. |
---|
| 1632 | // Since there is no fuzzification it is already finished. |
---|
| 1633 | finishedAntecedents[j] = true; |
---|
| 1634 | numFinishedAntecedents++; |
---|
| 1635 | continue; |
---|
| 1636 | } |
---|
| 1637 | } |
---|
| 1638 | |
---|
| 1639 | // Make the fuzzification step for the current antecedent real. |
---|
| 1640 | if (maxPurity <= maxPurityOfAllAntecedents){ |
---|
| 1641 | if (Double.isNaN(bestSupportBoundForAllAntecedents)){ |
---|
| 1642 | ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).supportBound = ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).splitPoint; |
---|
| 1643 | }else{ |
---|
| 1644 | ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).supportBound = bestSupportBoundForAllAntecedents; |
---|
| 1645 | ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).fuzzyYet = true; |
---|
| 1646 | } |
---|
| 1647 | maxPurity = maxPurityOfAllAntecedents; |
---|
| 1648 | } |
---|
| 1649 | finishedAntecedents[bestAntecedentsIndex] = true; |
---|
| 1650 | numFinishedAntecedents++; |
---|
| 1651 | } |
---|
| 1652 | |
---|
| 1653 | } |
---|
| 1654 | |
---|
| 1655 | /** |
---|
| 1656 | * Calculation of the rule weights / confidences for all beginning rule stumps. |
---|
| 1657 | * @param data The training data |
---|
| 1658 | */ |
---|
| 1659 | public void calculateConfidences(Instances data) { |
---|
| 1660 | RipperRule tempRule = (RipperRule) this.copy(); |
---|
| 1661 | |
---|
| 1662 | while(tempRule.hasAntds()){ |
---|
| 1663 | double acc = 0; |
---|
| 1664 | double cov = 0; |
---|
| 1665 | for (int i = 0; i < data.numInstances(); i++){ |
---|
| 1666 | double membershipValue = tempRule.coverageDegree(data.instance(i)) * data.instance(i).weight(); |
---|
| 1667 | cov += membershipValue; |
---|
| 1668 | if (m_Consequent == data.instance(i).classValue()){ |
---|
| 1669 | acc += membershipValue; |
---|
| 1670 | } |
---|
| 1671 | } |
---|
| 1672 | |
---|
| 1673 | // m-estimate |
---|
| 1674 | double m = 2.0; |
---|
| 1675 | ((Antd)this.m_Antds.elementAt((int)tempRule.size()-1)).m_confidence = |
---|
| 1676 | (acc+m*(aprioriDistribution[(int)m_Consequent]/ |
---|
| 1677 | Utils.sum(aprioriDistribution))) / (cov+m); |
---|
| 1678 | tempRule.m_Antds.removeElementAt(tempRule.m_Antds.size()-1); |
---|
| 1679 | } |
---|
| 1680 | } |
---|
| 1681 | |
---|
| 1682 | |
---|
| 1683 | /** |
---|
| 1684 | * Get the rule confidence. |
---|
| 1685 | * @return rule confidence / weight |
---|
| 1686 | */ |
---|
| 1687 | public double getConfidence(){ |
---|
| 1688 | if (!hasAntds()) |
---|
| 1689 | return Double.NaN; |
---|
| 1690 | return ((Antd)m_Antds.lastElement()).m_confidence; |
---|
| 1691 | } |
---|
| 1692 | |
---|
| 1693 | /** |
---|
| 1694 | * |
---|
| 1695 | */ |
---|
| 1696 | public String getRevision() { |
---|
| 1697 | return "1.0"; |
---|
| 1698 | } |
---|
| 1699 | |
---|
| 1700 | } |
---|
| 1701 | |
---|
| 1702 | /** |
---|
| 1703 | * Returns default capabilities of the classifier. |
---|
| 1704 | * |
---|
| 1705 | * @return the capabilities of this classifier |
---|
| 1706 | */ |
---|
| 1707 | public Capabilities getCapabilities() { |
---|
| 1708 | Capabilities result = super.getCapabilities(); |
---|
| 1709 | result.disableAll(); |
---|
| 1710 | |
---|
| 1711 | // attributes |
---|
| 1712 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
| 1713 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 1714 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
| 1715 | result.enable(Capability.MISSING_VALUES); |
---|
| 1716 | |
---|
| 1717 | // class |
---|
| 1718 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 1719 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 1720 | |
---|
| 1721 | // instances |
---|
| 1722 | result.setMinimumNumberInstances(m_Folds); |
---|
| 1723 | |
---|
| 1724 | return result; |
---|
| 1725 | } |
---|
| 1726 | |
---|
| 1727 | /** |
---|
| 1728 | * Builds the FURIA rule-based model |
---|
| 1729 | * |
---|
| 1730 | * @param instances the training data |
---|
| 1731 | * @throws Exception if classifier can't be built successfully |
---|
| 1732 | */ |
---|
| 1733 | public void buildClassifier(Instances instances) throws Exception { |
---|
| 1734 | // can classifier handle the data? |
---|
| 1735 | getCapabilities().testWithFail(instances); |
---|
| 1736 | |
---|
| 1737 | // remove instances with missing class |
