/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * FURIA.java * Copyright (C) 2008,2009 Jens Christian Huehn * * (based upon) JRip.java * Copyright (C) 2001 Xin Xu, Eibe Frank */ package weka.classifiers.rules; import java.io.Serializable; import java.util.Enumeration; import java.util.Random; import java.util.Vector; import weka.classifiers.AbstractClassifier; import weka.core.AdditionalMeasureProducer; import weka.core.Attribute; import weka.core.Capabilities; import weka.core.Copyable; import weka.core.FastVector; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.SelectedTag; import weka.core.Tag; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; /** * FURIA: Fuzzy Unordered Rule Induction Algorithm
*
* Details please see:
*
* Jens Christian Huehn, Eyke Huellermeier (2009). FURIA: An Algorithm for Unordered Fuzzy Rule Induction. Data Mining and Knowledge Discovery..
*
*

* * BibTeX: *

 * @article{Huehn2009,
 *    author = {Jens Christian Huehn and Eyke Huellermeier},
 *    journal = {Data Mining and Knowledge Discovery},
 *    title = {FURIA: An Algorithm for Unordered Fuzzy Rule Induction},
 *    year = {2009}
 * }
 * 
*

* * Valid options are:

* *

 -F <number of folds>
 *  Set number of folds for REP
 *  One fold is used as pruning set.
 *  (default 3)
* *
 -N <min. weights>
 *  Set the minimal weights of instances
 *  within a split.
 *  (default 2.0)
* *
 -O <number of runs>
 *  Set the number of runs of
 *  optimizations. (Default: 2)
* *
 -D
 *  Set whether turn on the
 *  debug mode (Default: false)
* *
 -S <seed>
 *  The seed of randomization
 *  (Default: 1)
* *
 -E
 *  Whether NOT check the error rate>=0.5
 *  in stopping criteria  (default: check)
* *
 -s
 *  The action performed for uncovered instances.
 *  (default: use stretching)
* *
 -p
 *  The T-norm used as fuzzy AND-operator.
 *  (default: Product T-norm)
* * * @author Jens Christian Hühn (huehn@gmx.net) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 5964 $ */ public class FURIA extends AbstractClassifier implements OptionHandler, AdditionalMeasureProducer, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -6589312996832147161L; /** The limit of description length surplus in ruleset generation */ private static double MAX_DL_SURPLUS = 64.0; /** The class attribute of the data*/ private Attribute m_Class; /** The ruleset */ private FastVector m_Ruleset; /** The predicted class distribution */ private FastVector m_Distributions; /** Runs of optimizations */ private int m_Optimizations = 2; /** Random object used in this class */ private Random m_Random = null; /** # of all the possible conditions in a rule */ private double m_Total = 0; /** The seed to perform randomization */ private long m_Seed = 1; /** The number of folds to split data into Grow and Prune for IREP */ private int m_Folds = 3; /** The minimal number of instance weights within a split*/ private double m_MinNo = 2.0; /** Whether in a debug mode */ private boolean m_Debug = false; /** Whether check the error rate >= 0.5 in stopping criteria */ private boolean m_CheckErr = true; /** The class distribution of the training data*/ private double[] aprioriDistribution; /** The RuleStats for the ruleset of each class value */ private FastVector m_RulesetStats; /** What to do if instance is uncovered */ private int m_uncovAction = UNCOVACTION_STRETCH; /** An uncovered instance is covered using rule stretching. */ private static final int UNCOVACTION_STRETCH = 0; /** An uncovered instance is classified according to the training data class distribution. */ private static final int UNCOVACTION_APRIORI = 1; /** An uncovered instance is not classified at all. */ private static final int UNCOVACTION_REJECT = 2; /** The tags explaining the uncovered action. */ private static final Tag [] TAGS_UNCOVACTION = { new Tag(UNCOVACTION_STRETCH, "Apply rule stretching (standard)"), new Tag(UNCOVACTION_APRIORI, "Vote for the most frequent class"), new Tag(UNCOVACTION_REJECT, "Reject the decision and abstain") }; /** Whether using product T-norm (or else min T-norm) */ private int m_tNorm = TNORM_PROD; /** The Product T-Norm flag. */ private static final int TNORM_PROD = 0; /** The Minimum T-Norm flag. */ private static final int TNORM_MIN = 1; /** The tags describing the T-norms */ private static final Tag [] TAGS_TNORM = { new Tag(TNORM_PROD, "Product T-Norm (standard)"), new Tag(TNORM_MIN, "Minimum T-Norm") }; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "FURIA: Fuzzy Unordered Rule Induction Algorithm\n\n" + "Details please see:\n\n" + getTechnicalInformation().toString() + "\n\n"; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "Jens Christian Huehn and Eyke Huellermeier"); result.setValue(Field.TITLE, "FURIA: An Algorithm for Unordered Fuzzy Rule Induction"); result.setValue(Field.YEAR, "2009"); result.setValue(Field.JOURNAL, "Data Mining and Knowledge Discovery"); return result; } /** * Returns an enumeration describing the available options * Valid options are:

* * -F number
* The number of folds for reduced error pruning. One fold is * used as the pruning set. (Default: 3)

* * -N number
* The minimal weights of instances within a split. * (Default: 2)

* * -O number
* Set the number of runs of optimizations. (Default: 2)

* * -D
* Whether turn on the debug mode * * -S number
* The seed of randomization used in FURIA.(Default: 1)

* * -E
* Whether NOT check the error rate >= 0.5 in stopping criteria. * (default: check)

* * -s
* The action performed for uncovered instances. * (default: use rule stretching)

* * -p
* The T-Norm used as fuzzy AND-operator. * (default: Product T-Norm)

* * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(8); newVector.addElement(new Option("\tSet number of folds for REP\n" + "\tOne fold is used as pruning set.\n" + "\t(default 3)","F", 1, "-F ")); newVector.addElement(new Option("\tSet the minimal weights of instances\n" + "\twithin a split.\n" + "\t(default 2.0)","N", 1, "-N ")); newVector.addElement(new Option("\tSet the number of runs of\n"+ "\toptimizations. (Default: 2)", "O", 1,"-O ")); newVector.addElement(new Option("\tSet whether turn on the\n"+ "\tdebug mode (Default: false)", "D", 0,"-D")); newVector.addElement(new Option("\tThe seed of randomization\n"+ "\t(Default: 1)", "S", 1,"-S ")); newVector.addElement(new Option("\tWhether NOT check the error rate>=0.5\n" +"\tin stopping criteria " +"\t(default: check)", "E", 0, "-E")); newVector.addElement(new Option("\tThe action performed for uncovered instances.\n" +"\t(default: use stretching)", "s", 1, "-s")); newVector.addElement(new Option("\tThe T-norm used as fuzzy AND-operator.\n" +"\t(default: Product T-norm)", "p", 1, "-p")); return newVector.elements(); } /** * Parses a given list of options.

