1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Copyright (C) 2006 University of Waikato |
---|
19 | */ |
---|
20 | |
---|
21 | package weka.classifiers.functions.supportVector; |
---|
22 | |
---|
23 | import weka.core.Attribute; |
---|
24 | import weka.core.CheckGOE; |
---|
25 | import weka.core.CheckOptionHandler; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.OptionHandler; |
---|
28 | import weka.core.CheckScheme.PostProcessor; |
---|
29 | import weka.test.Regression; |
---|
30 | |
---|
31 | import junit.framework.TestCase; |
---|
32 | |
---|
33 | /** |
---|
34 | * Abstract Test class for Kernels. Internally it uses the class |
---|
35 | * <code>CheckKernel</code> to determine success or failure of the |
---|
36 | * tests. It follows basically the <code>testsPerClassType</code> method. |
---|
37 | * |
---|
38 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
39 | * @version $Revision: 1.3 $ |
---|
40 | * |
---|
41 | * @see CheckKernel |
---|
42 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
43 | * @see PostProcessor |
---|
44 | */ |
---|
45 | public abstract class AbstractKernelTest |
---|
46 | extends TestCase { |
---|
47 | |
---|
48 | /** The Kernel to be tested */ |
---|
49 | protected Kernel m_Kernel; |
---|
50 | |
---|
51 | /** For testing the Kernel */ |
---|
52 | protected CheckKernel m_Tester; |
---|
53 | |
---|
54 | /** whether Kernel handles weighted instances */ |
---|
55 | protected boolean m_weightedInstancesHandler; |
---|
56 | |
---|
57 | /** whether Kernel handles multi-instance data */ |
---|
58 | protected boolean m_multiInstanceHandler; |
---|
59 | |
---|
60 | /** the number of classes to test with testNClasses() |
---|
61 | * @see #testNClasses() */ |
---|
62 | protected int m_NClasses; |
---|
63 | |
---|
64 | /** whether to run CheckKernel in DEBUG mode */ |
---|
65 | protected boolean DEBUG = false; |
---|
66 | |
---|
67 | /** the attribute type with the lowest value */ |
---|
68 | protected final static int FIRST_CLASSTYPE = Attribute.NUMERIC; |
---|
69 | |
---|
70 | /** the attribute type with the highest value */ |
---|
71 | protected final static int LAST_CLASSTYPE = Attribute.RELATIONAL; |
---|
72 | |
---|
73 | /** wether Kernel can predict nominal attributes (array index is attribute type of class) */ |
---|
74 | protected boolean[] m_NominalPredictors; |
---|
75 | |
---|
76 | /** wether Kernel can predict numeric attributes (array index is attribute type of class) */ |
---|
77 | protected boolean[] m_NumericPredictors; |
---|
78 | |
---|
79 | /** wether Kernel can predict string attributes (array index is attribute type of class) */ |
---|
80 | protected boolean[] m_StringPredictors; |
---|
81 | |
---|
82 | /** wether Kernel can predict date attributes (array index is attribute type of class) */ |
---|
83 | protected boolean[] m_DatePredictors; |
---|
84 | |
---|
85 | /** wether Kernel can predict relational attributes (array index is attribute type of class) */ |
---|
86 | protected boolean[] m_RelationalPredictors; |
---|
87 | |
---|
88 | /** whether Kernel handles missing values */ |
---|
89 | protected boolean[] m_handleMissingPredictors; |
---|
90 | |
---|
91 | /** whether Kernel handles class with only missing values */ |
---|
92 | protected boolean[] m_handleMissingClass; |
---|
93 | |
---|
94 | /** whether Kernel handles class as first attribute */ |
---|
95 | protected boolean[] m_handleClassAsFirstAttribute; |
---|
96 | |
---|
97 | /** whether Kernel handles class as second attribute */ |
---|
98 | protected boolean[] m_handleClassAsSecondAttribute; |
---|
99 | |
---|
100 | /** the results of the regression tests */ |
---|
101 | protected String[] m_RegressionResults; |
---|
102 | |
---|