---|
| 1738 | instances = new Instances(instances); |
---|
| 1739 | instances.deleteWithMissingClass(); |
---|
| 1740 | |
---|
| 1741 | // Learn the apriori distribution for later |
---|
| 1742 | aprioriDistribution = new double[instances.classAttribute().numValues()]; |
---|
| 1743 | boolean allWeightsAreOne = true; |
---|
| 1744 | for (int i = 0 ; i < instances.numInstances(); i++){ |
---|
| 1745 | aprioriDistribution[(int)instances.instance(i).classValue()]+=instances.instance(i).weight(); |
---|
| 1746 | if (allWeightsAreOne && instances.instance(i).weight() != 1.0){ |
---|
| 1747 | allWeightsAreOne = false; |
---|
| 1748 | break; |
---|
| 1749 | } |
---|
| 1750 | } |
---|
| 1751 | |
---|
| 1752 | |
---|
| 1753 | m_Random = instances.getRandomNumberGenerator(m_Seed); |
---|
| 1754 | m_Total = RuleStats.numAllConditions(instances); |
---|
| 1755 | if(m_Debug) |
---|
| 1756 | System.err.println("Number of all possible conditions = "+m_Total); |
---|
| 1757 | |
---|
| 1758 | Instances data = new Instances(instances); |
---|
| 1759 | |
---|
| 1760 | m_Class = data.classAttribute(); |
---|
| 1761 | m_Ruleset = new FastVector(); |
---|
| 1762 | m_RulesetStats = new FastVector(); |
---|
| 1763 | m_Distributions = new FastVector(); |
---|
| 1764 | |
---|
| 1765 | |
---|
| 1766 | // Learn a rule set for each single class |
---|
| 1767 | oneClass: |
---|
| 1768 | for(int y=0; y < data.numClasses(); y++){ // For each class |
---|
| 1769 | |
---|
| 1770 | double classIndex = (double)y; |
---|
| 1771 | if(m_Debug){ |
---|
| 1772 | int ci = (int)classIndex; |
---|
| 1773 | System.err.println("\n\nClass "+m_Class.value(ci)+"("+ci+"): " |
---|
| 1774 | + aprioriDistribution[y] + "instances\n"+ |
---|
| 1775 | "=====================================\n"); |
---|
| 1776 | } |
---|
| 1777 | |
---|
| 1778 | if(Utils.eq(aprioriDistribution[y],0.0)) // No data for this class |
---|
| 1779 | continue oneClass; |
---|
| 1780 | |
---|
| 1781 | // The expected FP/err is the proportion of the class |
---|
| 1782 | double expFPRate = (aprioriDistribution[y] / Utils.sum(aprioriDistribution)); |
---|
| 1783 | |
---|
| 1784 | |
---|
| 1785 | double classYWeights = 0, totalWeights = 0; |
---|
| 1786 | for(int j=0; j < data.numInstances(); j++){ |
---|
| 1787 | Instance datum = data.instance(j); |
---|
| 1788 | totalWeights += datum.weight(); |
---|
| 1789 | if((int)datum.classValue() == y){ |
---|
| 1790 | classYWeights += datum.weight(); |
---|
| 1791 | } |
---|
| 1792 | } |
---|
| 1793 | |
---|
| 1794 | // DL of default rule, no theory DL, only data DL |
---|
| 1795 | double defDL; |
---|
| 1796 | if(classYWeights > 0) |
---|
| 1797 | defDL = RuleStats.dataDL(expFPRate, |
---|
| 1798 | 0.0, |
---|
| 1799 | totalWeights, |
---|
| 1800 | 0.0, |
---|
| 1801 | classYWeights); |
---|
| 1802 | else |
---|
| 1803 | continue oneClass; // Subsumed by previous rules |
---|
| 1804 | |
---|
| 1805 | |
---|
| 1806 | |
---|
| 1807 | if(Double.isNaN(defDL) || Double.isInfinite(defDL)) |
---|
| 1808 | throw new Exception("Should never happen: "+ |
---|
| 1809 | "defDL NaN or infinite!"); |
---|
| 1810 | if(m_Debug) |
---|
| 1811 | System.err.println("The default DL = "+defDL); |
---|
| 1812 | |
---|
| 1813 | rulesetForOneClass(expFPRate, data, classIndex, defDL); |
---|
| 1814 | } |
---|
| 1815 | |
---|
| 1816 | // Remove redundant antecedents |
---|
| 1817 | for(int z=0; z < m_Ruleset.size(); z++){ |
---|
| 1818 | RipperRule rule = (RipperRule)m_Ruleset.elementAt(z); |
---|
| 1819 | for(int j = 0; j < rule.m_Antds.size(); j++){ |
---|
| 1820 | Antd outerAntd = (Antd)rule.m_Antds.elementAt(j); |
---|
| 1821 | for (int k = j+1; k < rule.m_Antds.size(); k++){ |
---|
| 1822 | Antd innerAntd = (Antd)rule.m_Antds.elementAt(k); |
---|
| 1823 | if (outerAntd.att.index() == innerAntd.att.index() && outerAntd.value==innerAntd.value){ |
---|
| 1824 | rule.m_Antds.setElementAt(rule.m_Antds.elementAt(k), j); |
---|
| 1825 | rule.m_Antds.removeElementAt(k--); |
---|
| 1826 | } |
---|
| 1827 | } |
---|
| 1828 | } |
---|
| 1829 | } |
---|
| 1830 | |
---|
| 1831 | |
---|
| 1832 | // Fuzzify all rules |
---|
| 1833 | for(int z=0; z < m_RulesetStats.size(); z++){ |
---|
| 1834 | RuleStats oneClass = (RuleStats)m_RulesetStats.elementAt(z); |
---|
| 1835 | for(int xyz=0; xyz < oneClass.getRulesetSize(); xyz++){ |
---|