* * Valid options are:

* *

 -F <number of folds>
   *  Set number of folds for REP
   *  One fold is used as pruning set.
   *  (default 3)
* *
 -N <min. weights>
   *  Set the minimal weights of instances
   *  within a split.
   *  (default 2.0)
* *
 -O <number of runs>
   *  Set the number of runs of
   *  optimizations. (Default: 2)
* *
 -D
   *  Set whether turn on the
   *  debug mode (Default: false)
* *
 -S <seed>
   *  The seed of randomization
   *  (Default: 1)
* *
 -E
   *  Whether NOT check the error rate>=0.5
   *  in stopping criteria  (default: check)
* *
 -s
   *  The action performed for uncovered instances.
   *  (default: use stretching)
* *
 -p
   *  The T-norm used as fuzzy AND-operator.
   *  (default: Product T-norm)
* * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String numFoldsString = Utils.getOption('F', options); if (numFoldsString.length() != 0) m_Folds = Integer.parseInt(numFoldsString); else m_Folds = 3; String minNoString = Utils.getOption('N', options); if (minNoString.length() != 0) m_MinNo = Double.parseDouble(minNoString); else m_MinNo = 2.0; String seedString = Utils.getOption('S', options); if (seedString.length() != 0) m_Seed = Long.parseLong(seedString); else m_Seed = 1; String runString = Utils.getOption('O', options); if (runString.length() != 0) m_Optimizations = Integer.parseInt(runString); else m_Optimizations = 2; String tNormString = Utils.getOption('p', options); if (tNormString.length() != 0) m_tNorm = Integer.parseInt(tNormString); else m_tNorm = TNORM_PROD; String uncovActionString = Utils.getOption('s', options); if (uncovActionString.length() != 0) m_uncovAction = Integer.parseInt(uncovActionString); else m_uncovAction = UNCOVACTION_STRETCH; m_Debug = Utils.getFlag('D', options); m_CheckErr = !Utils.getFlag('E', options); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [14]; int current = 0; options[current++] = "-F"; options[current++] = "" + m_Folds; options[current++] = "-N"; options[current++] = "" + m_MinNo; options[current++] = "-O"; options[current++] = "" + m_Optimizations; options[current++] = "-S"; options[current++] = "" + m_Seed; options[current++] = "-p"; options[current++] = "" + m_tNorm; options[current++] = "-s"; options[current++] = "" + m_uncovAction; if(m_Debug) options[current++] = "-D"; if(!m_CheckErr) options[current++] = "-E"; while(current < options.length) options[current++] = ""; return options; } /** * Returns an enumeration of the additional measure names * @return an enumeration of the measure names */ public Enumeration enumerateMeasures() { Vector newVector = new Vector(1); newVector.addElement("measureNumRules"); return newVector.elements(); } /** * Returns the value of the named measure * @param additionalMeasureName the name of the measure to query for its value * @return the value of the named measure * @throws IllegalArgumentException if the named measure is not supported */ public double getMeasure(String additionalMeasureName) { if (additionalMeasureName.compareToIgnoreCase("measureNumRules") == 0) return m_Ruleset.size(); else throw new IllegalArgumentException(additionalMeasureName+" not supported (FURIA)"); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String foldsTipText() { return "Determines the amount of data used for pruning. One fold is used for " + "pruning, the rest for growing the rules."; } /** * Sets the number of folds to use * * @param fold the number of folds */ public void setFolds(int fold) { m_Folds = fold; } /** * Gets the number of folds * * @return the number of folds */ public int getFolds(){ return m_Folds; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String minNoTipText() { return "The minimum total weight of the instances in a rule."; } /** * Sets the minimum total weight of the instances in a rule * * @param m the minimum total weight of the instances in a rule */ public void setMinNo(double m) { m_MinNo = m; } /** * Gets the minimum total weight of the instances in a rule * * @return the minimum total weight of the instances in a rule */ public double getMinNo(){ return m_MinNo; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String seedTipText() { return "The seed used for randomizing the data."; } /** * Sets the seed value to use in randomizing the data * * @param s the new seed value */ public void setSeed(long s) { m_Seed = s; } /** * Gets the current seed value to use in randomizing the data * * @return the seed value */ public long getSeed(){ return m_Seed; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String optimizationsTipText() { return "The number of optimization runs."; } /** * Sets the number of optimization runs * * @param run the number of optimization runs */ public void setOptimizations(int run) { m_Optimizations = run; } /** * Gets the the number of optimization runs * * @return the number of optimization runs */ public int getOptimizations() { return m_Optimizations; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String debugTipText() { return "Whether debug information is output to the console."; } /** * Sets whether debug information is output to the console * * @param d whether debug information is output to the console */ public void setDebug(boolean d) { m_Debug = d; } /** * Gets whether debug information is output to the console * * @return whether debug information is output to the console */ public boolean getDebug(){ return m_Debug; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String checkErrorRateTipText() { return "Whether check for error rate >= 1/2 is included" + " in stopping criterion."; } /** * Sets whether to check for error rate is in stopping criterion * * @param d whether to check for error rate is in stopping criterion */ public void setCheckErrorRate(boolean d) { m_CheckErr = d; } /** * Gets whether to check for error rate is in stopping criterion * * @return true if checking