103 | /** the OptionHandler tester */ |
---|
104 | protected CheckOptionHandler m_OptionTester; |
---|
105 | |
---|
106 | /** for testing GOE stuff */ |
---|
107 | protected CheckGOE m_GOETester; |
---|
108 | |
---|
109 | /** |
---|
110 | * Constructs the <code>AbstractKernelTest</code>. Called by subclasses. |
---|
111 | * |
---|
112 | * @param name the name of the test class |
---|
113 | */ |
---|
114 | public AbstractKernelTest(String name) { |
---|
115 | super(name); |
---|
116 | } |
---|
117 | |
---|
118 | /** |
---|
119 | * returns a custom PostProcessor for the CheckKernel datasets, currently |
---|
120 | * only null. |
---|
121 | * |
---|
122 | * @return a custom PostProcessor, if necessary |
---|
123 | * @see PostProcessor |
---|
124 | */ |
---|
125 | protected PostProcessor getPostProcessor() { |
---|
126 | return null; |
---|
127 | } |
---|
128 | |
---|
129 | /** |
---|
130 | * configures the CheckKernel instance used throughout the tests |
---|
131 | * |
---|
132 | * @return the fully configured CheckKernel instance used for testing |
---|
133 | */ |
---|
134 | protected CheckKernel getTester() { |
---|
135 | CheckKernel result; |
---|
136 | |
---|
137 | result = new CheckKernel(); |
---|
138 | result.setSilent(true); |
---|
139 | result.setKernel(m_Kernel); |
---|
140 | result.setNumInstances(20); |
---|
141 | result.setDebug(DEBUG); |
---|
142 | result.setPostProcessor(getPostProcessor()); |
---|
143 | |
---|
144 | return result; |
---|
145 | } |
---|
146 | |
---|
147 | /** |
---|
148 | * Configures the CheckOptionHandler uses for testing the optionhandling. |
---|
149 | * Sets the Kernel return from the getKernel() method. |
---|
150 | * |
---|
151 | * @return the fully configured CheckOptionHandler |
---|
152 | * @see #getKernel() |
---|
153 | */ |
---|
154 | protected CheckOptionHandler getOptionTester() { |
---|
155 | CheckOptionHandler result; |
---|
156 | |
---|
157 | result = new CheckOptionHandler(); |
---|
158 | if (getKernel() instanceof OptionHandler) |
---|
159 | result.setOptionHandler((OptionHandler) getKernel()); |
---|
160 | else |
---|
161 | result.setOptionHandler(null); |
---|
162 | result.setUserOptions(new String[0]); |
---|
163 | result.setSilent(true); |
---|
164 | |
---|
165 | return result; |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Configures the CheckGOE used for testing GOE stuff. |
---|
170 | * Sets the Kernel returned from the getKernel() method. |
---|
171 | * |
---|
172 | * @return the fully configured CheckGOE |
---|
173 | * @see #getKernel() |
---|
174 | */ |
---|
175 | protected CheckGOE getGOETester() { |
---|
176 | CheckGOE result; |
---|
177 | |
---|
178 | result = new CheckGOE(); |
---|
179 | result.setObject(getKernel()); |
---|
180 | result.setSilent(true); |
---|
181 | |
---|
182 | return result; |
---|
183 | } |
---|
184 | |
---|
185 | /** |
---|
186 | * Called by JUnit before each test method. This implementation creates |
---|
187 | * the default Kernel to test and loads a test set of Instances. |
---|
188 | * |
---|
189 | * @exception Exception if an error occurs reading the example instances. |
---|
190 | */ |
---|
191 | protected void setUp() throws Exception { |
---|
192 | m_Kernel = getKernel(); |
---|
193 | m_Tester = getTester(); |
---|
194 | m_OptionTester = getOptionTester(); |
---|
195 | m_GOETester = getGOETester(); |
---|
196 | |
---|
197 | m_weightedInstancesHandler = m_Tester.weightedInstancesHandler()[0]; |
---|
198 | m_multiInstanceHandler = m_Tester.multiInstanceHandler()[0]; |
---|
199 | m_NominalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
200 | m_NumericPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
201 | m_StringPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