| 1836 | RipperRule rule = (RipperRule)((FastVector)oneClass.getRuleset()).elementAt(xyz); |
---|
| 1837 | |
---|
| 1838 | // do the fuzzification for all known antecedents |
---|
| 1839 | rule.fuzzify(data, allWeightsAreOne); |
---|
| 1840 | |
---|
| 1841 | double[] classDist = oneClass.getDistributions(xyz); |
---|
| 1842 | // Check for sum=0, because otherwise it does not work |
---|
| 1843 | if (Utils.sum(classDist)>0) Utils.normalize(classDist); |
---|
| 1844 | if(classDist != null) |
---|
| 1845 | m_Distributions.addElement(classDist); |
---|
| 1846 | } |
---|
| 1847 | } |
---|
| 1848 | |
---|
| 1849 | |
---|
| 1850 | // if there was some problem during fuzzification, set the support bound |
---|
| 1851 | // to the trivial fuzzification position |
---|
| 1852 | for(int z=0; z < m_Ruleset.size(); z++){ |
---|
| 1853 | RipperRule rule = (RipperRule)m_Ruleset.elementAt(z); |
---|
| 1854 | for(int j = 0; j < rule.m_Antds.size(); j++){ |
---|
| 1855 | Antd antd = (Antd)rule.m_Antds.elementAt(j); |
---|
| 1856 | if (antd instanceof NumericAntd) { |
---|
| 1857 | NumericAntd numAntd = (NumericAntd) antd; |
---|
| 1858 | |
---|
| 1859 | |
---|
| 1860 | if (!numAntd.fuzzyYet){ |
---|
| 1861 | for (int i = 0; i < data.numInstances(); i++){ |
---|
| 1862 | if ((numAntd.value == 1 && |
---|
| 1863 | numAntd.splitPoint > data.instance(i).value(numAntd.att.index()) && |
---|
| 1864 | (numAntd.supportBound < data.instance(i).value(numAntd.att.index()) || |
---|
| 1865 | !numAntd.fuzzyYet) |
---|
| 1866 | ) |
---|
| 1867 | || |
---|
| 1868 | (numAntd.value == 0 && |
---|
| 1869 | numAntd.splitPoint < data.instance(i).value(numAntd.att.index()) && |
---|
| 1870 | (numAntd.supportBound > data.instance(i).value(numAntd.att.index()) || |
---|
| 1871 | !numAntd.fuzzyYet) |
---|
| 1872 | ) |
---|
| 1873 | ){ |
---|
| 1874 | numAntd.supportBound = data.instance(i).value(numAntd.att.index()); |
---|
| 1875 | numAntd.fuzzyYet = true; |
---|
| 1876 | } |
---|
| 1877 | } |
---|
| 1878 | |
---|
| 1879 | } |
---|
| 1880 | } |
---|
| 1881 | } |
---|
| 1882 | } |
---|
| 1883 | |
---|
| 1884 | //Determine confidences |
---|
| 1885 | for(int z=0; z < m_Ruleset.size(); z++){ |
---|
| 1886 | RipperRule rule = (RipperRule)m_Ruleset.elementAt(z); |
---|
| 1887 | rule.calculateConfidences(data); |
---|
| 1888 | } |
---|
| 1889 | } |
---|
| 1890 | |
---|
| 1891 | /** |
---|
| 1892 | * Classify the test instance with the rule learner and provide |
---|
| 1893 | * the class distributions |
---|
| 1894 | * |
---|
| 1895 | * @param datum the instance to be classified |
---|
| 1896 | * @return the distribution |
---|
| 1897 | * @throws Exception |
---|
| 1898 | */ |
---|
| 1899 | |
---|
| 1900 | public double[] distributionForInstance(Instance datum) throws Exception{ |
---|
| 1901 | //test for multiple overlap of rules |
---|
| 1902 | double[] rulesCoveringForEachClass = new double[datum.numClasses()]; |
---|
| 1903 | for(int i=0; i < m_Ruleset.size(); i++){ |
---|
| 1904 | RipperRule rule = (RipperRule)m_Ruleset.elementAt(i); |
---|
| 1905 | |
---|
| 1906 | /* In case that one class does not contain any instances (e.g. in UCI-dataset glass), |
---|
| 1907 | * a default rule assigns all instances to the other class. Such a rule may be ignored here. |
---|
| 1908 | */ |
---|
| 1909 | if (!rule.hasAntds()) |
---|
| 1910 | continue; |
---|
| 1911 | |
---|
| 1912 | |
---|
| 1913 | // Calculate the maximum degree of coverage |
---|
| 1914 | if(rule.covers(datum)){ |
---|
| 1915 | rulesCoveringForEachClass[(int)rule.m_Consequent] += rule.coverageDegree(datum) * rule.getConfidence(); |
---|
| 1916 | } |
---|
| 1917 | |
---|
| 1918 | } |
---|
| 1919 | |
---|
| 1920 | |
---|
| 1921 | // If no rule covered the example, then maybe start the rule stretching |
---|
| 1922 | if (Utils.sum(rulesCoveringForEachClass)==0){ |
---|
| 1923 | |
---|
| 1924 | // If rule stretching is not allowed, |
---|
| 1925 | // return either the apriori prediction |
---|
| 1926 | if (m_uncovAction == UNCOVACTION_APRIORI){ |
---|
| 1927 | rulesCoveringForEachClass = aprioriDistribution; |
---|
| 1928 | if (Utils.sum(rulesCoveringForEachClass)>0) |
---|
| 1929 | Utils.normalize(rulesCoveringForEachClass); |
---|
| 1930 | return rulesCoveringForEachClass; |
---|
| 1931 | } |
---|
| 1932 | // or abstain from that decision at all. |
---|