for error rate is in stopping criterion */ public boolean getCheckErrorRate(){ return m_CheckErr; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String uncovActionTipText() { return "Selet the action that is performed for uncovered instances."; } /** * Gets the action that is performed for uncovered instances. * It can be UNCOVACTION_STRETCH, UNCOVACTION_APRIORI or * UNCOVACTION_REJECT. * @return the current TNorm. */ public SelectedTag getUncovAction() { return new SelectedTag(m_uncovAction, TAGS_UNCOVACTION); } /** * Sets the action that is performed for uncovered instances. * It can be UNCOVACTION_STRETCH, UNCOVACTION_APRIORI or * UNCOVACTION_REJECT. * @param newUncovAction the new action. */ public void setUncovAction(SelectedTag newUncovAction) { if (newUncovAction.getTags() == TAGS_UNCOVACTION) { m_uncovAction = newUncovAction.getSelectedTag().getID(); } } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String TNormTipText() { return "Choose the T-Norm that is used as fuzzy AND-operator."; } /** * Gets the TNorm used. Will be either TNORM_PROD or TNORM_MIN. * * @return the current TNorm. */ public SelectedTag getTNorm() { return new SelectedTag(m_tNorm, TAGS_TNORM); } /** * Sets the TNorm used. Will be either TNORM_PROD or TNORM_MIN. * * @param newTNorm the new TNorm. */ public void setTNorm(SelectedTag newTNorm) { if (newTNorm.getTags() == TAGS_TNORM) { m_tNorm = newTNorm.getSelectedTag().getID(); } } /** * Get the ruleset generated by FURIA * * @return the ruleset */ public FastVector getRuleset(){ return m_Ruleset; } /** * Get the statistics of the ruleset in the given position * * @param pos the position of the stats, assuming correct * @return the statistics of the ruleset in the given position */ public RuleStats getRuleStats(int pos) { return (RuleStats)m_RulesetStats.elementAt(pos); } /** * The single antecedent in the rule, which is composed of an attribute and * the corresponding value. There are two inherited classes, namely NumericAntd * and NominalAntd in which the attributes are numeric and nominal respectively. */ protected abstract class Antd implements WeightedInstancesHandler, Copyable, Serializable { /** The attribute of the antecedent */ public Attribute att; /** The attribute value of the antecedent. For numeric attribute, value is either 0(1st bag) or 1(2nd bag) */ public double value; /** The maximum infoGain achieved by this antecedent test * in the growing data */ protected double maxInfoGain; /** The accurate rate of this antecedent test on the growing data */ protected double accuRate; /** The coverage of this antecedent in the growing data */ protected double cover; /** The accurate data for this antecedent in the growing data */ protected double accu; /** Confidence / weight of this rule for the rule stretching procedure that * is returned when this is the last antecedent of the rule. */ double weightOfTheRuleWhenItIsPrunedAfterThisAntecedent = 0; /** Confidence / weight of this antecedent. */ public double m_confidence = 0.0; /** * Constructor */ public Antd(Attribute a){ att=a; value=Double.NaN; maxInfoGain = 0; accuRate = Double.NaN; cover = Double.NaN; accu = Double.NaN; } /* The abstract members for inheritance */ public abstract Instances[] splitData(Instances data, double defAcRt, double cla); public abstract double covers(Instance inst); public abstract String toString(); /** * Implements Copyable * * @return a copy of this object */ public abstract Object copy(); /* Get functions of this antecedent */ public Attribute getAttr(){ return att; } public double getAttrValue(){ return value; } public double getMaxInfoGain(){ return maxInfoGain; } public double getAccuRate(){ return accuRate; } public double getAccu(){ return accu; } public double getCover(){ return cover; } } /** * The antecedent with numeric attribute */ public class NumericAntd extends Antd { /** for serialization */ static final long serialVersionUID = 5699457269983735442L; /** The split point for this numeric antecedent */ public double splitPoint; /** The edge point for the fuzzy set of this numeric antecedent */ public double supportBound; /** A flag determining whether this antecedent was successfully fuzzified yet*/ public boolean fuzzyYet = false; /** * Constructor */ public NumericAntd(Attribute a){ super(a); splitPoint = Double.NaN; supportBound = Double.NaN; } /** * Get split point of this numeric antecedent * * @return the split point of this numeric antecedent */ public double getSplitPoint(){ return splitPoint; } /** * Implements Copyable * * @return a copy of this object */ public Object copy(){ NumericAntd na = new NumericAntd(getAttr()); na.m_confidence = m_confidence; na.value = this.value; na.splitPoint = this.splitPoint; na.supportBound = this.supportBound; na.fuzzyYet = this.fuzzyYet; return na; } /** * Implements the splitData function. * This procedure is to split the data into two bags according * to the information gain of the numeric attribute value * The maximum infoGain is also calculated. * * @param insts the data to be split * @param defAcRt the default accuracy rate for data * @param cl the class label to be predicted * @return the array of data after split */ public Instances[] splitData(Instances insts, double defAcRt, double cl){ Instances data = insts; int total=data.numInstances();// Total number of instances without // missing value for att int split=1; // Current split position int prev=0; // Previous split position int finalSplit=split; // Final split position maxInfoGain = 0; value = 0; double fstCover=0, sndCover=0, fstAccu=0, sndAccu=0; data.sort(att); // Find the las instance without missing value for(int x=0; x // Can't split within data.instance(prev).value(att))){ // same value for(int y=prev; y sndInfoGain){ isFirst = true; infoGain = fstInfoGain; accRate = fstAccuRate; accurate = fstAccu; coverage = fstCover; } else{ isFirst = false; infoGain = sndInfoGain; accRate = sndAccuRate; accurate = sndAccu; coverage = sndCover; } /* Check whether so far the max infoGain */ if(infoGain > maxInfoGain){ splitPoint = data.instance(prev).value(att); value = (isFirst) ? 