[29] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Discriminative Multinomial Naive Bayes for Text Classification |
---|
| 19 | * Copyright (C) 2008 Jiang Su |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | package weka.classifiers.bayes; |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.TechnicalInformation; |
---|
| 30 | import weka.core.TechnicalInformationHandler; |
---|
| 31 | import weka.core.Utils; |
---|
| 32 | import weka.core.WeightedInstancesHandler; |
---|
| 33 | import weka.core.Capabilities.Capability; |
---|
| 34 | import weka.core.TechnicalInformation.Field; |
---|
| 35 | import weka.core.TechnicalInformation.Type; |
---|
| 36 | import weka.classifiers.UpdateableClassifier; |
---|
| 37 | import java.util.*; |
---|
| 38 | import java.io.Serializable; |
---|
| 39 | import weka.core.Capabilities; |
---|
| 40 | import weka.core.OptionHandler; |
---|
| 41 | |
---|
| 42 | |
---|
| 43 | /** |
---|
| 44 | <!-- globalinfo-start --> |
---|
| 45 | * Class for building and using a Discriminative Multinomial Naive Bayes classifier. For more information see,<br/> |
---|
| 46 | * <br/> |
---|
| 47 | * Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin: Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008', 2008.<br/> |
---|
| 48 | * <br/> |
---|
| 49 | * The core equation for this classifier:<br/> |
---|
| 50 | * <br/> |
---|
| 51 | * P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/> |
---|
| 52 | * <br/> |
---|
| 53 | * where Ci is class i and D is a document. |
---|
| 54 | * <p/> |
---|
| 55 | <!-- globalinfo-end --> |
---|
| 56 | * |
---|
| 57 | <!-- technical-bibtex-start --> |
---|
| 58 | * BibTeX: |
---|
| 59 | * <pre> |
---|
| 60 | * @inproceedings{JiangSu2008, |
---|
| 61 | * author = {Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin}, |
---|
| 62 | * booktitle = {ICML 2008'}, |
---|
| 63 | * title = {Discriminative Parameter Learning for Bayesian Networks}, |
---|
| 64 | * year = {2008} |
---|
| 65 | * } |
---|
| 66 | * </pre> |
---|
| 67 | * <p/> |
---|
| 68 | <!-- technical-bibtex-end --> |
---|
| 69 | * |
---|
| 70 | <!-- options-start --> |
---|
| 71 | * Valid options are: <p/> |
---|
| 72 | * |
---|
| 73 | * <pre> -D |
---|
| 74 | * If set, classifier is run in debug mode and |
---|
| 75 | * may output additional info to the console</pre> |
---|
| 76 | * |
---|
| 77 | <!-- options-end --> |
---|
| 78 | * |
---|
| 79 | * @author Jiang Su (Jiang.Su@unb.ca) 2008 |
---|
| 80 | * @version $Revision: 5928 $ |
---|
| 81 | */ |
---|
| 82 | public class DMNBtext extends AbstractClassifier |
---|
| 83 | implements OptionHandler, WeightedInstancesHandler, |
---|
| 84 | TechnicalInformationHandler, UpdateableClassifier { |
---|
| 85 | |
---|
| 86 | /** for serialization */ |
---|
| 87 | static final long serialVersionUID = 5932177450183457085L; |
---|
| 88 | /** The number of iterations. */ |
---|
| 89 | protected int m_NumIterations = 1; |
---|
| 90 | protected boolean m_BinaryWord = true; |
---|
| 91 | int m_numClasses=-1; |
---|
| 92 | protected Instances m_headerInfo; |
---|
| 93 | DNBBinary[] m_binaryClassifiers = null; |
---|
| 94 | |
---|
| 95 | /** |
---|
| 96 | * Returns a string describing this classifier |
---|
| 97 | * @return a description of the classifier suitable for |
---|
| 98 | * displaying in the explorer/experimenter gui |
---|
| 99 | */ |
---|
| 100 | public String globalInfo() { |
---|
| 101 | return |
---|
| 102 | "Class for building and using a Discriminative Multinomial Naive Bayes classifier. " |
---|
| 103 | + "For more information see,\n\n" |
---|