| 1933 | if (m_uncovAction == UNCOVACTION_REJECT) |
---|
| 1934 | return rulesCoveringForEachClass; |
---|
| 1935 | |
---|
| 1936 | // Copy the ruleset as backup |
---|
| 1937 | FastVector origRuleset = (FastVector) m_Ruleset.copyElements(); |
---|
| 1938 | |
---|
| 1939 | // Find for every rule the first antecedent that does not |
---|
| 1940 | // cover the given instance. |
---|
| 1941 | rulesCoveringForEachClass = new double[rulesCoveringForEachClass.length]; |
---|
| 1942 | for(int i=0; i < m_Ruleset.size(); i++){ |
---|
| 1943 | RipperRule rule = (RipperRule)m_Ruleset.elementAt(i); |
---|
| 1944 | double numAntdsBefore = rule.m_Antds.size(); |
---|
| 1945 | |
---|
| 1946 | int firstAntdToDelete = Integer.MAX_VALUE; |
---|
| 1947 | for (int j = 0; j < rule.m_Antds.size(); j++){ |
---|
| 1948 | if (((Antd)rule.m_Antds.elementAt(j)).covers(datum)==0){ |
---|
| 1949 | firstAntdToDelete = j; |
---|
| 1950 | break; |
---|
| 1951 | } |
---|
| 1952 | } |
---|
| 1953 | |
---|
| 1954 | // Prune antecedent such that it covers the instance |
---|
| 1955 | for (int j = firstAntdToDelete; j < rule.m_Antds.size(); j++){ |
---|
| 1956 | rule.m_Antds.removeElementAt(j--); |
---|
| 1957 | } |
---|
| 1958 | double numAntdsAfter = rule.m_Antds.size(); |
---|
| 1959 | |
---|
| 1960 | // Empty rules shall not vote here |
---|
| 1961 | if (!rule.hasAntds()) |
---|
| 1962 | continue; |
---|
| 1963 | |
---|
| 1964 | // Calculate the maximum degree of coverage and weight the rule |
---|
| 1965 | // by its confidence and the fraction of antecedents left after |
---|
| 1966 | // rule stretching |
---|
| 1967 | double secondWeight = (numAntdsAfter+1)/(numAntdsBefore+2) ; |
---|
| 1968 | if (rule.getConfidence() *secondWeight*rule.coverageDegree(datum) >= rulesCoveringForEachClass[(int)rule.getConsequent()]){ |
---|
| 1969 | rulesCoveringForEachClass[(int)rule.getConsequent()] = rule.getConfidence()*secondWeight*rule.coverageDegree(datum); |
---|
| 1970 | } |
---|
| 1971 | } |
---|
| 1972 | |
---|
| 1973 | // Reestablish original ruleset |
---|
| 1974 | m_Ruleset = origRuleset; |
---|
| 1975 | } |
---|
| 1976 | |
---|
| 1977 | //check for conflicts |
---|
| 1978 | double[] maxClasses = new double[rulesCoveringForEachClass.length]; |
---|
| 1979 | for (int i = 0; i < rulesCoveringForEachClass.length; i++){ |
---|
| 1980 | if (rulesCoveringForEachClass[Utils.maxIndex(rulesCoveringForEachClass)] == |
---|
| 1981 | rulesCoveringForEachClass[i] && rulesCoveringForEachClass[i]>0) |
---|
| 1982 | maxClasses[i] = 1; |
---|
| 1983 | } |
---|
| 1984 | |
---|
| 1985 | //If there is a conflict, resolve it using the apriori distribution |
---|
| 1986 | if (Utils.sum(maxClasses)>0){ |
---|
| 1987 | for (int i = 0; i < maxClasses.length; i++){ |
---|
| 1988 | if (maxClasses[i] > 0 && aprioriDistribution[i] != rulesCoveringForEachClass[Utils.maxIndex(rulesCoveringForEachClass)]) |
---|
| 1989 | rulesCoveringForEachClass[i] -= 0.00001; |
---|
| 1990 | } |
---|
| 1991 | } |
---|
| 1992 | |
---|
| 1993 | // If no stretched rule was able to cover the instance, |
---|
| 1994 | // then fall back to the apriori distribution |
---|
| 1995 | if (Utils.sum(rulesCoveringForEachClass)==0){ |
---|
| 1996 | rulesCoveringForEachClass = aprioriDistribution; |
---|
| 1997 | } |
---|
| 1998 | |
---|
| 1999 | |
---|
| 2000 | if (Utils.sum(rulesCoveringForEachClass)>0) |
---|
| 2001 | Utils.normalize(rulesCoveringForEachClass); |
---|
| 2002 | |
---|
| 2003 | return rulesCoveringForEachClass; |
---|
| 2004 | |
---|
| 2005 | } |
---|
| 2006 | |
---|
| 2007 | |
---|
| 2008 | /** Build a ruleset for the given class according to the given data |
---|
| 2009 | * |
---|
| 2010 | * @param expFPRate the expected FP/(FP+FN) used in DL calculation |
---|
| 2011 | * @param data the given data |
---|
| 2012 | * @param classIndex the given class index |
---|
| 2013 | * @param defDL the default DL in the data |
---|
| 2014 | * @throws Exception if the ruleset can be built properly |
---|
| 2015 | */ |
---|
| 2016 | protected Instances rulesetForOneClass(double expFPRate, |
---|
| 2017 | Instances data, |
---|
| 2018 | double classIndex, |
---|
| 2019 | double defDL) |
---|
| 2020 | throws Exception { |
---|
| 2021 | |
---|
| 2022 | Instances newData = data, growData, pruneData; |
---|
| 2023 | boolean stop = false; |
---|
| 2024 | FastVector ruleset = new FastVector(); |