0 : 1; accuRate = accRate; accu = accurate; cover = coverage; maxInfoGain = infoGain; finalSplit = (isFirst) ? split : prev; } for(int y=prev; y splitPoint) && (inst.value(att) < supportBound )) isCover= 1-((inst.value(att) - splitPoint)/(supportBound-splitPoint)); }else{ if(inst.value(att) >= splitPoint) // Second bag isCover=1; else if(fuzzyYet && inst.value(att) < splitPoint && (inst.value(att) > supportBound )) isCover= 1-((splitPoint - inst.value(att)) /(splitPoint-supportBound)); } } return isCover; } /** * Prints this antecedent * * @return a textual description of this antecedent */ public String toString() { if (value == 0){ if (fuzzyYet){ return (att.name() + " in [-inf, -inf, " + Utils.doubleToString(splitPoint, 6) + ", " + Utils.doubleToString(supportBound, 6) + "]"); } return (att.name() + " in [-inf, " + Utils.doubleToString(splitPoint, 6) + "]"); }else{ if (fuzzyYet){ return (att.name() + " in [" + Utils.doubleToString(supportBound, 6) + ", " + Utils.doubleToString(splitPoint, 6) + ", inf, inf]"); } return (att.name() + " in [" + Utils.doubleToString(splitPoint, 6) + ", inf]"); } } } /** * The antecedent with nominal attribute */ protected class NominalAntd extends Antd{ /** for serialization */ static final long serialVersionUID = -9102297038837585135L; /* The parameters of infoGain calculated for each attribute value * in the growing data */ private double[] accurate; private double[] coverage; /** * Constructor */ public NominalAntd(Attribute a){ super(a); int bag = att.numValues(); accurate = new double[bag]; coverage = new double[bag]; } /** * Implements Copyable * * @return a copy of this object */ public Object copy(){ Antd antec = new NominalAntd(getAttr()); antec.m_confidence = m_confidence; antec.value = this.value; return antec; } /** * Implements the splitData function. * This procedure is to split the data into bags according * to the nominal attribute value * The infoGain for each bag is also calculated. * * @param data the data to be split * @param defAcRt the default accuracy rate for data * @param cl the class label to be predicted * @return the array of data after split */ public Instances[] splitData(Instances data, double defAcRt, double cl){ int bag = att.numValues(); Instances[] splitData = new Instances[bag]; for(int x=0; x maxInfoGain){ maxInfoGain = infoGain; cover = coverage[x]; accu = accurate[x]; accuRate = p/t; value = (double)x; } } return splitData; } /** * Whether the instance is covered by this antecedent * * @param inst the instance in question * @return the boolean value indicating whether the instance is * covered by this antecedent */ public double covers(Instance inst){ double isCover=0; if(!inst.isMissing(att)){ if((int)inst.value(att) == (int)value) isCover=1; } return isCover; } /** * Prints this antecedent * * @return a textual description of this antecedent */ public String toString() { return (att.name() + " = " +att.value((int)value)); } } /** * This class implements a single rule that predicts specified class. * * A rule consists of antecedents "AND"ed together and the consequent * (class value) for the classification. * In this class, the Information Gain (p*[log(p/t) - log(P/T)]) is used to * select an antecedent and Reduced Error Prunning (REP) with the metric * of accuracy rate p/(p+n) or (TP+TN)/(P+N) is used to prune the rule. */ public class RipperRule extends Rule{ /** for serialization */ static final long serialVersionUID = -2410020717305262952L; /** The internal representation of the class label to be predicted */ double m_Consequent = -1; /** The vector of antecedents of this rule*/ public FastVector m_Antds = null; /** Constructor */ public RipperRule(){ m_Antds = new FastVector(); } /** * Sets the internal representation of the class label to be predicted * * @param cl the internal representation of the class label to be predicted */ public void setConsequent(double cl) { m_Consequent = cl; } /** * Gets the internal representation of the class label to be predicted * * @return the internal representation of the class label to be predicted */ public double getConsequent() { return m_Consequent; } /** * Get a shallow copy of this rule * * @return the copy */ public Object copy(){ RipperRule copy = new RipperRule(); copy.setConsequent(getConsequent()); copy.m_Antds = (FastVector)this.m_Antds.copyElements(); return copy; } /** * The degree of coverage instance covered by this rule * * @param datum the instance in question * @return the degree to which the instance * is covered by this rule */ public double coverageDegree(Instance datum){ double coverage = 1; for(int i=0; i 0); } /** * the number of antecedents of the rule * * @return the size of this rule */ public double size(){ return (double)m_Antds.size(); } /** * Private function to compute default number of accurate instances * in the specified data for the consequent of the rule * * @param data the data in question * @return the default accuracy number */ private double computeDefAccu(Instances data){ double defAccu=0; for(int i=0; i 0) && Utils.sm(defAcRt, 1.0) ){ // We require that infoGain be positive /*if(numAntds == originalSize) maxInfoGain = 0.0; // At least one condition allowed else maxInfoGain = Utils.eq(defAcRt, 1.0) ? defAccu/(double)numAntds : 0.0; */ maxInfoGain = 0.0; /* Build a list of antecedents */ Antd oneAntd=null; Instances coverData = null; Enumeration enumAttr=growData.enumerateAttributes(); /* Build one condition based on all attributes not used yet*/ while (enumAttr.hasMoreElements()){ Attribute att= (Attribute)(enumAttr.nextElement()); if(m_Debug) System.err.println("\nOne condition: size = " + growData.sumOfWeights()); Antd antd =null; if(att.isNumeric()) antd = new NumericAntd(att); else antd = new NominalAntd(att); if(!used[att.index()]){ /* Compute the best information gain for each attribute, it's stored in the antecedent formed by this attribute. This procedure returns the data covered by the antecedent*/ Instances coveredData = computeInfoGain(growData, defAcRt, antd); if(coveredData != null){ double infoGain = antd.getMaxInfoGain(); if(m_Debug) System.err.println("Test of \'"+antd.toString()+ "\': infoGain = "+ infoGain + " | Accuracy = " + antd.getAccuRate()+ "="+antd.getAccu() +"/"+antd.getCover()+ " def. accuracy: "+defAcRt); if(infoGain > maxInfoGain){ oneAntd=antd; coverData = coveredData; maxInfoGain = infoGain; } } } } if(oneAntd == null) break; // Cannot find antds if(Utils.sm(oneAntd.getAccu(), m_MinNo)) break;// Too low coverage //Numeric attributes can be used more than once if(!oneAntd.getAttr().isNumeric()){ used[oneAntd.getAttr().index()]=true; numUnused--; } m_Antds.addElement(oneAntd); growData = coverData;// Grow data size is shrinking defAcRt = oneAntd.getAccuRate(); } } /** * Compute the best information gain for the specified antecedent * * @param instances the data based on which the infoGain is computed * @param defAcRt the default accuracy rate of data * @param antd the specific antecedent * @return the data covered by the antecedent */ private Instances computeInfoGain(Instances instances, double defAcRt, Antd antd){ Instances data = instances; /* Split the data into bags. The information gain of each bag is also calculated in this procedure */ Instances[] splitData = antd.splitData(data, defAcRt, m_Consequent); /* Get the bag of data to be used for next antecedents */ if(splitData != null) return splitData[(int)antd.getAttrValue()]; else return null; } /** * Prune all the possible final sequences of the rule using the * pruning data. The measure used to prune the rule is based on * flag given. * * @param pruneData the pruning data used to prune the rule * @param useWhole flag to indicate whether use the error rate of * the whole pruning data instead of the data covered */ public void prune(Instances pruneData, boolean useWhole){ Instances data = pruneData; double total = data.sumOfWeights(); if(!Utils.gr(total, 0.0)) return; /* The default accurate # and rate on pruning data */ double defAccu=computeDefAccu(data); if(m_Debug) System.err.println("Pruning with " + defAccu + " positive data out of " + total + " instances"); int size=m_Antds.size(); if(size == 0) return; // Default rule before pruning double[] worthRt = new double[size]; double[] coverage = new double[size]; double[] worthValue = new double[size]; for(int w=0; w0){ // Covered by this antecedent coverage[x] += ins.weight(); data.add(ins); // Add to data for further pruning if((int)ins.classValue() == (int)m_Consequent) // Accurate prediction worthValue[x] += ins.weight(); } else if(useWhole){ // Not covered if((int)ins.classValue() != (int)m_Consequent) tn += ins.weight(); } } if(useWhole){ worthValue[x] += tn; worthRt[x] = worthValue[x] / total; } else // Note if coverage is 0, accuracy is 0.5 worthRt[x] = (worthValue[x]+1.0)/(coverage[x]+2.0); } double maxValue = (defAccu+1.0)/(total+2.0); int maxIndex = -1; for(int i=0; i maxValue){ // Prefer to the maxValue = worthRt[i]; // shorter rule maxIndex = i; } } if (maxIndex==-1) return; /* Prune the antecedents according to the accuracy parameters */ for(int z=size-1;z>maxIndex;z--) m_Antds.removeElementAt(z); } /** * Prints this rule * * @param classAttr the class attribute in the data * @return a textual description of this rule */ public String toString(Attribute classAttr) { StringBuffer text = new StringBuffer(); if(m_Antds.size() > 0){ for(int j=0; j< (m_Antds.size()-1); j++) text.append("(" + ((Antd)(m_Antds.elementAt(j))).toString()+ ") and "); text.append("("+((Antd)(m_Antds.lastElement())).toString() + ")"); } text.append(" => " + classAttr.name() + "=" + classAttr.value((int)m_Consequent)); return text.toString(); } /** * The fuzzification procedure * @param data training data * @param allWeightsAreOne flag whether all instances have weight 1. If this is the case branch-and-bound is possible for speed-up. */ public void fuzzify(Instances data, boolean allWeightsAreOne){ // Determine whether there are numeric antecedents that can be fuzzified. if (m_Antds == null) return; int numNumericAntds = 0; for (int i = 0; i < m_Antds.size(); i++){ if (m_Antds.elementAt(i) instanceof NumericAntd) numNumericAntds++; } if (numNumericAntds == 0) return; double maxPurity = Double.NEGATIVE_INFINITY; boolean[] finishedAntecedents = new boolean[m_Antds.size()]; int numFinishedAntecedents = 0; // Loop until all antecdents have been fuzzified while (numFinishedAntecedents0){ // Get a working copy of this antecedent NumericAntd currentAntd = (NumericAntd) ((NumericAntd) m_Antds.elementAt(j)).copy(); currentAntd.fuzzyYet=true; relevantData.deleteWithMissing(currentAntd.att.index()); double sumOfWeights = relevantData.sumOfWeights(); if(!Utils.gr(sumOfWeights, 0.0)) return; relevantData.sort(currentAntd.att.index()); double maxPurityForThisAntecedent = 0; double bestFoundSupportBound = Double.NaN; double lastAccu = 0; double lastCover = 0; // Test all possible edge points if (currentAntd.value == 0){ for (int k = 1; k < relevantData.numInstances(); k++){ // break the loop if there is no gain (only works when all instances have weight 1) if ((lastAccu+(relevantData.numInstances()-k-1))/(lastCover+(relevantData.numInstances()-k-1)) < maxPurityForThisAntecedent && allWeightsAreOne){ break; } // Bag 1 if (currentAntd.splitPoint < relevantData.instance(k).value(currentAntd.att.index()) && relevantData.instance(k).value(currentAntd.att.index()) != relevantData.instance(k-1).value(currentAntd.att.index())){ currentAntd.supportBound = relevantData.instance(k).value(currentAntd.att.index()); // Calculate the purity of this fuzzification double[] accuArray = new double[relevantData.numInstances()]; double[] coverArray = new double[relevantData.numInstances()]; for (int i = 0; i < relevantData.numInstances(); i++){ coverArray[i] = relevantData.instance(i).weight(); double coverValue = currentAntd.covers(relevantData.instance(i)); if (coverArray[i] >= coverValue*relevantData.instance(i).weight()){ coverArray[i] = coverValue*relevantData.instance(i).weight(); if (relevantData.instance(i).classValue() == m_Consequent){ accuArray[i] = coverValue*relevantData.instance(i).weight(); } } } // Test whether this fuzzification is the best one for this antecedent. // Keep it if this is the case. double purity = (Utils.sum(accuArray)) / (Utils.sum(coverArray)); if (purity >= maxPurityForThisAntecedent){ maxPurityForThisAntecedent =purity; bestFoundSupportBound = currentAntd.supportBound; } lastAccu = Utils.sum(accuArray); lastCover = Utils.sum(coverArray); } } }else{ for (int k = relevantData.numInstances()-2; k >=0; k--){ // break the loop if there is no gain (only works when all instances have weight 1) if ((lastAccu+(k))/(lastCover+(k)) < maxPurityForThisAntecedent && allWeightsAreOne){ break; } //Bag 2 if (currentAntd.splitPoint > relevantData.instance(k).value(currentAntd.att.index()) && relevantData.instance(k).value(currentAntd.att.index()) != relevantData.instance(k+1).value(currentAntd.att.index())){ currentAntd.supportBound = relevantData.instance(k).value(currentAntd.att.index()); // Calculate the purity of this fuzzification double[] accuArray = new double[relevantData.numInstances()]; double[] coverArray = new double[relevantData.numInstances()]; for (int i = 0; i < relevantData.numInstances(); i++){ coverArray[i] = relevantData.instance(i).weight(); double coverValue = currentAntd.covers(relevantData.instance(i)); if (coverArray[i] >= coverValue*relevantData.instance(i).weight()){ coverArray[i] = coverValue*relevantData.instance(i).weight(); if (relevantData.instance(i).classValue() == m_Consequent){ accuArray[i] = coverValue*relevantData.instance(i).weight(); } } } // Test whether this fuzzification is the best one for this antecedent. // Keep it if this is the case. double purity = (Utils.sum(accuArray)) / (Utils.sum(coverArray)); if (purity >= maxPurityForThisAntecedent){ maxPurityForThisAntecedent =purity; bestFoundSupportBound = currentAntd.supportBound; } lastAccu = Utils.sum(accuArray); lastCover = Utils.sum(coverArray); } } } // Test whether the best fuzzification for this antecedent is the best one of all // antecedents considered so far. // Keep it if this is the case. if (maxPurityForThisAntecedent>maxPurityOfAllAntecedents){ bestAntecedentsIndex = j; bestSupportBoundForAllAntecedents = bestFoundSupportBound; maxPurityOfAllAntecedents = maxPurityForThisAntecedent; } }else{ // Deal with a nominal antecedent. // Since there is no fuzzification it is already finished. finishedAntecedents[j] = true; numFinishedAntecedents++; continue; } } // Make the fuzzification step for the current antecedent real. if (maxPurity <= maxPurityOfAllAntecedents){ if (Double.isNaN(bestSupportBoundForAllAntecedents)){ ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).supportBound = ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).splitPoint; }else{ ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).supportBound = bestSupportBoundForAllAntecedents; ((NumericAntd)m_Antds.elementAt(bestAntecedentsIndex)).fuzzyYet = true; } maxPurity = maxPurityOfAllAntecedents; } finishedAntecedents[bestAntecedentsIndex] = true; numFinishedAntecedents++; } } /** * Calculation of the rule weights / confidences for all beginning rule stumps. * @param data The training data */ public void calculateConfidences(Instances data) { RipperRule tempRule = (RipperRule) this.copy(); while(tempRule.hasAntds()){ double acc = 0; double cov = 0; for (int i = 0; i < data.numInstances(); i++){ double membershipValue = tempRule.coverageDegree(data.instance(i)) * data.instance(i).weight(); cov += membershipValue; if (m_Consequent == data.instance(i).classValue()){ acc += membershipValue; } } // m-estimate double m = 2.0; ((Antd)this.m_Antds.elementAt((int)tempRule.size()-1)).m_confidence = (acc+m*(aprioriDistribution[(int)m_Consequent]/ Utils.sum(aprioriDistribution))) / (cov+m); tempRule.m_Antds.removeElementAt(tempRule.m_Antds.size()-1); } } /** * Get the rule confidence. * @return rule confidence / weight */ public double getConfidence(){ if (!hasAntds()) return Double.NaN; return ((Antd)m_Antds.lastElement()).m_confidence; } /** * */ public String getRevision() { return "1.0"; } } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(m_Folds); return result; } /** * Builds the FURIA rule-based model * * @param instances the training data * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); // Learn the apriori distribution for later aprioriDistribution = new double[instances.classAttribute().numValues()]; boolean allWeightsAreOne = true; for (int i = 0 ; i < instances.numInstances(); i++){ aprioriDistribution[(int)instances.instance(i).classValue()]+=instances.instance(i).weight(); if (allWeightsAreOne && instances.instance(i).weight() != 1.0){ allWeightsAreOne = false; break; } } m_Random = instances.getRandomNumberGenerator(m_Seed); m_Total = RuleStats.numAllConditions(instances); if(m_Debug) System.err.println("Number of all possible conditions = "+m_Total); Instances data = new Instances(instances); m_Class = data.classAttribute(); m_Ruleset = new FastVector(); m_RulesetStats = new FastVector(); m_Distributions = new FastVector(); // Learn a rule set for each single class oneClass: for(int y=0; y < data.numClasses(); y++){ // For each class double classIndex = (double)y; if(m_Debug){ int ci = (int)classIndex; System.err.println("\n\nClass "+m_Class.value(ci)+"("+ci+"): " + aprioriDistribution[y] + "instances\n"+ "=====================================\n"); } if(Utils.eq(aprioriDistribution[y],0.0)) // No data for this class continue oneClass; // The expected FP/err is the proportion of the class double expFPRate = (aprioriDistribution[y] / Utils.sum(aprioriDistribution)); double classYWeights = 0, totalWeights = 0; for(int j=0; j < data.numInstances(); j++){ Instance datum = data.instance(j); totalWeights += datum.weight(); if((int)datum.classValue() == y){ classYWeights += datum.weight(); } } // DL of default rule, no theory DL, only data DL double defDL; if(classYWeights > 0) defDL = RuleStats.dataDL(expFPRate, 0.0, totalWeights, 0.0, classYWeights); else continue oneClass; // Subsumed by previous rules if(Double.isNaN(defDL) || Double.isInfinite(defDL)) throw new Exception("Should never happen: "+ "defDL NaN or infinite!"); if(m_Debug) System.err.println("The default DL = "+defDL); rulesetForOneClass(expFPRate, data, classIndex, defDL); } // Remove redundant antecedents for(int z=0; z < m_Ruleset.size(); z++){ RipperRule rule = (RipperRule)m_Ruleset.elementAt(z); for(int j = 0; j < rule.m_Antds.size(); j++){ Antd outerAntd = (Antd)rule.m_Antds.elementAt(j); for (int k = j+1; k < rule.m_Antds.size(); k++){ Antd innerAntd = (Antd)rule.m_Antds.elementAt(k); if (outerAntd.att.index() == innerAntd.att.index() && outerAntd.value==innerAntd.value){ rule.m_Antds.setElementAt(rule.m_Antds.elementAt(k), j); rule.m_Antds.removeElementAt(k--); } } } } // Fuzzify all rules for(int z=0; z < m_RulesetStats.size(); z++){ RuleStats oneClass = (RuleStats)m_RulesetStats.elementAt(z); for(int xyz=0; xyz < oneClass.getRulesetSize(); xyz++){ RipperRule rule = (RipperRule)((FastVector)oneClass.getRuleset()).elementAt(xyz); // do the fuzzification for all known antecedents rule.fuzzify(data, allWeightsAreOne); double[] classDist = oneClass.getDistributions(xyz); // Check for sum=0, because otherwise it does not work if (Utils.sum(classDist)>0) Utils.normalize(classDist); if(classDist != null) m_Distributions.addElement(classDist); } } // if there was some problem during fuzzification, set the support bound // to the trivial fuzzification position for(int z=0; z < m_Ruleset.size(); z++){ RipperRule rule = (RipperRule)m_Ruleset.elementAt(z); for(int j = 0; j < rule.m_Antds.size(); j++){ Antd antd = (Antd)rule.m_Antds.elementAt(j); if (antd instanceof NumericAntd) { NumericAntd numAntd = (NumericAntd) antd; if (!numAntd.fuzzyYet){ for (int i = 0; i < data.numInstances(); i++){ if ((numAntd.value == 1 && numAntd.splitPoint > data.instance(i).value(numAntd.att.index()) && (numAntd.supportBound < data.instance(i).value(numAntd.att.index()) || !numAntd.fuzzyYet) ) || (numAntd.value == 0 && numAntd.splitPoint < data.instance(i).value(numAntd.att.index()) && (numAntd.supportBound > data.instance(i).value(numAntd.att.index()) || !numAntd.fuzzyYet) ) ){ numAntd.supportBound = data.instance(i).value(numAntd.att.index()); numAntd.fuzzyYet = true; } } } } } } //Determine confidences for(int z=0; z < m_Ruleset.size(); z++){ RipperRule rule = (RipperRule)m_Ruleset.elementAt(z); rule.calculateConfidences(data); } } /** * Classify the test instance with the rule learner and provide * the class distributions * * @param datum the instance to be classified * @return the distribution * @throws Exception */ public double[] distributionForInstance(Instance datum) throws Exception{ //test for multiple overlap of rules double[] rulesCoveringForEachClass = new double[datum.numClasses()]; for(int i=0; i < m_Ruleset.size(); i++){ RipperRule rule = (RipperRule)m_Ruleset.elementAt(i); /* In case that one class does not contain any instances (e.g. in UCI-dataset glass), * a default rule assigns all instances to the other class. Such a rule may be ignored here. */ if (!rule.hasAntds()) continue; // Calculate the maximum degree of coverage if(rule.covers(datum)){ rulesCoveringForEachClass[(int)rule.m_Consequent] += rule.coverageDegree(datum) * rule.getConfidence(); } } // If no rule covered the example, then maybe start the rule stretching if (Utils.sum(rulesCoveringForEachClass)==0){ // If rule stretching is not allowed, // return either the apriori prediction if (m_uncovAction == UNCOVACTION_APRIORI){ rulesCoveringForEachClass = aprioriDistribution; if (Utils.sum(rulesCoveringForEachClass)>0) Utils.normalize(rulesCoveringForEachClass); return rulesCoveringForEachClass; } // or abstain from that decision at all. if (m_uncovAction == UNCOVACTION_REJECT) return rulesCoveringForEachClass; // Copy the ruleset as backup FastVector origRuleset = (FastVector) m_Ruleset.copyElements(); // Find for every rule the first antecedent that does not // cover the given instance. rulesCoveringForEachClass = new double[rulesCoveringForEachClass.length]; for(int i=0; i < m_Ruleset.size(); i++){ RipperRule rule = (RipperRule)m_Ruleset.elementAt(i); double numAntdsBefore = rule.m_Antds.size(); int firstAntdToDelete = Integer.MAX_VALUE; for (int j = 0; j < rule.m_Antds.size(); j++){ if (((Antd)rule.m_Antds.elementAt(j)).covers(datum)==0){ firstAntdToDelete = j; break; } } // Prune antecedent such that it covers the instance for (int j = firstAntdToDelete; j < rule.m_Antds.size(); j++){ rule.m_Antds.removeElementAt(j--); } double numAntdsAfter = rule.m_Antds.size(); // Empty rules shall not vote here if (!rule.hasAntds()) continue; // Calculate the maximum degree of coverage and weight the rule // by its confidence and the fraction of antecedents left after // rule stretching double secondWeight = (numAntdsAfter+1)/(numAntdsBefore+2) ; if (rule.getConfidence() *secondWeight*rule.coverageDegree(datum) >= rulesCoveringForEachClass[(int)rule.getConsequent()]){ rulesCoveringForEachClass[(int)rule.getConsequent()] = rule.getConfidence()*secondWeight*rule.coverageDegree(datum); } } // Reestablish original ruleset