202 | m_DatePredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
203 | m_RelationalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
204 | m_handleMissingPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
205 | m_handleMissingClass = new boolean[LAST_CLASSTYPE + 1]; |
---|
206 | m_handleClassAsFirstAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
207 | m_handleClassAsSecondAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
208 | m_RegressionResults = new String[LAST_CLASSTYPE + 1]; |
---|
209 | m_NClasses = 4; |
---|
210 | |
---|
211 | // initialize attributes |
---|
212 | checkAttributes(true, false, false, false, false, false); |
---|
213 | checkAttributes(false, true, false, false, false, false); |
---|
214 | checkAttributes(false, false, true, false, false, false); |
---|
215 | checkAttributes(false, false, false, true, false, false); |
---|
216 | checkAttributes(false, false, false, false, true, false); |
---|
217 | |
---|
218 | // initialize missing values handling |
---|
219 | for (int i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
220 | // does the scheme support this type of class at all? |
---|
221 | if (!canPredict(i)) |
---|
222 | continue; |
---|
223 | |
---|
224 | // 20% missing |
---|
225 | m_handleMissingPredictors[i] = checkMissingPredictors(i, 20, false); |
---|
226 | m_handleMissingClass[i] = checkMissingClass(i, 20, false); |
---|
227 | } |
---|
228 | } |
---|
229 | |
---|
230 | /** Called by JUnit after each test method */ |
---|
231 | protected void tearDown() { |
---|
232 | m_Kernel = null; |
---|
233 | m_Tester = null; |
---|
234 | m_OptionTester = null; |
---|
235 | m_GOETester = null; |
---|
236 | |
---|
237 | m_weightedInstancesHandler = false; |
---|
238 | m_NominalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
239 | m_NumericPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
240 | m_StringPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
241 | m_DatePredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
242 | m_RelationalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
243 | m_handleMissingPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
244 | m_handleMissingClass = new boolean[LAST_CLASSTYPE + 1]; |
---|
245 | m_handleClassAsFirstAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
246 | m_handleClassAsSecondAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
247 | m_RegressionResults = new String[LAST_CLASSTYPE + 1]; |
---|
248 | m_NClasses = 4; |
---|
249 | } |
---|
250 | |
---|
251 | /** |
---|
252 | * Used to create an instance of a specific Kernel. |
---|
253 | * |
---|
254 | * @return a suitably configured <code>Kernel</code> value |
---|
255 | */ |
---|
256 | public abstract Kernel getKernel(); |
---|
257 | |
---|
258 | /** |
---|
259 | * checks whether at least one attribute type can be handled with the |
---|
260 | * given class type |
---|
261 | * |
---|
262 | * @param type the class type to check for |
---|
263 | * @return true if at least one attribute type can be predicted with |
---|
264 | * the given class |
---|
265 | */ |
---|
266 | protected boolean canPredict(int type) { |
---|
267 | return m_NominalPredictors[type] |
---|
268 | || m_NumericPredictors[type] |
---|
269 | || m_StringPredictors[type] |
---|
270 | || m_DatePredictors[type] |
---|
271 | || m_RelationalPredictors[type]; |
---|
272 | } |
---|
273 | |
---|
274 | /** |
---|
275 | * returns a string for the class type |
---|
276 | * |
---|
277 | * @param type the class type |
---|
278 | * @return the class type as string |
---|
279 | */ |
---|
280 | protected String getClassTypeString(int type) { |
---|
281 | return CheckKernel.attributeTypeToString(type); |
---|
282 | } |
---|
283 | |
---|