---|
| 2025 | |
---|
| 2026 | double dl = defDL, minDL = defDL; |
---|
| 2027 | RuleStats rstats = null; |
---|
| 2028 | double[] rst; |
---|
| 2029 | |
---|
| 2030 | // Check whether data have positive examples |
---|
| 2031 | boolean defHasPositive = true; // No longer used |
---|
| 2032 | boolean hasPositive = defHasPositive; |
---|
| 2033 | |
---|
| 2034 | /********************** Building stage ***********************/ |
---|
| 2035 | if(m_Debug) |
---|
| 2036 | System.err.println("\n*** Building stage ***"); |
---|
| 2037 | |
---|
| 2038 | |
---|
| 2039 | while((!stop) && hasPositive){ // Generate new rules until |
---|
| 2040 | // stopping criteria met |
---|
| 2041 | RipperRule oneRule; |
---|
| 2042 | |
---|
| 2043 | oneRule = new RipperRule(); |
---|
| 2044 | oneRule.setConsequent(classIndex); // Must set first |
---|
| 2045 | if(m_Debug) |
---|
| 2046 | System.err.println("\nNo pruning: growing a rule ..."); |
---|
| 2047 | oneRule.grow(newData); // Build the rule |
---|
| 2048 | if(m_Debug) |
---|
| 2049 | System.err.println("No pruning: one rule found:\n"+ |
---|
| 2050 | oneRule.toString(m_Class)); |
---|
| 2051 | |
---|
| 2052 | |
---|
| 2053 | // Compute the DL of this ruleset |
---|
| 2054 | if(rstats == null){ // First rule |
---|
| 2055 | rstats = new RuleStats(); |
---|
| 2056 | rstats.setNumAllConds(m_Total); |
---|
| 2057 | rstats.setData(newData); |
---|
| 2058 | } |
---|
| 2059 | |
---|
| 2060 | rstats.addAndUpdate(oneRule); |
---|
| 2061 | int last = rstats.getRuleset().size()-1; // Index of last rule |
---|
| 2062 | dl += rstats.relativeDL(last, expFPRate, m_CheckErr); |
---|
| 2063 | |
---|
| 2064 | if(Double.isNaN(dl) || Double.isInfinite(dl)) |
---|
| 2065 | throw new Exception("Should never happen: dl in "+ |
---|
| 2066 | "building stage NaN or infinite!"); |
---|
| 2067 | if(m_Debug) |
---|
| 2068 | System.err.println("Before optimization("+last+ |
---|
| 2069 | "): the dl = "+dl+" | best: "+minDL); |
---|
| 2070 | |
---|
| 2071 | if(dl < minDL) |
---|
| 2072 | minDL = dl; // The best dl so far |
---|
| 2073 | |
---|
| 2074 | rst = rstats.getSimpleStats(last); |
---|
| 2075 | if(m_Debug) |
---|
| 2076 | System.err.println("The rule covers: "+rst[0]+ |
---|
| 2077 | " | pos = " + rst[2] + |
---|
| 2078 | " | neg = " + rst[4]+ |
---|
| 2079 | "\nThe rule doesn't cover: "+rst[1]+ |
---|
| 2080 | " | pos = " + rst[5]); |
---|
| 2081 | |
---|
| 2082 | stop = checkStop(rst, minDL, dl); |
---|
| 2083 | |
---|
| 2084 | if(!stop){ |
---|
| 2085 | ruleset.addElement(oneRule); // Accepted |
---|
| 2086 | newData = rstats.getFiltered(last)[1];// Data not covered |
---|
| 2087 | hasPositive = Utils.gr(rst[5], 0.0); // Positives remaining? |
---|
| 2088 | if(m_Debug) |
---|
| 2089 | System.err.println("One rule added: has positive? " |
---|
| 2090 | +hasPositive); |
---|
| 2091 | } |
---|
| 2092 | else{ |
---|
| 2093 | if(m_Debug) |
---|
| 2094 | System.err.println("Quit rule"); |
---|
| 2095 | rstats.removeLast(); // Remove last to be re-used |
---|
| 2096 | } |
---|
| 2097 | }// while !stop |
---|
| 2098 | |
---|
| 2099 | |
---|
| 2100 | /******************** Optimization stage *******************/ |
---|
| 2101 | |
---|
| 2102 | RuleStats finalRulesetStat = null; |
---|
| 2103 | for(int z=0; z < m_Optimizations; z++){ |
---|
| 2104 | if(m_Debug) |
---|
| 2105 | System.err.println("\n*** Optimization: run #" |
---|
| 2106 | +z+" ***"); |
---|
| 2107 | |
---|
| 2108 | newData = data; |
---|
| 2109 | finalRulesetStat = new RuleStats(); |
---|
| 2110 | finalRulesetStat.setData(newData); |
---|
| 2111 | finalRulesetStat.setNumAllConds(m_Total); |
---|
| 2112 | int position=0; |
---|
| 2113 | stop = false; |
---|
| 2114 | boolean isResidual = false; |
---|
| 2115 | hasPositive = defHasPositive; |
---|
| 2116 | dl = minDL = defDL; |
---|
| 2117 | |
---|
| 2118 | oneRule: |
---|
| 2119 | while(!stop && hasPositive){ |
---|
| 2120 | |
---|
| 2121 | isResidual = (position>=ruleset.size()); // Cover residual positive examples |
---|
| 2122 | // Re-do shuffling and stratification |
---|
| 2123 | //newData.randomize(m_Random); |
---|
| 2124 | newData = RuleStats.stratify(newData, m_Folds, m_Random); |
---|
| 2125 | Instances[] part = RuleStats.partition(newData, m_Folds); |
---|
| 2126 | growData=part[0]; |
---|
| 2127 | pruneData=part[1]; |
---|