| 104 | + getTechnicalInformation().toString() + "\n\n" |
---|
| 105 | + "The core equation for this classifier:\n\n" |
---|
| 106 | + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n" |
---|
| 107 | + "where Ci is class i and D is a document."; |
---|
| 108 | } |
---|
| 109 | |
---|
| 110 | /** |
---|
| 111 | * Returns an instance of a TechnicalInformation object, containing |
---|
| 112 | * detailed information about the technical background of this class, |
---|
| 113 | * e.g., paper reference or book this class is based on. |
---|
| 114 | * |
---|
| 115 | * @return the technical information about this class |
---|
| 116 | */ |
---|
| 117 | public TechnicalInformation getTechnicalInformation() { |
---|
| 118 | TechnicalInformation result; |
---|
| 119 | |
---|
| 120 | result = new TechnicalInformation(Type.INPROCEEDINGS); |
---|
| 121 | result.setValue(Field.AUTHOR, "Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin"); |
---|
| 122 | result.setValue(Field.YEAR, "2008"); |
---|
| 123 | result.setValue(Field.TITLE, "Discriminative Parameter Learning for Bayesian Networks"); |
---|
| 124 | result.setValue(Field.BOOKTITLE, "ICML 2008'"); |
---|
| 125 | |
---|
| 126 | return result; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** |
---|
| 130 | * Returns default capabilities of the classifier. |
---|
| 131 | * |
---|
| 132 | * @return the capabilities of this classifier |
---|
| 133 | */ |
---|
| 134 | public Capabilities getCapabilities() { |
---|
| 135 | Capabilities result = super.getCapabilities(); |
---|
| 136 | result.disableAll(); |
---|
| 137 | |
---|
| 138 | // attributes |
---|
| 139 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
| 140 | |
---|
| 141 | // class |
---|
| 142 | result.enable(Capability.NOMINAL_CLASS); |
---|
| 143 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
| 144 | |
---|
| 145 | return result; |
---|
| 146 | } |
---|
| 147 | |
---|
| 148 | /** |
---|
| 149 | * Generates the classifier. |
---|
| 150 | * |
---|
| 151 | * @param data set of instances serving as training data |
---|
| 152 | * @exception Exception if the classifier has not been generated successfully |
---|
| 153 | */ |
---|
| 154 | public void buildClassifier(Instances data) throws Exception { |
---|
| 155 | // can classifier handle the data? |
---|
| 156 | getCapabilities().testWithFail(data); |
---|
| 157 | // remove instances with missing class |
---|
| 158 | Instances instances = new Instances(data); |
---|
| 159 | instances.deleteWithMissingClass(); |
---|
| 160 | |
---|
| 161 | m_binaryClassifiers = new DNBBinary[instances.numClasses()]; |
---|
| 162 | m_numClasses=instances.numClasses(); |
---|
| 163 | m_headerInfo = new Instances(instances, 0); |
---|
| 164 | for (int i = 0; i < instances.numClasses(); i++) { |
---|
| 165 | m_binaryClassifiers[i] = new DNBBinary(); |
---|
| 166 | m_binaryClassifiers[i].setTargetClass(i); |
---|
| 167 | m_binaryClassifiers[i].initClassifier(instances); |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | if (instances.numInstances() == 0) |
---|
| 171 | return; |
---|
| 172 | //Iterative update |
---|
| 173 | Random random = new Random(); |
---|
| 174 | for (int it = 0; it < m_NumIterations; it++) { |
---|
| 175 | for (int i = 0; i < instances.numInstances(); i++) { |
---|
| 176 | updateClassifier(instances.instance(i)); |
---|
| 177 | } |
---|
| 178 | } |
---|
| 179 | |
---|
| 180 | // Utils.normalize(m_oldClassDis); |
---|
| 181 | // Utils.normalize(m_ClassDis); |
---|
| 182 | // m_originalPositive = m_oldClassDis[0]; |
---|
| 183 | // m_positive = m_ClassDis[0]; |
---|
| 184 | |
---|
| 185 | } |