284 | /** |
---|
285 | * tests whether the Kernel can handle certain attributes and if not, |
---|
286 | * if the exception is OK |
---|
287 | * |
---|
288 | * @param nom to check for nominal attributes |
---|
289 | * @param num to check for numeric attributes |
---|
290 | * @param str to check for string attributes |
---|
291 | * @param dat to check for date attributes |
---|
292 | * @param rel to check for relational attributes |
---|
293 | * @param allowFail whether a junit fail can be executed |
---|
294 | * @see CheckKernel#canPredict(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
295 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
296 | */ |
---|
297 | protected void checkAttributes(boolean nom, boolean num, boolean str, |
---|
298 | boolean dat, boolean rel, |
---|
299 | boolean allowFail) { |
---|
300 | boolean[] result; |
---|
301 | String att; |
---|
302 | int i; |
---|
303 | |
---|
304 | // determine text for type of attributes |
---|
305 | att = ""; |
---|
306 | if (nom) |
---|
307 | att = "nominal"; |
---|
308 | else if (num) |
---|
309 | att = "numeric"; |
---|
310 | else if (str) |
---|
311 | att = "string"; |
---|
312 | else if (dat) |
---|
313 | att = "date"; |
---|
314 | else if (rel) |
---|
315 | att = "relational"; |
---|
316 | |
---|
317 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
318 | result = m_Tester.canPredict(nom, num, str, dat, rel, m_multiInstanceHandler, i); |
---|
319 | if (nom) |
---|
320 | m_NominalPredictors[i] = result[0]; |
---|
321 | else if (num) |
---|
322 | m_NumericPredictors[i] = result[0]; |
---|
323 | else if (str) |
---|
324 | m_StringPredictors[i] = result[0]; |
---|
325 | else if (dat) |
---|
326 | m_DatePredictors[i] = result[0]; |
---|
327 | else if (rel) |
---|
328 | m_RelationalPredictors[i] = result[0]; |
---|
329 | |
---|
330 | if (!result[0] && !result[1] && allowFail) |
---|
331 | fail("Error handling " + att + " attributes (" + getClassTypeString(i) |
---|
332 | + " class)!"); |
---|
333 | } |
---|
334 | } |
---|
335 | |
---|
336 | /** |
---|
337 | * tests whether the Kernel can handle different types of attributes and |
---|
338 | * if not, if the exception is OK |
---|
339 | * |
---|
340 | * @see #checkAttributes(boolean, boolean, boolean, boolean, boolean, boolean) |
---|
341 | */ |
---|
342 | public void testAttributes() { |
---|
343 | // nominal |
---|
344 | checkAttributes(true, false, false, false, false, true); |
---|
345 | // numeric |
---|
346 | checkAttributes(false, true, false, false, false, true); |
---|
347 | // string |
---|
348 | checkAttributes(false, false, true, false, false, true); |
---|
349 | // date |
---|
350 | checkAttributes(false, false, false, true, false, true); |
---|
351 | // relational |
---|
352 | if (!m_multiInstanceHandler) |
---|
353 | checkAttributes(false, false, false, false, true, true); |
---|
354 | } |
---|
355 | |
---|
356 | /** |
---|
357 | * tests whether the scheme declares a serialVersionUID. |
---|
358 | */ |
---|
359 | public void testSerialVersionUID() { |
---|
360 | boolean[] result; |
---|
361 | |
---|
362 | result = m_Tester.declaresSerialVersionUID(); |
---|
363 | |
---|
364 | if (!result[0]) |
---|
365 | fail("Doesn't declare serialVersionUID!"); |
---|
366 | } |
---|
367 | |
---|
368 | /** |
---|
369 | * tests whether the Kernel handles instance weights correctly |
---|
370 | * |
---|
371 | * @see CheckKernel#instanceWeights(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
372 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
373 | */ |
---|
374 | public void testInstanceWeights() { |
---|
375 | boolean[] result; |
---|
376 | int i; |
---|
377 | |
---|
378 | if (m_weightedInstancesHandler) { |
---|