| 2128 | //growData=newData.trainCV(m_Folds, m_Folds-1); |
---|
| 2129 | //pruneData=newData.testCV(m_Folds, m_Folds-1); |
---|
| 2130 | RipperRule finalRule; |
---|
| 2131 | |
---|
| 2132 | if(m_Debug) |
---|
| 2133 | System.err.println("\nRule #"+position + |
---|
| 2134 | "| isResidual?" + isResidual+ |
---|
| 2135 | "| data size: "+newData.sumOfWeights()); |
---|
| 2136 | |
---|
| 2137 | if(isResidual){ |
---|
| 2138 | RipperRule newRule = new RipperRule(); |
---|
| 2139 | newRule.setConsequent(classIndex); |
---|
| 2140 | if(m_Debug) |
---|
| 2141 | System.err.println("\nGrowing and pruning"+ |
---|
| 2142 | " a new rule ..."); |
---|
| 2143 | newRule.grow(newData); |
---|
| 2144 | finalRule = newRule; |
---|
| 2145 | if(m_Debug) |
---|
| 2146 | System.err.println("\nNew rule found: "+ |
---|
| 2147 | newRule.toString(m_Class)); |
---|
| 2148 | } |
---|
| 2149 | else{ |
---|
| 2150 | RipperRule oldRule = (RipperRule)ruleset.elementAt(position); |
---|
| 2151 | boolean covers = false; |
---|
| 2152 | // Test coverage of the next old rule |
---|
| 2153 | for(int i=0; i<newData.numInstances(); i++) |
---|
| 2154 | if(oldRule.covers(newData.instance(i))){ |
---|
| 2155 | covers = true; |
---|
| 2156 | break; |
---|
| 2157 | } |
---|
| 2158 | |
---|
| 2159 | if(!covers){// Null coverage, no variants can be generated |
---|
| 2160 | finalRulesetStat.addAndUpdate(oldRule); |
---|
| 2161 | position++; |
---|
| 2162 | continue oneRule; |
---|
| 2163 | } |
---|
| 2164 | |
---|
| 2165 | // 2 variants |
---|
| 2166 | if(m_Debug) |
---|
| 2167 | System.err.println("\nGrowing and pruning"+ |
---|
| 2168 | " Replace ..."); |
---|
| 2169 | RipperRule replace = new RipperRule(); |
---|
| 2170 | replace.setConsequent(classIndex); |
---|
| 2171 | replace.grow(growData); |
---|
| 2172 | |
---|
| 2173 | // Remove the pruning data covered by the following |
---|
| 2174 | // rules, then simply compute the error rate of the |
---|
| 2175 | // current rule to prune it. According to Ripper, |
---|
| 2176 | // it's equivalent to computing the error of the |
---|
| 2177 | // whole ruleset -- is it true? |
---|
| 2178 | pruneData = RuleStats.rmCoveredBySuccessives(pruneData,ruleset, position); |
---|
| 2179 | replace.prune(pruneData, true); |
---|
| 2180 | |
---|
| 2181 | if(m_Debug) |
---|
| 2182 | System.err.println("\nGrowing and pruning"+ |
---|
| 2183 | " Revision ..."); |
---|
| 2184 | RipperRule revision = (RipperRule)oldRule.copy(); |
---|
| 2185 | |
---|
| 2186 | // For revision, first rm the data covered by the old rule |
---|
| 2187 | Instances newGrowData = new Instances(growData, 0); |
---|
| 2188 | for(int b=0; b<growData.numInstances(); b++){ |
---|
| 2189 | Instance inst = growData.instance(b); |
---|
| 2190 | if(revision.covers(inst)) |
---|
| 2191 | newGrowData.add(inst); |
---|
| 2192 | } |
---|
| 2193 | revision.grow(newGrowData); |
---|
| 2194 | revision.prune(pruneData, true); |
---|
| 2195 | |
---|
| 2196 | double[][] prevRuleStats = new double[position][6]; |
---|
| 2197 | for(int c=0; c < position; c++) |
---|
| 2198 | prevRuleStats[c] = finalRulesetStat.getSimpleStats(c); |
---|
| 2199 | |
---|
| 2200 | // Now compare the relative DL of variants |
---|
| 2201 | FastVector tempRules = (FastVector)ruleset.copyElements(); |
---|
| 2202 | tempRules.setElementAt(replace, position); |
---|
| 2203 | |
---|
| 2204 | RuleStats repStat = new RuleStats(data, tempRules); |
---|
| 2205 | repStat.setNumAllConds(m_Total); |
---|
| 2206 | repStat.countData(position, newData, prevRuleStats); |
---|
| 2207 | //repStat.countData(); |
---|
| 2208 | rst = repStat.getSimpleStats(position); |
---|
| 2209 | if(m_Debug) |
---|
| 2210 | System.err.println("Replace rule covers: "+rst[0]+ |
---|
| 2211 | " | pos = " + rst[2] + |
---|
| 2212 | " | neg = " + rst[4]+ |
---|
| 2213 | "\nThe rule doesn't cover: "+rst[1]+ |
---|
| 2214 | " | pos = " + rst[5]); |
---|
| 2215 | |
---|
| 2216 | double repDL = repStat.relativeDL(position, expFPRate, |
---|
| 2217 | m_CheckErr); |
---|
| 2218 | |
---|
| 2219 | if(m_Debug) |
---|
| 2220 | System.err.println("\nReplace: "+ |
---|
| 2221 | replace.toString(m_Class) |
---|
| 2222 | +" |dl = "+repDL); |
---|
| 2223 | |
---|
| 2224 | if(Double.isNaN(repDL) || Double.isInfinite(repDL)) |
---|
| 2225 | throw new Exception("Should never happen: repDL"+ |
---|
| 2226 | "in optmz. stage NaN or "+ |
