| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * FTLeavesNode.java |
|---|
| 19 | * Copyright (C) 2007 University of Porto, Porto, Portugal |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees.ft; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.functions.SimpleLinearRegression; |
|---|
| 26 | import weka.classifiers.trees.j48.C45ModelSelection; |
|---|
| 27 | import weka.classifiers.trees.j48.NoSplit; |
|---|
| 28 | import weka.core.Instance; |
|---|
| 29 | import weka.core.Instances; |
|---|
| 30 | import weka.core.RevisionUtils; |
|---|
| 31 | import weka.core.Utils; |
|---|
| 32 | |
|---|
| 33 | /** |
|---|
| 34 | * Class for Functional Leaves tree version. |
|---|
| 35 | * |
|---|
| 36 | * @author Jo\~{a}o Gama |
|---|
| 37 | * @author Carlos Ferreira |
|---|
| 38 | * |
|---|
| 39 | * @version $Revision: 6088 $ |
|---|
| 40 | */ |
|---|
| 41 | public class FTLeavesNode |
|---|
| 42 | extends FTtree { |
|---|
| 43 | |
|---|
| 44 | /** for serialization. */ |
|---|
| 45 | private static final long serialVersionUID = 950601378326259315L; |
|---|
| 46 | |
|---|
| 47 | /** |
|---|
| 48 | * Constructor for Functional Leaves tree node. |
|---|
| 49 | * |
|---|
| 50 | * @param errorOnProbabilities Use error on probabilities for stopping criterion of LogitBoost? |
|---|
| 51 | * @param numBoostingIterations sets the numBoostingIterations parameter |
|---|
| 52 | * @param minNumInstances minimum number of instances at which a node is considered for splitting |
|---|
| 53 | */ |
|---|
| 54 | public FTLeavesNode( boolean errorOnProbabilities, int numBoostingIterations, int minNumInstances, |
|---|
| 55 | double weightTrimBeta, boolean useAIC) { |
|---|
| 56 | m_errorOnProbabilities = errorOnProbabilities; |
|---|
| 57 | m_fixedNumIterations = numBoostingIterations; |
|---|
| 58 | m_minNumInstances = minNumInstances; |
|---|
| 59 | m_maxIterations = 200; |
|---|
| 60 | setWeightTrimBeta(weightTrimBeta); |
|---|
| 61 | setUseAIC(useAIC); |
|---|
| 62 | } |
|---|
| 63 | |
|---|
| 64 | /** |
|---|
| 65 | * Method for building a Functional Leaves tree (only called for the root node). |
|---|
| 66 | * Grows an initial Functional Tree. |
|---|
| 67 | * |
|---|
| 68 | * @param data the data to train with |
|---|
| 69 | * @throws Exception if something goes wrong |
|---|
| 70 | */ |
|---|
| 71 | public void buildClassifier(Instances data) throws Exception{ |
|---|
| 72 | |
|---|
| 73 | buildTree(data, null, data.numInstances(), 0); |
|---|
| 74 | |
|---|
| 75 | } |
|---|
| 76 | |
|---|
| 77 | /** |
|---|
| 78 | * Method for building the tree structure. |
|---|
| 79 | * Builds a logistic model, splits the node and recursively builds tree for child nodes. |
|---|
| 80 | * @param data the training data passed on to this node |
|---|
| 81 | * @param higherRegressions An array of regression functions produced by LogitBoost at higher |
|---|
| 82 | * levels in the tree. They represent a logistic regression model that is refined locally |
|---|
| 83 | * at this node. |
|---|
| 84 | * @param totalInstanceWeight the total number of training examples |
|---|
| 85 | * @param higherNumParameters effective number of parameters in the logistic regression model built |
|---|
| 86 | * in parent nodes |
|---|
| 87 | * @throws Exception if something goes wrong |
|---|
| 88 | */ |
|---|
| 89 | public void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, |
|---|
| 90 | double totalInstanceWeight, double higherNumParameters) throws Exception{ |
|---|
| 91 | |
|---|
| 92 | //save some stuff |
|---|
| 93 | m_totalInstanceWeight = totalInstanceWeight; |
|---|
| 94 | m_train = new Instances(data); |