379 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
380 | // does the Kernel support this type of class at all? |
---|
381 | if (!canPredict(i)) |
---|
382 | continue; |
---|
383 | |
---|
384 | result = m_Tester.instanceWeights( |
---|
385 | m_NominalPredictors[i], |
---|
386 | m_NumericPredictors[i], |
---|
387 | m_StringPredictors[i], |
---|
388 | m_DatePredictors[i], |
---|
389 | m_RelationalPredictors[i], |
---|
390 | m_multiInstanceHandler, |
---|
391 | i); |
---|
392 | |
---|
393 | if (!result[0]) |
---|
394 | System.err.println("Error handling instance weights (" + getClassTypeString(i) |
---|
395 | + " class)!"); |
---|
396 | } |
---|
397 | } |
---|
398 | } |
---|
399 | |
---|
400 | /** |
---|
401 | * tests whether Kernel handles N classes |
---|
402 | * |
---|
403 | * @see CheckKernel#canHandleNClasses(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
404 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
405 | * @see #m_NClasses |
---|
406 | */ |
---|
407 | public void testNClasses() { |
---|
408 | boolean[] result; |
---|
409 | |
---|
410 | if (!canPredict(Attribute.NOMINAL)) |
---|
411 | return; |
---|
412 | |
---|
413 | result = m_Tester.canHandleNClasses( |
---|
414 | m_NominalPredictors[Attribute.NOMINAL], |
---|
415 | m_NumericPredictors[Attribute.NOMINAL], |
---|
416 | m_StringPredictors[Attribute.NOMINAL], |
---|
417 | m_DatePredictors[Attribute.NOMINAL], |
---|
418 | m_RelationalPredictors[Attribute.NOMINAL], |
---|
419 | m_multiInstanceHandler, |
---|
420 | m_NClasses); |
---|
421 | |
---|
422 | if (!result[0] && !result[1]) |
---|
423 | fail("Error handling " + m_NClasses + " classes!"); |
---|
424 | } |
---|
425 | |
---|
426 | /** |
---|
427 | * checks whether the Kernel can handle the class attribute at a given |
---|
428 | * position (0-based index, -1 means last). |
---|
429 | * |
---|
430 | * @param type the class type |
---|
431 | * @param position the position of the class attribute (0-based, -1 means last) |
---|
432 | * @return true if the Kernel can handle it |
---|
433 | */ |
---|
434 | protected boolean checkClassAsNthAttribute(int type, int position) { |
---|
435 | boolean[] result; |
---|
436 | String indexStr; |
---|
437 | |
---|
438 | result = m_Tester.canHandleClassAsNthAttribute( |
---|
439 | m_NominalPredictors[type], |
---|
440 | m_NumericPredictors[type], |
---|
441 | m_StringPredictors[type], |
---|
442 | m_DatePredictors[type], |
---|
443 | m_RelationalPredictors[type], |
---|
444 | m_multiInstanceHandler, |
---|
445 | type, |
---|
446 | position); |
---|
447 | |
---|
448 | if (position == -1) |
---|
449 | indexStr = "last"; |
---|
450 | else |
---|
451 | indexStr = (position + 1) + "."; |
---|
452 | |
---|
453 | if (!result[0] && !result[1]) |
---|
454 | fail("Error handling class as " + indexStr + " attribute (" |
---|
455 | + getClassTypeString(type) + " class)!"); |
---|
456 | |
---|
457 | return result[0]; |
---|
458 | } |
---|
459 | |
---|
460 | /** |
---|
461 | * Tests whether the Kernel can handle class attributes as Nth |
---|
462 | * attribute. In case of multi-instance Kernels it performs no tests, |
---|
463 | * since the multi-instance data has a fixed format (bagID,bag,class). |
---|
464 | * |
---|
465 | * @see CheckKernel#canHandleClassAsNthAttribute(boolean, boolean, boolean, boolean, boolean, boolean, int, int) |
---|
466 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
467 | */ |
---|
468 | public void testClassAsNthAttribute() { |
---|
469 | int i; |
---|
470 | |
---|
471 | // multi-Instance data has fixed format! |
---|
472 | if (m_multiInstanceHandler) |
---|
473 | return; |
---|
474 | |
---|
475 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
476 | // does the Kernel support this type of class at all? |