---|
| 2227 | "infinite!"); |
---|
| 2228 | |
---|
| 2229 | tempRules.setElementAt(revision, position); |
---|
| 2230 | RuleStats revStat = new RuleStats(data, tempRules); |
---|
| 2231 | revStat.setNumAllConds(m_Total); |
---|
| 2232 | revStat.countData(position, newData, prevRuleStats); |
---|
| 2233 | //revStat.countData(); |
---|
| 2234 | double revDL = revStat.relativeDL(position, expFPRate, |
---|
| 2235 | m_CheckErr); |
---|
| 2236 | |
---|
| 2237 | if(m_Debug) |
---|
| 2238 | System.err.println("Revision: " |
---|
| 2239 | + revision.toString(m_Class) |
---|
| 2240 | +" |dl = "+revDL); |
---|
| 2241 | |
---|
| 2242 | if(Double.isNaN(revDL) || Double.isInfinite(revDL)) |
---|
| 2243 | throw new Exception("Should never happen: revDL"+ |
---|
| 2244 | "in optmz. stage NaN or "+ |
---|
| 2245 | "infinite!"); |
---|
| 2246 | |
---|
| 2247 | rstats = new RuleStats(data, ruleset); |
---|
| 2248 | rstats.setNumAllConds(m_Total); |
---|
| 2249 | rstats.countData(position, newData, prevRuleStats); |
---|
| 2250 | //rstats.countData(); |
---|
| 2251 | double oldDL = rstats.relativeDL(position, expFPRate, |
---|
| 2252 | m_CheckErr); |
---|
| 2253 | |
---|
| 2254 | if(Double.isNaN(oldDL) || Double.isInfinite(oldDL)) |
---|
| 2255 | throw new Exception("Should never happen: oldDL"+ |
---|
| 2256 | "in optmz. stage NaN or "+ |
---|
| 2257 | "infinite!"); |
---|
| 2258 | if(m_Debug) |
---|
| 2259 | System.err.println("Old rule: "+ |
---|
| 2260 | oldRule.toString(m_Class) |
---|
| 2261 | +" |dl = "+oldDL); |
---|
| 2262 | |
---|
| 2263 | if(m_Debug) |
---|
| 2264 | System.err.println("\nrepDL: "+repDL+ |
---|
| 2265 | "\nrevDL: "+revDL+ |
---|
| 2266 | "\noldDL: "+oldDL); |
---|
| 2267 | |
---|
| 2268 | if((oldDL <= revDL) && (oldDL <= repDL)) |
---|
| 2269 | finalRule = oldRule; // Old the best |
---|
| 2270 | else if(revDL <= repDL) |
---|
| 2271 | finalRule = revision; // Revision the best |
---|
| 2272 | else |
---|
| 2273 | finalRule = replace; // Replace the best |
---|
| 2274 | } |
---|
| 2275 | |
---|
| 2276 | finalRulesetStat.addAndUpdate(finalRule); |
---|
| 2277 | rst = finalRulesetStat.getSimpleStats(position); |
---|
| 2278 | |
---|
| 2279 | if(isResidual){ |
---|
| 2280 | dl += finalRulesetStat.relativeDL(position, |
---|
| 2281 | expFPRate, |
---|
| 2282 | m_CheckErr); |
---|
| 2283 | |
---|
| 2284 | if(m_Debug) |
---|
| 2285 | System.err.println("After optimization: the dl" |
---|
| 2286 | +"="+dl+" | best: "+minDL); |
---|
| 2287 | |
---|
| 2288 | if(dl < minDL) |
---|
| 2289 | minDL = dl; // The best dl so far |
---|
| 2290 | |
---|
| 2291 | stop = checkStop(rst, minDL, dl); |
---|
| 2292 | if(!stop) |
---|
| 2293 | ruleset.addElement(finalRule); // Accepted |
---|
| 2294 | else{ |
---|
| 2295 | finalRulesetStat.removeLast(); // Remove last to be re-used |
---|
| 2296 | position--; |
---|
| 2297 | } |
---|
| 2298 | } |
---|
| 2299 | else |
---|
| 2300 | ruleset.setElementAt(finalRule, position); // Accepted |
---|
| 2301 | |
---|
| 2302 | if(m_Debug){ |
---|
| 2303 | System.err.println("The rule covers: "+rst[0]+ |
---|
| 2304 | " | pos = " + rst[2] + |
---|
| 2305 | " | neg = " + rst[4]+ |
---|
| 2306 | "\nThe rule doesn't cover: "+rst[1]+ |
---|
| 2307 | " | pos = " + rst[5]); |
---|
| 2308 | System.err.println("\nRuleset so far: "); |
---|
| 2309 | for(int x=0; x<ruleset.size(); x++) |
---|
| 2310 | System.err.println(x+": "+((RipperRule)ruleset.elementAt(x)).toString(m_Class)); |
---|
| 2311 | System.err.println(); |
---|
| 2312 | } |
---|
| 2313 | |
---|
| 2314 | //Data not covered |
---|
| 2315 | if(finalRulesetStat.getRulesetSize() > 0)// If any rules |
---|
| 2316 | newData = finalRulesetStat.getFiltered(position)[1]; |
---|
| 2317 | hasPositive = Utils.gr(rst[5], 0.0); //Positives remaining? |
---|
| 2318 | position++; |
---|
| 2319 | } // while !stop && hasPositive |
---|
| 2320 | |
---|
| 2321 | if(ruleset.size() > (position+1)){ // Hasn't gone through yet |
---|
| 2322 | for(int k=position+1; k<ruleset.size(); k++) |
---|
| 2323 | finalRulesetStat.addAndUpdate((Rule)ruleset.elementAt(k)); |
---|
| 2324 | } |
---|
| 2325 | if(m_Debug) |
---|
| 2326 | System.err.println("\nDeleting rules to decrease"+ |
---|
| 2327 | " DL of the whole ruleset ..."); |
---|
| 2328 | finalRulesetStat.reduceDL(expFPRate, m_CheckErr); |
---|
| 2329 | |
---|