---|
| 186 | |
---|
| 187 | /** |
---|
| 188 | * Updates the classifier with the given instance. |
---|
| 189 | * |
---|
| 190 | * @param instance the new training instance to include in the model |
---|
| 191 | * @exception Exception if the instance could not be incorporated in |
---|
| 192 | * the model. |
---|
| 193 | */ |
---|
| 194 | |
---|
| 195 | public void updateClassifier(Instance instance) throws Exception { |
---|
| 196 | |
---|
| 197 | if (m_numClasses == 2) { |
---|
| 198 | m_binaryClassifiers[0].updateClassifier(instance); |
---|
| 199 | } else { |
---|
| 200 | for (int i = 0; i < instance.numClasses(); i++) |
---|
| 201 | m_binaryClassifiers[i].updateClassifier(instance); |
---|
| 202 | } |
---|
| 203 | } |
---|
| 204 | |
---|
| 205 | /** |
---|
| 206 | * Calculates the class membership probabilities for the given test |
---|
| 207 | * instance. |
---|
| 208 | * |
---|
| 209 | * @param instance the instance to be classified |
---|
| 210 | * @return predicted class probability distribution |
---|
| 211 | * @exception Exception if there is a problem generating the prediction |
---|
| 212 | */ |
---|
| 213 | public double[] distributionForInstance(Instance instance) throws Exception { |
---|
| 214 | if (m_numClasses == 2) { |
---|
| 215 | // System.out.println(m_binaryClassifiers[0].getProbForTargetClass(instance)); |
---|
| 216 | return m_binaryClassifiers[0].distributionForInstance(instance); |
---|
| 217 | } |
---|
| 218 | double[] logDocGivenClass = new double[instance.numClasses()]; |
---|
| 219 | for (int i = 0; i < m_numClasses; i++) |
---|
| 220 | logDocGivenClass[i] = m_binaryClassifiers[i].getLogProbForTargetClass(instance); |
---|
| 221 | |
---|
| 222 | |
---|
| 223 | double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; |
---|
| 224 | for(int i = 0; i<m_numClasses; i++) |
---|
| 225 | logDocGivenClass[i] = Math.exp(logDocGivenClass[i] - max); |
---|
| 226 | |
---|
| 227 | |
---|
| 228 | try { |
---|
| 229 | Utils.normalize(logDocGivenClass); |
---|
| 230 | } catch (Exception e) { |
---|
| 231 | e.printStackTrace(); |
---|
| 232 | |
---|
| 233 | |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | return logDocGivenClass; |
---|
| 237 | } |
---|
| 238 | /** |
---|
| 239 | * Returns a string representation of the classifier. |
---|
| 240 | * |
---|
| 241 | * @return a string representation of the classifier |
---|
| 242 | */ |
---|
| 243 | public String toString() { |
---|
| 244 | StringBuffer result = new StringBuffer(""); |
---|
| 245 | result.append("The log ratio of two conditional probabilities of a word w_i: log(p(w_i)|+)/p(w_i)|-)) in decent order based on their absolute values\n"); |
---|
| 246 | result.append("Can be used to measure the discriminative power of each word.\n"); |
---|
| 247 | if (m_numClasses == 2) { |
---|
| 248 | // System.out.println(m_binaryClassifiers[0].getProbForTargetClass(instance)); |
---|
| 249 | return result.append(m_binaryClassifiers[0].toString()).toString(); |
---|
| 250 | } |
---|
| 251 | for (int i = 0; i < m_numClasses; i++) |
---|
| 252 | { result.append(i+" against the rest classes\n"); |
---|
| 253 | result.append(m_binaryClassifiers[i].toString()+"\n"); |
---|
| 254 | } |
---|
| 255 | return result.toString(); |
---|
| 256 | } |
---|
| 257 | |
---|
| 258 | /* |
---|
| 259 | * Options after -- are passed to the designated classifier.<p> |
---|
| 260 | * |
---|
| 261 | * @param options the list of options as an array of strings |
---|
| 262 | * @exception Exception if an option is not supported |
---|
| 263 | */ |
---|
| 264 | public void setOptions(String[] options) throws Exception { |
