/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Discriminative Multinomial Naive Bayes for Text Classification * Copyright (C) 2008 Jiang Su */ package weka.classifiers.bayes; import weka.classifiers.Classifier; import weka.classifiers.AbstractClassifier; import weka.core.Instance; import weka.core.Instances; import weka.core.TechnicalInformation; import weka.core.TechnicalInformationHandler; import weka.core.Utils; import weka.core.WeightedInstancesHandler; import weka.core.Capabilities.Capability; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.classifiers.UpdateableClassifier; import java.util.*; import java.io.Serializable; import weka.core.Capabilities; import weka.core.OptionHandler; /** * Class for building and using a Discriminative Multinomial Naive Bayes classifier. For more information see,
*
* Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin: Discriminative Parameter Learning for Bayesian Networks. In: ICML 2008', 2008.
*
* The core equation for this classifier:
*
* P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)
*
* where Ci is class i and D is a document. *

* * BibTeX: *

 * @inproceedings{JiangSu2008,
 *    author = {Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin},
 *    booktitle = {ICML 2008'},
 *    title = {Discriminative Parameter Learning for Bayesian Networks},
 *    year = {2008}
 * }
 * 
*

* * Valid options are:

* *

 -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
* * * @author Jiang Su (Jiang.Su@unb.ca) 2008 * @version $Revision: 5928 $ */ public class DMNBtext extends AbstractClassifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler, UpdateableClassifier { /** for serialization */ static final long serialVersionUID = 5932177450183457085L; /** The number of iterations. */ protected int m_NumIterations = 1; protected boolean m_BinaryWord = true; int m_numClasses=-1; protected Instances m_headerInfo; DNBBinary[] m_binaryClassifiers = null; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a Discriminative Multinomial Naive Bayes classifier. " + "For more information see,\n\n" + getTechnicalInformation().toString() + "\n\n" + "The core equation for this classifier:\n\n" + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n" + "where Ci is class i and D is a document."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Jiang Su,Harry Zhang,Charles X. Ling,Stan Matwin"); result.setValue(Field.YEAR, "2008"); result.setValue(Field.TITLE, "Discriminative Parameter Learning for Bayesian Networks"); result.setValue(Field.BOOKTITLE, "ICML 2008'"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); result.disableAll(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param data set of instances serving as training data * @exception Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances data) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(data); // remove instances with missing class Instances instances = new Instances(data); instances.deleteWithMissingClass(); m_binaryClassifiers = new DNBBinary[instances.numClasses()]; m_numClasses=instances.numClasses(); m_headerInfo = new Instances(instances, 0); for (int i = 0; i < instances.numClasses(); i++) { m_binaryClassifiers[i] = new DNBBinary(); m_binaryClassifiers[i].setTargetClass(i); m_binaryClassifiers[i].initClassifier(instances); } if (instances.numInstances() == 0) return; //Iterative update Random random = new Random(); for (int it = 0; it < m_NumIterations; it++) { for (int i = 0; i < instances.numInstances(); i++) { updateClassifier(instances.instance(i)); } } // Utils.normalize(m_oldClassDis); // Utils.normalize(m_ClassDis); // m_originalPositive = m_oldClassDis[0]; // m_positive = m_ClassDis[0]; } /** * Updates the classifier with the given instance. * * @param instance the new training instance to include in the model * @exception Exception if the instance could not be incorporated in * the model. */ public void updateClassifier(Instance instance) throws Exception { if (m_numClasses == 2) { m_binaryClassifiers[0].updateClassifier(instance); } else { for (int i = 0; i < instance.numClasses(); i++) m_binaryClassifiers[i].updateClassifier(instance); } } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if there is a problem generating the prediction */ public double[] distributionForInstance(Instance instance) throws Exception { if (m_numClasses == 2) { // System.out.println(m_binaryClassifiers[0].getProbForTargetClass(instance)); return m_binaryClassifiers[0].distributionForInstance(instance); } double[] logDocGivenClass = new double[instance.numClasses()]; for (int i = 0; i < m_numClasses; i++) logDocGivenClass[i] = m_binaryClassifiers[i].getLogProbForTargetClass(instance); double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; for(int i = 0; i * * @param options the list of options as an array of strings * @exception Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String iterations = Utils.getOption('I', options); if (iterations.length() != 0) { setNumIterations(Integer.parseInt(iterations)); } else { setNumIterations(m_NumIterations); } iterations = Utils.getOption('B', options); if (iterations.length() != 0) { setBinaryWord(Boolean.parseBoolean(iterations)); } else { setBinaryWord(m_BinaryWord); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String[] options = new String[4]; int current = 0; options[current++] = "-I"; options[current++] = "" + getNumIterations(); options[current++] = "-B"; options[current++] = "" + getBinaryWord(); return options; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String numIterationsTipText() { return "The number of iterations that the classifier will scan the training data"; } /** * Sets the number of iterations to be performed */ public void setNumIterations(int numIterations) { m_NumIterations = numIterations; } /** * Gets the number of iterations to be performed * * @return the iterations to be performed */ public int getNumIterations() { return m_NumIterations; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String binaryWordTipText() { return " whether ingore the frequency information in data"; } /** * Sets whether use binary text representation */ public void setBinaryWord(boolean val) { m_BinaryWord = val; } /** * Gets whether use binary text representation * * @return whether use binary text representation */ public boolean getBinaryWord() { return m_BinaryWord; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return "$Revision: 1.0"; } public class DNBBinary implements Serializable { /** The number of iterations. */ private double[][] m_perWordPerClass; private double[] m_wordsPerClass; int m_classIndex = -1; private double[] m_classDistribution; /** number of unique words */ private int m_numAttributes; //set the target class private int m_targetClass = -1; private double m_WordLaplace=1; private double[] m_coefficient; private double m_classRatio; private double m_wordRatio; public void initClassifier(Instances instances) throws Exception { m_numAttributes = instances.numAttributes(); m_perWordPerClass = new double[2][m_numAttributes]; m_coefficient = new double[m_numAttributes]; m_wordsPerClass = new double[2]; m_classDistribution = new double[2]; m_WordLaplace = Math.log(m_numAttributes); m_classIndex = instances.classIndex(); //Laplace for (int c = 0; c < 2; c++) { m_classDistribution[c] = 1; m_wordsPerClass[c] = m_WordLaplace * m_numAttributes; java.util.Arrays.fill(m_perWordPerClass[c], m_WordLaplace); } } public void updateClassifier(Instance ins) throws Exception { //c=0 is 1, which is the target class, and c=1 is the rest int classIndex = 0; if (ins.value(ins.classIndex()) != m_targetClass) classIndex = 1; double prob = 1 - distributionForInstance(ins)[classIndex]; double weight = prob * ins.weight(); for (int a = 0; a < ins.numValues(); a++) { if (ins.index(a) != m_classIndex ) { if (m_BinaryWord) { if (ins.valueSparse(a) > 0) { m_wordsPerClass[classIndex] += weight; m_perWordPerClass[classIndex][ins. index(a)] += weight; } } else { double t = ins.valueSparse(a) * weight; m_wordsPerClass[classIndex] += t; m_perWordPerClass[classIndex][ins.index(a)] += t; } //update coefficient m_coefficient[ins.index(a)] = Math.log(m_perWordPerClass[0][ ins.index(a)] / m_perWordPerClass[1][ins.index(a)]); } } m_wordRatio = Math.log(m_wordsPerClass[0] / m_wordsPerClass[1]); m_classDistribution[classIndex] += weight; m_classRatio = Math.log(m_classDistribution[0] / m_classDistribution[1]); } /** * Calculates the class membership probabilities for the given test * instance. * * @param ins the instance to be classified * @return predicted class probability distribution * @exception Exception if there is a problem generating the prediction */ public double getLogProbForTargetClass(Instance ins) throws Exception { double probLog = m_classRatio; for (int a = 0; a < ins.numValues(); a++) { if (ins.index(a) != m_classIndex ) { if (m_BinaryWord) { if (ins.valueSparse(a) > 0) { probLog += m_coefficient[ins.index(a)] - m_wordRatio; } } else { probLog += ins.valueSparse(a) * (m_coefficient[ins.index(a)] - m_wordRatio); } } } return probLog; } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if there is a problem generating the prediction */ public double[] distributionForInstance(Instance instance) throws Exception { double[] probOfClassGivenDoc = new double[2]; double ratio=getLogProbForTargetClass(instance); if (ratio > 709) probOfClassGivenDoc[0]=1; else { ratio = Math.exp(ratio); probOfClassGivenDoc[0]=ratio / (1 + ratio); } probOfClassGivenDoc[1] = 1 - probOfClassGivenDoc[0]; return probOfClassGivenDoc; } /** * Returns a string representation of the classifier. * * @return a string representation of the classifier */ public String toString() { // StringBuffer result = new StringBuffer("The cofficiency of a naive Bayes classifier, can be considered as the discriminative power of a word\n--------------------------------------\n"); StringBuffer result = new StringBuffer(); result.append("\n"); TreeMap sort=new TreeMap(); double[] absCoeff=new double[m_numAttributes]; for(int w = 0; w