# This props file contains default values for the Weka Explorer. # # Notes: # - backslashes within options, e.g., for the default "Classifier", need # to be doubled (the backslashes get interpreted already when a property # is read). # # Author FracPete (fracpete at waikato dot ac dot nz) # Version $Revision: 6103 $ # if set to true the Capabilities filters in the GOE will be initialized # based on the full dataset that has been loaded into the Explorer # otherwise only the header (true|false) # Note: The tabs in the Explorer have their own class combobox, which means # that the data has to be inspected several times (changing the class # combobox only leads to an inspection of the data in the current tab), # which can be slow on big datasets. InitGenericObjectEditorFilter=True # The tabs to display apart from the PreprocessPanel. # # The classes listed here must import the weka.gui.explorer.Explorer.ExplorerPanel # interface. Optionally, they can also import the # weka.gui.explorer.Explorer.LogHandler interface if they want to use the logging # functionality of the Explorer and the # weka.gui.exporer.Explorer.CapabilitiesFilterChangeListener interface # in case they need to know when the Capabilities have changed, e.g., when a # new dataset has been loaded into the Explorer. # # Additional options follow the classname after a colon. # Currently supported options are: # standalone - the tab does not depend on the PreprocessPanel to load the data first # Tabs=weka.gui.explorer.ClassifierPanel,\ weka.gui.explorer.ClustererPanel,\ weka.gui.explorer.AssociationsPanel,\ weka.gui.explorer.AttributeSelectionPanel,\ weka.gui.explorer.VisualizePanel # the initial directory for opening datasets. # the following placeholders are recognized # %t - the temp directory # %h - the user's home directory # %c - the current directory # %% - gets replaced by a single percentage sign InitialDirectory=%c # the default filter, including options (can be left empty) Filter= # the default classifier in the classify tab, including options # (default is ZeroR) Classifier=weka.classifiers.rules.ZeroR # the default test mode in the classify tab # (according to "testMode" variable in startClassifier method) # 1 - cross-validation # 2 - percentage split # 3 - use training set # 4 - supplied test set # (default is 1 - CV) ClassifierTestMode=1 # the default number of folds for CV in the classify tab # (default is 10) ClassifierCrossvalidationFolds=10 # the default percentage split % in the classify tab (integer: 1-99) # (default is 66) ClassifierPercentageSplit=66 # whether the classifier model is output (true|false) # (default is true) ClassifierOutputModel=true # whether additional per-class stats of the classifier model are # output (true|false) # (default is true) ClassifierOutputPerClassStats=true # whether the entropy based evaluation measures of the classifier model are # output (true|false) # (default is false) ClassifierOutputEntropyEvalMeasures=false # whether the confusion matrix is output for the classifier (true|false) # (default is true) ClassifierOutputConfusionMatrix=true # whether the predictions of the classifier are stored for visulization # purposes (true|false) # (default is true) ClassifierStorePredictionsForVis=true # whether the predictions of the classifier output as well (true|false) # (default is false) ClassifierOutputPredictions=false # lists the attributes indices to output in addition to the predictions # (default is "") ClassifierOutputAdditionalAttributes= # whether the evaluation of the classifier is done cost-sensitively (true|false) # (default is false) # Note: a cost matrix still has to be provided! ClassifierCostSensitiveEval=false # the default random seed in the classify tab # (default is 1) ClassifierRandomSeed=1 # whether the order is preserved in case of percentage split in the classifier # tab # (default is false) ClassifierPreserveOrder=false # whether the source code of a Sourcable classifier is output as well in the # classifier tab # (default is false) ClassifierOutputSourceCode=false # the default classname of a Sourcable classifier in the classifier tab # (default is Foobar) ClassifierSourceCodeClass=WekaClassifier # the class (incl. options) for collecting the predictions and turning them # into plotable instances for displaying the classifier errors. ClassifierErrorsPlotInstances=weka.gui.explorer.ClassifierErrorsPlotInstances # The minimum plot size for numeric attributes (when visualizing classifier errors) ClassifierErrorsMinimumPlotSizeNumeric=1 # The maximum plot size for numeric attributes (when visualizing classifier errors) ClassifierErrorsMaximumPlotSizeNumeric=20 # the default clusterer, including options # (default is EM) Clusterer=weka.clusterers.EM # the default test mode in the cluster tab # (according to "testMode" variable in startClusterer method) # 2 - percentage split # 3 - use training set # 4 - supplied test set # 5 - classes to clusters evaluation # (default is 3 - training set) ClustererTestMode=3 # whether the clusters are stored for visualization purposes (true|false) # (default is true) ClustererStoreClustersForVis=true # the class (incl. options) for collecting the predictions and turning them # into plotable instances for displaying the cluster assignments. ClustererAssignmentsPlotInstances=weka.gui.explorer.ClustererAssignmentsPlotInstances # the default associator, including options # (default is Apriori) Associator=weka.associations.Apriori # the default attribute evaluator, including options # (default is CfsSubsetEval) ASEvaluation=weka.attributeSelection.CfsSubsetEval # the default attribute selection search scheme, including options # (default is BestFirst) ASSearch=weka.attributeSelection.BestFirst # the default test mode in the attribute selection tab # (according to "testMode" variable in startAttributeSelection method) # 0 - use full training set # 1 - cross-validation # (default is 0 - full training set) ASTestMode=0 # the default number of folds for CV in the attribute selection tab # (default is 10) ASCrossvalidationFolds=10 # the default random seed in the attribute selection tab # (default is 1) ASRandomSeed=1