---|
| 265 | |
---|
| 266 | String iterations = Utils.getOption('I', options); |
---|
| 267 | if (iterations.length() != 0) { |
---|
| 268 | setNumIterations(Integer.parseInt(iterations)); |
---|
| 269 | } else { |
---|
| 270 | setNumIterations(m_NumIterations); |
---|
| 271 | } |
---|
| 272 | iterations = Utils.getOption('B', options); |
---|
| 273 | if (iterations.length() != 0) { |
---|
| 274 | setBinaryWord(Boolean.parseBoolean(iterations)); |
---|
| 275 | } else { |
---|
| 276 | setBinaryWord(m_BinaryWord); |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | } |
---|
| 280 | |
---|
| 281 | /** |
---|
| 282 | * Gets the current settings of the classifier. |
---|
| 283 | * |
---|
| 284 | * @return an array of strings suitable for passing to setOptions |
---|
| 285 | */ |
---|
| 286 | public String[] getOptions() { |
---|
| 287 | |
---|
| 288 | String[] options = new String[4]; |
---|
| 289 | |
---|
| 290 | int current = 0; |
---|
| 291 | options[current++] = "-I"; |
---|
| 292 | options[current++] = "" + getNumIterations(); |
---|
| 293 | |
---|
| 294 | options[current++] = "-B"; |
---|
| 295 | options[current++] = "" + getBinaryWord(); |
---|
| 296 | |
---|
| 297 | return options; |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | /** |
---|
| 301 | * Returns the tip text for this property |
---|
| 302 | * @return tip text for this property suitable for |
---|
| 303 | * displaying in the explorer/experimenter gui |
---|
| 304 | */ |
---|
| 305 | public String numIterationsTipText() { |
---|
| 306 | return "The number of iterations that the classifier will scan the training data"; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | /** |
---|
| 310 | * Sets the number of iterations to be performed |
---|
| 311 | */ |
---|
| 312 | public void setNumIterations(int numIterations) { |
---|
| 313 | |
---|
| 314 | m_NumIterations = numIterations; |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | /** |
---|
| 318 | * Gets the number of iterations to be performed |
---|
| 319 | * |
---|
| 320 | * @return the iterations to be performed |
---|
| 321 | */ |
---|
| 322 | public int getNumIterations() { |
---|
| 323 | |
---|
| 324 | return m_NumIterations; |
---|
| 325 | } |
---|
| 326 | /** |
---|
| 327 | * Returns the tip text for this property |
---|
| 328 | * @return tip text for this property suitable for |
---|
| 329 | * displaying in the explorer/experimenter gui |
---|
| 330 | */ |
---|
| 331 | public String binaryWordTipText() { |
---|
| 332 | return " whether ingore the frequency information in data"; |
---|
| 333 | } |
---|
| 334 | /** |
---|
| 335 | * Sets whether use binary text representation |
---|
| 336 | */ |
---|
| 337 | public void setBinaryWord(boolean val) { |
---|
| 338 | |
---|
| 339 | m_BinaryWord = val; |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | /** |
---|
| 343 | * Gets whether use binary text representation |
---|
| 344 | * |
---|
| 345 | * @return whether use binary text representation |
---|
| 346 | */ |
---|
| 347 | public boolean getBinaryWord() { |
---|
| 348 | |
---|
| 349 | return m_BinaryWord; |
---|
| 350 | } |
---|
| 351 | |
---|
| 352 | /** |
---|
| 353 | * Returns the revision string. |
---|
| 354 | * |
---|
| 355 | * @return the revision |
---|
| 356 | */ |
---|
| 357 | public String getRevision() { |
---|
| 358 | return "$Revision: 1.0"; |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | public class DNBBinary implements Serializable { |
---|
| 362 | |
---|
| 363 | /** The number of iterations. */ |
---|
| 364 | private double[][] m_perWordPerClass; |