---|
477 | if (!canPredict(i)) |
---|
478 | continue; |
---|
479 | |
---|
480 | // first attribute |
---|
481 | m_handleClassAsFirstAttribute[i] = checkClassAsNthAttribute(i, 0); |
---|
482 | |
---|
483 | // second attribute |
---|
484 | m_handleClassAsSecondAttribute[i] = checkClassAsNthAttribute(i, 1); |
---|
485 | } |
---|
486 | } |
---|
487 | |
---|
488 | /** |
---|
489 | * tests whether the Kernel can handle zero training instances |
---|
490 | * |
---|
491 | * @see CheckKernel#canHandleZeroTraining(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
492 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
493 | */ |
---|
494 | public void testZeroTraining() { |
---|
495 | boolean[] result; |
---|
496 | int i; |
---|
497 | |
---|
498 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
499 | // does the Kernel support this type of class at all? |
---|
500 | if (!canPredict(i)) |
---|
501 | continue; |
---|
502 | |
---|
503 | result = m_Tester.canHandleZeroTraining( |
---|
504 | m_NominalPredictors[i], |
---|
505 | m_NumericPredictors[i], |
---|
506 | m_StringPredictors[i], |
---|
507 | m_DatePredictors[i], |
---|
508 | m_RelationalPredictors[i], |
---|
509 | m_multiInstanceHandler, |
---|
510 | i); |
---|
511 | |
---|
512 | if (!result[0] && !result[1]) |
---|
513 | fail("Error handling zero training instances (" + getClassTypeString(i) |
---|
514 | + " class)!"); |
---|
515 | } |
---|
516 | } |
---|
517 | |
---|
518 | /** |
---|
519 | * checks whether the Kernel can handle the given percentage of |
---|
520 | * missing predictors |
---|
521 | * |
---|
522 | * @param type the class type |
---|
523 | * @param percent the percentage of missing predictors |
---|
524 | * @param allowFail if true a fail statement may be executed |
---|
525 | * @return true if the Kernel can handle it |
---|
526 | */ |
---|
527 | protected boolean checkMissingPredictors(int type, int percent, boolean allowFail) { |
---|
528 | boolean[] result; |
---|
529 | |
---|
530 | result = m_Tester.canHandleMissing( |
---|
531 | m_NominalPredictors[type], |
---|
532 | m_NumericPredictors[type], |
---|
533 | m_StringPredictors[type], |
---|
534 | m_DatePredictors[type], |
---|
535 | m_RelationalPredictors[type], |
---|
536 | m_multiInstanceHandler, |
---|
537 | type, |
---|
538 | true, |
---|
539 | false, |
---|
540 | percent); |
---|
541 | |
---|
542 | if (allowFail) { |
---|
543 | if (!result[0] && !result[1]) |
---|
544 | fail("Error handling " + percent + "% missing predictors (" |
---|
545 | + getClassTypeString(type) + " class)!"); |
---|
546 | } |
---|
547 | |
---|
548 | return result[0]; |
---|
549 | } |
---|
550 | |
---|
551 | /** |
---|
552 | * tests whether the Kernel can handle missing predictors (20% and 100%) |
---|
553 | * |
---|
554 | * @see CheckKernel#canHandleMissing(boolean, boolean, boolean, boolean, boolean, boolean, int, boolean, boolean, int) |
---|
555 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
556 | */ |
---|
557 | public void testMissingPredictors() { |
---|
558 | int i; |
---|
559 | |
---|
560 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
561 | // does the Kernel support this type of class at all? |
---|
562 | if (!canPredict(i)) |
---|
563 | continue; |
---|
564 | |
---|
565 | // 20% missing |
---|
566 | checkMissingPredictors(i, 20, true); |
---|
567 | |
---|
568 | // 100% missing |
---|
569 | if (m_handleMissingPredictors[i]) |
---|
570 | checkMissingPredictors(i, 100, true); |
---|
571 | } |
---|
572 | } |
---|
573 | |
---|
574 | /** |
---|
575 | * checks whether the Kernel can handle the given percentage of |
---|
576 | * missing class labels |
---|
577 | * |
---|
578 | * @param type the class type |
---|