| 2330 | if(m_Debug){ |
---|
| 2331 | int del = ruleset.size() - |
---|
| 2332 | finalRulesetStat.getRulesetSize(); |
---|
| 2333 | System.err.println(del+" rules are deleted"+ |
---|
| 2334 | " after DL reduction procedure"); |
---|
| 2335 | } |
---|
| 2336 | ruleset = finalRulesetStat.getRuleset(); |
---|
| 2337 | rstats = finalRulesetStat; |
---|
| 2338 | |
---|
| 2339 | } // For each run of optimization |
---|
| 2340 | |
---|
| 2341 | // Concatenate the ruleset for this class to the whole ruleset |
---|
| 2342 | if(m_Debug){ |
---|
| 2343 | System.err.println("\nFinal ruleset: "); |
---|
| 2344 | for(int x=0; x<ruleset.size(); x++) |
---|
| 2345 | System.err.println(x+": "+((RipperRule)ruleset.elementAt(x)).toString(m_Class)); |
---|
| 2346 | System.err.println(); |
---|
| 2347 | } |
---|
| 2348 | |
---|
| 2349 | |
---|
| 2350 | m_Ruleset.appendElements(ruleset); |
---|
| 2351 | m_RulesetStats.addElement(rstats); |
---|
| 2352 | |
---|
| 2353 | return null; |
---|
| 2354 | } |
---|
| 2355 | |
---|
| 2356 | /** |
---|
| 2357 | * Check whether the stopping criterion meets |
---|
| 2358 | * |
---|
| 2359 | * @param rst the statistic of the ruleset |
---|
| 2360 | * @param minDL the min description length so far |
---|
| 2361 | * @param dl the current description length of the ruleset |
---|
| 2362 | * @return true if stop criterion meets, false otherwise |
---|
| 2363 | */ |
---|
| 2364 | private boolean checkStop(double[] rst, double minDL, double dl){ |
---|
| 2365 | |
---|
| 2366 | |
---|
| 2367 | if(dl > minDL+MAX_DL_SURPLUS){ |
---|
| 2368 | if(m_Debug) |
---|
| 2369 | System.err.println("DL too large: "+dl+" | "+minDL); |
---|
| 2370 | return true; |
---|
| 2371 | } |
---|
| 2372 | else |
---|
| 2373 | if(!Utils.gr(rst[2], 0.0)){// Covered positives |
---|
| 2374 | if(m_Debug) |
---|
| 2375 | System.err.println("Too few positives."); |
---|
| 2376 | return true; |
---|
| 2377 | } |
---|
| 2378 | else if((rst[4]/rst[0]) >= 0.5){// Err rate |
---|
| 2379 | if(m_CheckErr){ |
---|
| 2380 | if(m_Debug) |
---|
| 2381 | System.err.println("Error too large: "+ |
---|
| 2382 | rst[4] + "/" + rst[0]); |
---|
| 2383 | return true; |
---|
| 2384 | } |
---|
| 2385 | else |
---|
| 2386 | return false; |
---|
| 2387 | } |
---|
| 2388 | else{// Not stops |
---|
| 2389 | if(m_Debug) |
---|
| 2390 | System.err.println("Continue."); |
---|
| 2391 | return false; |
---|
| 2392 | } |
---|
| 2393 | } |
---|
| 2394 | |
---|
| 2395 | /** |
---|
| 2396 | * Prints the all the rules of the rule learner. |
---|
| 2397 | * |
---|
| 2398 | * @return a textual description of the classifier |
---|
| 2399 | */ |
---|
| 2400 | public String toString() { |
---|
| 2401 | if (m_Ruleset == null) |
---|
| 2402 | return "FURIA: No model built yet."; |
---|
| 2403 | |
---|
| 2404 | StringBuffer sb = new StringBuffer("FURIA rules:\n"+ |
---|
| 2405 | "===========\n\n"); |
---|
| 2406 | for(int j=0; j<m_RulesetStats.size(); j++){ |
---|
| 2407 | RuleStats rs = (RuleStats)m_RulesetStats.elementAt(j); |
---|
| 2408 | FastVector rules = rs.getRuleset(); |
---|
| 2409 | for(int k=0; k<rules.size(); k++){ |
---|
| 2410 | sb.append(((RipperRule)rules.elementAt(k)).toString(m_Class) |
---|
| 2411 | + " (CF = " + Math.round(100.0*((RipperRule)rules.elementAt(k)).getConfidence())/100.0 +")\n"); |
---|
| 2412 | } |
---|
| 2413 | } |
---|
| 2414 | if(m_Debug){ |
---|
| 2415 | System.err.println("Inside m_Ruleset"); |
---|
| 2416 | for(int i=0; i<m_Ruleset.size(); i++) |
---|
| 2417 | System.err.println(((RipperRule)m_Ruleset.elementAt(i)).toString(m_Class)); |
---|
| 2418 | } |
---|
| 2419 | sb.append("\nNumber of Rules : " |
---|
| 2420 | + m_Ruleset.size() + "\n"); |
---|
| 2421 | |
---|
| 2422 | |
---|
| 2423 | |
---|
| 2424 | |
---|
| 2425 | return sb.toString(); |
---|
| 2426 | } |
---|
| 2427 | |
---|
| 2428 | /** |
---|
| 2429 | * Main method. |
---|
| 2430 | * |
---|
| 2431 | * @param args the options for the classifier |
---|
| 2432 | * @throws Exception |
---|
| 2433 | */ |
---|
| 2434 | public static void main(String[] args) throws Exception { |
---|
| 2435 | runClassifier(new FURIA(), args); |
---|
| 2436 | } |
---|
| 2437 | |
---|
| 2438 | /** |
---|
| 2439 | * |
---|
| 2440 | */ |
---|
| 2441 | public String getRevision() { |
---|
| 2442 | return "$Revision: 5964 $"; |
---|
| 2443 | } |
---|
| 2444 | } |
---|