---|
| 365 | private double[] m_wordsPerClass; |
---|
| 366 | int m_classIndex = -1; |
---|
| 367 | private double[] m_classDistribution; |
---|
| 368 | /** number of unique words */ |
---|
| 369 | private int m_numAttributes; |
---|
| 370 | //set the target class |
---|
| 371 | private int m_targetClass = -1; |
---|
| 372 | |
---|
| 373 | private double m_WordLaplace=1; |
---|
| 374 | |
---|
| 375 | private double[] m_coefficient; |
---|
| 376 | private double m_classRatio; |
---|
| 377 | private double m_wordRatio; |
---|
| 378 | |
---|
| 379 | public void initClassifier(Instances instances) throws Exception { |
---|
| 380 | m_numAttributes = instances.numAttributes(); |
---|
| 381 | m_perWordPerClass = new double[2][m_numAttributes]; |
---|
| 382 | m_coefficient = new double[m_numAttributes]; |
---|
| 383 | m_wordsPerClass = new double[2]; |
---|
| 384 | m_classDistribution = new double[2]; |
---|
| 385 | m_WordLaplace = Math.log(m_numAttributes); |
---|
| 386 | m_classIndex = instances.classIndex(); |
---|
| 387 | |
---|
| 388 | //Laplace |
---|
| 389 | for (int c = 0; c < 2; c++) { |
---|
| 390 | m_classDistribution[c] = 1; |
---|
| 391 | m_wordsPerClass[c] = m_WordLaplace * m_numAttributes; |
---|
| 392 | java.util.Arrays.fill(m_perWordPerClass[c], m_WordLaplace); |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | public void updateClassifier(Instance ins) throws |
---|
| 398 | Exception { |
---|
| 399 | //c=0 is 1, which is the target class, and c=1 is the rest |
---|
| 400 | int classIndex = 0; |
---|
| 401 | if (ins.value(ins.classIndex()) != m_targetClass) |
---|
| 402 | classIndex = 1; |
---|
| 403 | double prob = 1 - |
---|
| 404 | distributionForInstance(ins)[classIndex]; |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | double weight = prob * ins.weight(); |
---|
| 408 | |
---|
| 409 | for (int a = 0; a < ins.numValues(); a++) { |
---|
| 410 | if (ins.index(a) != m_classIndex ) |
---|
| 411 | { |
---|
| 412 | |
---|
| 413 | if (m_BinaryWord) { |
---|
| 414 | if (ins.valueSparse(a) > 0) { |
---|
| 415 | m_wordsPerClass[classIndex] += |
---|
| 416 | weight; |
---|
| 417 | m_perWordPerClass[classIndex][ins. |
---|
| 418 | index(a)] += |
---|
| 419 | weight; |
---|
| 420 | } |
---|
| 421 | } else { |
---|
| 422 | double t = ins.valueSparse(a) * weight; |
---|
| 423 | m_wordsPerClass[classIndex] += t; |
---|
| 424 | m_perWordPerClass[classIndex][ins.index(a)] += t; |
---|
| 425 | } |
---|
| 426 | //update coefficient |
---|
| 427 | m_coefficient[ins.index(a)] = Math.log(m_perWordPerClass[0][ |
---|
| 428 | ins.index(a)] / |
---|
| 429 | m_perWordPerClass[1][ins.index(a)]); |
---|
| 430 | } |
---|
| 431 | } |
---|
| 432 | m_wordRatio = Math.log(m_wordsPerClass[0] / m_wordsPerClass[1]); |
---|
| 433 | m_classDistribution[classIndex] += weight; |
---|
| 434 | m_classRatio = Math.log(m_classDistribution[0] / |
---|
| 435 | m_classDistribution[1]); |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | /** |
---|
| 440 | * Calculates the class membership probabilities for the given test |
---|
| 441 | * instance. |
---|
| 442 | * |
---|
| 443 | * @param ins the instance to be classified |
---|
| 444 | * @return predicted class probability distribution |
---|
| 445 | * @exception Exception if there is a problem generating the prediction |
---|
| 446 | */ |
---|
| 447 | public double getLogProbForTargetClass(Instance ins) throws Exception { |
---|
| 448 | |
---|
| 449 | double probLog = m_classRatio; |
---|
| 450 | for (int a = 0; a < ins.numValues(); a++) { |
---|
| 451 | if (ins.index(a) != m_classIndex ) |
---|
| 452 | { |