|---|
| 95 | |
|---|
| 96 | |
|---|
| 97 | m_isLeaf = true; |
|---|
| 98 | m_sons = null; |
|---|
| 99 | |
|---|
| 100 | m_numInstances = m_train.numInstances(); |
|---|
| 101 | m_numClasses = m_train.numClasses(); |
|---|
| 102 | |
|---|
| 103 | //init |
|---|
| 104 | m_numericData = getNumericData(m_train); |
|---|
| 105 | m_numericDataHeader = new Instances(m_numericData, 0); |
|---|
| 106 | |
|---|
| 107 | m_regressions = initRegressions(); |
|---|
| 108 | m_numRegressions = 0; |
|---|
| 109 | |
|---|
| 110 | if (higherRegressions != null) m_higherRegressions = higherRegressions; |
|---|
| 111 | else m_higherRegressions = new SimpleLinearRegression[m_numClasses][0]; |
|---|
| 112 | |
|---|
| 113 | m_numHigherRegressions = m_higherRegressions[0].length; |
|---|
| 114 | |
|---|
| 115 | m_numParameters = higherNumParameters; |
|---|
| 116 | |
|---|
| 117 | //build logistic model |
|---|
| 118 | if (m_numInstances >= m_numFoldsBoosting) { |
|---|
| 119 | if (m_fixedNumIterations > 0){ |
|---|
| 120 | performBoosting(m_fixedNumIterations); |
|---|
| 121 | } else if (getUseAIC()) { |
|---|
| 122 | performBoostingInfCriterion(); |
|---|
| 123 | } else { |
|---|
| 124 | performBoostingCV(); |
|---|
| 125 | } |
|---|
| 126 | } |
|---|
| 127 | |
|---|
| 128 | m_numParameters += m_numRegressions; |
|---|
| 129 | |
|---|
| 130 | //only keep the simple regression functions that correspond to the selected number of LogitBoost iterations |
|---|
| 131 | m_regressions = selectRegressions(m_regressions); |
|---|
| 132 | |
|---|
| 133 | boolean grow; |
|---|
| 134 | |
|---|
| 135 | //Compute logistic probs |
|---|
| 136 | double[][] FsConst; |
|---|
| 137 | double[] probsConst; |
|---|
| 138 | int j; |
|---|
| 139 | FsConst = getFs(m_numericData); |
|---|
| 140 | |
|---|
| 141 | for (j = 0; j < data.numInstances(); j++) |
|---|
| 142 | { |
|---|
| 143 | probsConst=probs(FsConst[j]); |
|---|
| 144 | // Computes constructor error |
|---|
| 145 | if (data.instance(j).classValue()!=getConstError(probsConst)) m_constError=m_constError +1; |
|---|
| 146 | } |
|---|
| 147 | |
|---|
| 148 | //to choose split point on the node data |
|---|
| 149 | m_modelSelection=new C45ModelSelection(m_minNumInstances, data, true); |
|---|
| 150 | m_localModel = m_modelSelection.selectModel(data); |
|---|
| 151 | |
|---|
| 152 | //split node if more than minNumInstances... |
|---|
| 153 | if (m_numInstances > m_minNumInstances) { |
|---|
| 154 | grow = (m_localModel.numSubsets() > 1); |
|---|
| 155 | } else { |
|---|
| 156 | grow = false; |
|---|
| 157 | } |
|---|
| 158 | |
|---|
| 159 | // logitboost uses distribution for instance |
|---|
| 160 | m_hasConstr=false; |
|---|
| 161 | if (grow) { |
|---|
| 162 | //create and build children of node |
|---|
| 163 | m_isLeaf = false; |
|---|
| 164 | Instances[] localInstances = m_localModel.split(data); |
|---|
| 165 | m_sons = new FTLeavesNode[m_localModel.numSubsets()]; |
|---|
| 166 | |
|---|
| 167 | for (int i = 0; i < m_sons.length; i++) { |
|---|
| 168 | m_sons[i] = new FTLeavesNode(m_errorOnProbabilities, m_fixedNumIterations, |
|---|
| 169 | m_minNumInstances,getWeightTrimBeta(), getUseAIC()); |
|---|
| 170 | m_sons[i].buildTree(localInstances[i], |
|---|
| 171 | mergeArrays(m_regressions, m_higherRegressions), m_totalInstanceWeight, m_numParameters); |
|---|
| 172 | localInstances[i] = null; |
|---|
| 173 | } |
|---|
| 174 | } |
|---|
| 175 | else{ |
|---|
| 176 | m_leafclass=m_localModel.distribution().maxClass(); |
|---|
| 177 | |
|---|
| 178 | } |
|---|
| 179 | } |
|---|
| 180 | |
|---|
| 181 | /** |
|---|