m_Ruleset = origRuleset; } //check for conflicts double[] maxClasses = new double[rulesCoveringForEachClass.length]; for (int i = 0; i < rulesCoveringForEachClass.length; i++){ if (rulesCoveringForEachClass[Utils.maxIndex(rulesCoveringForEachClass)] == rulesCoveringForEachClass[i] && rulesCoveringForEachClass[i]>0) maxClasses[i] = 1; } //If there is a conflict, resolve it using the apriori distribution if (Utils.sum(maxClasses)>0){ for (int i = 0; i < maxClasses.length; i++){ if (maxClasses[i] > 0 && aprioriDistribution[i] != rulesCoveringForEachClass[Utils.maxIndex(rulesCoveringForEachClass)]) rulesCoveringForEachClass[i] -= 0.00001; } } // If no stretched rule was able to cover the instance, // then fall back to the apriori distribution if (Utils.sum(rulesCoveringForEachClass)==0){ rulesCoveringForEachClass = aprioriDistribution; } if (Utils.sum(rulesCoveringForEachClass)>0) Utils.normalize(rulesCoveringForEachClass); return rulesCoveringForEachClass; } /** Build a ruleset for the given class according to the given data * * @param expFPRate the expected FP/(FP+FN) used in DL calculation * @param data the given data * @param classIndex the given class index * @param defDL the default DL in the data * @throws Exception if the ruleset can be built properly */ protected Instances rulesetForOneClass(double expFPRate, Instances data, double classIndex, double defDL) throws Exception { Instances newData = data, growData, pruneData; boolean stop = false; FastVector ruleset = new FastVector(); double dl = defDL, minDL = defDL; RuleStats rstats = null; double[] rst; // Check whether data have positive examples boolean defHasPositive = true; // No longer used boolean hasPositive = defHasPositive; /********************** Building stage ***********************/ if(m_Debug) System.err.println("\n*** Building stage ***"); while((!stop) && hasPositive){ // Generate new rules until // stopping criteria met RipperRule oneRule; oneRule = new RipperRule(); oneRule.setConsequent(classIndex); // Must set first if(m_Debug) System.err.println("\nNo pruning: growing a rule ..."); oneRule.grow(newData); // Build the rule if(m_Debug) System.err.println("No pruning: one rule found:\n"+ oneRule.toString(m_Class)); // Compute the DL of this ruleset if(rstats == null){ // First rule rstats = new RuleStats(); rstats.setNumAllConds(m_Total); rstats.setData(newData); } rstats.addAndUpdate(oneRule); int last = rstats.getRuleset().size()-1; // Index of last rule dl += rstats.relativeDL(last, expFPRate, m_CheckErr); if(Double.isNaN(dl) || Double.isInfinite(dl)) throw new Exception("Should never happen: dl in "+ "building stage NaN or infinite!"); if(m_Debug) System.err.println("Before optimization("+last+ "): the dl = "+dl+" | best: "+minDL); if(dl < minDL) minDL = dl; // The best dl so far rst = rstats.getSimpleStats(last); if(m_Debug) System.err.println("The rule covers: "+rst[0]+ " | pos = " + rst[2] + " | neg = " + rst[4]+ "\nThe rule doesn't cover: "+rst[1]+ " | pos = " + rst[5]); stop = checkStop(rst, minDL, dl); if(!stop){ ruleset.addElement(oneRule); // Accepted newData = rstats.getFiltered(last)[1];// Data not covered hasPositive = Utils.gr(rst[5], 0.0); // Positives remaining? if(m_Debug) System.err.println("One rule added: has positive? " +hasPositive); } else{ if(m_Debug) System.err.println("Quit rule"); rstats.removeLast(); // Remove last to be re-used } }// while !stop /******************** Optimization stage *******************/ RuleStats finalRulesetStat = null; for(int z=0; z < m_Optimizations; z++){ if(m_Debug) System.err.println("\n*** Optimization: run #" +z+" ***"); newData = data; finalRulesetStat = new RuleStats(); finalRulesetStat.setData(newData); finalRulesetStat.setNumAllConds(m_Total); int position=0; stop = false; boolean isResidual = false; hasPositive = defHasPositive; dl = minDL = defDL; oneRule: while(!stop && hasPositive){ isResidual = (position>=ruleset.size()); // Cover residual positive examples // Re-do shuffling and stratification //newData.randomize(m_Random); newData = RuleStats.stratify(newData, m_Folds, m_Random); Instances[] part = RuleStats.partition(newData, m_Folds); growData=part[0]; pruneData=part[1]; //growData=newData.trainCV(m_Folds, m_Folds-1); //pruneData=newData.testCV(m_Folds, m_Folds-1); RipperRule finalRule; if(m_Debug) System.err.println("\nRule #"+position + "| isResidual?" + isResidual+ "| data size: "+newData.sumOfWeights()); if(isResidual){ RipperRule newRule = new RipperRule(); newRule.setConsequent(classIndex); if(m_Debug) System.err.println("\nGrowing and pruning"+ " a new rule ..."); newRule.grow(newData); finalRule = newRule; if(m_Debug) System.err.println("\nNew rule found: "+ newRule.toString(m_Class)); } else{ RipperRule oldRule = (RipperRule)ruleset.elementAt(position); boolean covers = false; // Test coverage of the next old rule for(int i=0; i 0)// If any rules newData = finalRulesetStat.getFiltered(position)[1]; hasPositive = Utils.gr(rst[5], 0.0); //Positives remaining? position++; } // while !stop && hasPositive if(ruleset.size() > (position+1)){ // Hasn't gone through yet for(int k=position+1; k minDL+MAX_DL_SURPLUS){ if(m_Debug) System.err.println("DL too large: "+dl+" | "+minDL); return true; } else if(!Utils.gr(rst[2], 0.0)){// Covered positives if(m_Debug) System.err.println("Too few positives."); return true; } else if((rst[4]/rst[0]) >= 0.5){// Err rate if(m_CheckErr){ if(m_Debug) System.err.println("Error too large: "+ rst[4] + "/" + rst[0]); return true; } else return false; } else{// Not stops if(m_Debug) System.err.println("Continue."); return false; } } /** * Prints the all the rules of the rule learner. * * @return a textual description of the classifier */ public String toString() { if (m_Ruleset == null) return "FURIA: No model built yet."; StringBuffer sb = new StringBuffer("FURIA rules:\n"+ "===========\n\n"); for(int j=0; j