---|
| 453 | |
---|
| 454 | if (m_BinaryWord) { |
---|
| 455 | if (ins.valueSparse(a) > 0) { |
---|
| 456 | probLog += m_coefficient[ins.index(a)] - |
---|
| 457 | m_wordRatio; |
---|
| 458 | } |
---|
| 459 | } else { |
---|
| 460 | probLog += ins.valueSparse(a) * |
---|
| 461 | (m_coefficient[ins.index(a)] - m_wordRatio); |
---|
| 462 | } |
---|
| 463 | } |
---|
| 464 | } |
---|
| 465 | return probLog; |
---|
| 466 | } |
---|
| 467 | |
---|
| 468 | /** |
---|
| 469 | * Calculates the class membership probabilities for the given test |
---|
| 470 | * instance. |
---|
| 471 | * |
---|
| 472 | * @param instance the instance to be classified |
---|
| 473 | * @return predicted class probability distribution |
---|
| 474 | * @exception Exception if there is a problem generating the prediction |
---|
| 475 | */ |
---|
| 476 | public double[] distributionForInstance(Instance instance) throws |
---|
| 477 | Exception { |
---|
| 478 | double[] probOfClassGivenDoc = new double[2]; |
---|
| 479 | double ratio=getLogProbForTargetClass(instance); |
---|
| 480 | if (ratio > 709) |
---|
| 481 | probOfClassGivenDoc[0]=1; |
---|
| 482 | else |
---|
| 483 | { |
---|
| 484 | ratio = Math.exp(ratio); |
---|
| 485 | probOfClassGivenDoc[0]=ratio / (1 + ratio); |
---|
| 486 | } |
---|
| 487 | |
---|
| 488 | probOfClassGivenDoc[1] = 1 - probOfClassGivenDoc[0]; |
---|
| 489 | return probOfClassGivenDoc; |
---|
| 490 | } |
---|
| 491 | |
---|
| 492 | /** |
---|
| 493 | * Returns a string representation of the classifier. |
---|
| 494 | * |
---|
| 495 | * @return a string representation of the classifier |
---|
| 496 | */ |
---|
| 497 | public String toString() { |
---|
| 498 | // StringBuffer result = new StringBuffer("The cofficiency of a naive Bayes classifier, can be considered as the discriminative power of a word\n--------------------------------------\n"); |
---|
| 499 | StringBuffer result = new StringBuffer(); |
---|
| 500 | |
---|
| 501 | result.append("\n"); |
---|
| 502 | TreeMap sort=new TreeMap(); |
---|
| 503 | double[] absCoeff=new double[m_numAttributes]; |
---|
| 504 | for(int w = 0; w<m_numAttributes; w++) |
---|
| 505 | { |
---|
| 506 | if(w==m_headerInfo.classIndex())continue; |
---|
| 507 | String val= m_headerInfo.attribute(w).name()+": "+m_coefficient[w]; |
---|
| 508 | sort.put((-1)*Math.abs(m_coefficient[w]),val); |
---|
| 509 | } |
---|
| 510 | Iterator it=sort.values().iterator(); |
---|
| 511 | while(it.hasNext()) |
---|
| 512 | { |
---|
| 513 | result.append((String)it.next()); |
---|
| 514 | result.append("\n"); |
---|
| 515 | } |
---|
| 516 | |
---|
| 517 | return result.toString(); |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | /** |
---|
| 521 | * Sets the Target Class |
---|
| 522 | */ |
---|
| 523 | public void setTargetClass(int targetClass) { |
---|
| 524 | |
---|
| 525 | m_targetClass = targetClass; |
---|
| 526 | } |
---|
| 527 | |
---|
| 528 | /** |
---|
| 529 | * Gets the Target Class |
---|
| 530 | * |
---|
| 531 | * @return the Target Class Index |
---|
| 532 | */ |
---|
| 533 | public int getTargetClass() { |
---|
| 534 | |
---|
| 535 | return m_targetClass; |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | } |
---|
| 539 | |
---|
| 540 | |
---|
| 541 | /** |
---|
| 542 | * Main method for testing this class. |
---|
| 543 | * |
---|
| 544 | * @param argv the options |
---|
| 545 | */ |
---|
| 546 | public static void main(String[] argv) { |
---|
| 547 | |
---|
| 548 | DMNBtext c = new DMNBtext(); |
---|
| 549 | |
---|
| 550 | runClassifier(c, argv); |
---|
| 551 | } |
---|
| 552 | } |
---|
| 553 | |
---|