| 182 | * Prunes a tree using C4.5 pruning procedure. |
|---|
| 183 | * |
|---|
| 184 | * @exception Exception if something goes wrong |
|---|
| 185 | */ |
|---|
| 186 | public double prune() throws Exception { |
|---|
| 187 | |
|---|
| 188 | double errorsLeaf; |
|---|
| 189 | double errorsTree; |
|---|
| 190 | double errorsConstModel; |
|---|
| 191 | double treeError=0; |
|---|
| 192 | int i; |
|---|
| 193 | double probBranch; |
|---|
| 194 | |
|---|
| 195 | // Compute error if this Tree would be leaf without contructor |
|---|
| 196 | errorsLeaf = getEstimatedErrorsForDistribution(m_localModel.distribution()); |
|---|
| 197 | if (m_isLeaf ) { |
|---|
| 198 | return errorsLeaf; |
|---|
| 199 | } else { |
|---|
| 200 | //Computes da error of the constructor model |
|---|
| 201 | errorsConstModel = getEtimateConstModel(m_localModel.distribution()); |
|---|
| 202 | errorsTree=0; |
|---|
| 203 | for (i = 0; i < m_sons.length; i++) { |
|---|
| 204 | probBranch = m_localModel.distribution().perBag(i) / |
|---|
| 205 | m_localModel.distribution().total(); |
|---|
| 206 | errorsTree += probBranch* m_sons[i].prune(); |
|---|
| 207 | } |
|---|
| 208 | // Decide if leaf is best choice. |
|---|
| 209 | |
|---|
| 210 | if (Utils.smOrEq(errorsLeaf, errorsTree) && Utils.smOrEq(errorsLeaf, errorsConstModel)) { |
|---|
| 211 | // Free son Trees |
|---|
| 212 | m_sons = null; |
|---|
| 213 | m_isLeaf = true; |
|---|
| 214 | m_hasConstr=false; |
|---|
| 215 | m_leafclass=m_localModel.distribution().maxClass(); |
|---|
| 216 | // Get NoSplit Model for node. |
|---|
| 217 | m_localModel = new NoSplit(m_localModel.distribution()); |
|---|
| 218 | treeError=errorsLeaf; |
|---|
| 219 | |
|---|
| 220 | }else{ |
|---|
| 221 | // Decide if Constructor is best choice. |
|---|
| 222 | if (Utils.smOrEq(errorsConstModel, errorsTree)) { |
|---|
| 223 | // Free son Trees |
|---|
| 224 | m_sons = null; |
|---|
| 225 | m_isLeaf = true; |
|---|
| 226 | m_hasConstr =true; |
|---|
| 227 | // Get NoSplit Model for node. |
|---|
| 228 | m_localModel = new NoSplit(m_localModel.distribution()); |
|---|
| 229 | treeError=errorsConstModel; |
|---|
| 230 | } else |
|---|
| 231 | treeError=errorsTree; |
|---|
| 232 | } |
|---|
| 233 | } |
|---|
| 234 | return treeError; |
|---|
| 235 | } |
|---|
| 236 | |
|---|
| 237 | /** |
|---|
| 238 | * Returns the class probabilities for an instance given by the Functional Leaves tree. |
|---|
| 239 | * @param instance the instance |
|---|
| 240 | * @return the array of probabilities |
|---|
| 241 | */ |
|---|
| 242 | public double[] distributionForInstance(Instance instance) throws Exception { |
|---|
| 243 | double[] probs; |
|---|
| 244 | |
|---|
| 245 | if (m_isLeaf && m_hasConstr) { //leaf |
|---|
| 246 | //leaf: use majoraty class or constructor model |
|---|
| 247 | probs = modelDistributionForInstance(instance); |
|---|
| 248 | } else { |
|---|
| 249 | if (m_isLeaf && !m_hasConstr) |
|---|
| 250 | { |
|---|
| 251 | probs=new double[instance.numClasses()]; |
|---|
| 252 | probs[m_leafclass]=(double)1; |
|---|
| 253 | }else{ |
|---|
| 254 | |
|---|
| 255 | int branch = m_localModel.whichSubset(instance); //split |
|---|
| 256 | probs = m_sons[branch].distributionForInstance(instance); |
|---|
| 257 | } |
|---|
| 258 | } |
|---|
| 259 | return probs; |
|---|
| 260 | |
|---|
| 261 | } |
|---|
| 262 | |
|---|
| 263 | /** |
|---|
| 264 | * Returns the revision string. |
|---|
| 265 | * |
|---|
| 266 | * @return the revision |
|---|
| 267 | */ |
|---|
| 268 | public String getRevision() { |
|---|
| 269 | return RevisionUtils.extract("$Revision: 6088 $"); |
|---|
| 270 | } |
|---|
| 271 | } |
|---|