579 | * @param percent the percentage of missing class labels |
---|
580 | * @param allowFail if true a fail statement may be executed |
---|
581 | * @return true if the Kernel can handle it |
---|
582 | */ |
---|
583 | protected boolean checkMissingClass(int type, int percent, boolean allowFail) { |
---|
584 | boolean[] result; |
---|
585 | |
---|
586 | result = m_Tester.canHandleMissing( |
---|
587 | m_NominalPredictors[type], |
---|
588 | m_NumericPredictors[type], |
---|
589 | m_StringPredictors[type], |
---|
590 | m_DatePredictors[type], |
---|
591 | m_RelationalPredictors[type], |
---|
592 | m_multiInstanceHandler, |
---|
593 | type, |
---|
594 | false, |
---|
595 | true, |
---|
596 | percent); |
---|
597 | |
---|
598 | if (allowFail) { |
---|
599 | if (!result[0] && !result[1]) |
---|
600 | fail("Error handling " + percent + "% missing class labels (" |
---|
601 | + getClassTypeString(type) + " class)!"); |
---|
602 | } |
---|
603 | |
---|
604 | return result[0]; |
---|
605 | } |
---|
606 | |
---|
607 | /** |
---|
608 | * tests whether the Kernel can handle missing class values (20% and |
---|
609 | * 100%) |
---|
610 | * |
---|
611 | * @see CheckKernel#canHandleMissing(boolean, boolean, boolean, boolean, boolean, boolean, int, boolean, boolean, int) |
---|
612 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
613 | */ |
---|
614 | public void testMissingClass() { |
---|
615 | int i; |
---|
616 | |
---|
617 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
618 | // does the Kernel support this type of class at all? |
---|
619 | if (!canPredict(i)) |
---|
620 | continue; |
---|
621 | |
---|
622 | // 20% missing |
---|
623 | checkMissingClass(i, 20, true); |
---|
624 | |
---|
625 | // 100% missing |
---|
626 | if (m_handleMissingClass[i]) |
---|
627 | checkMissingClass(i, 100, true); |
---|
628 | } |
---|
629 | } |
---|
630 | |
---|
631 | /** |
---|
632 | * tests whether the Kernel correctly initializes in the |
---|
633 | * buildKernel method |
---|
634 | * |
---|
635 | * @see CheckKernel#correctBuildInitialisation(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
636 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
637 | */ |
---|
638 | public void testBuildInitialization() { |
---|
639 | boolean[] result; |
---|
640 | int i; |
---|
641 | |
---|
642 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
643 | // does the Kernel support this type of class at all? |
---|
644 | if (!canPredict(i)) |
---|
645 | continue; |
---|
646 | |
---|
647 | result = m_Tester.correctBuildInitialisation( |
---|
648 | m_NominalPredictors[i], |
---|
649 | m_NumericPredictors[i], |
---|
650 | m_StringPredictors[i], |
---|
651 | m_DatePredictors[i], |
---|
652 | m_RelationalPredictors[i], |
---|
653 | m_multiInstanceHandler, |
---|
654 | i); |
---|
655 | |
---|
656 | if (!result[0] && !result[1]) |
---|
657 | fail("Incorrect build initialization (" + getClassTypeString(i) |
---|
658 | + " class)!"); |
---|
659 | } |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * tests whether the Kernel alters the training set during training. |
---|
664 | * |
---|
665 | * @see CheckKernel#datasetIntegrity(boolean, boolean, boolean, boolean, boolean, boolean, int, boolean, boolean) |
---|
666 | * @see CheckKernel#testsPerClassType(int, boolean, boolean) |
---|
667 | */ |
---|
668 | public void testDatasetIntegrity() { |
---|
669 | boolean[] result; |
---|
670 | int i; |
---|
671 | |
---|
672 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
673 | // does the Kernel support this type of class at all? |
---|
674 | if (!canPredict(i)) |
---|
675 | continue; |
---|
676 | |
---|
677 | result = m_Tester.datasetIntegrity( |
---|
678 | m_NominalPredictors[i], |
---|
679 | m_NumericPredictors[i], |
---|
680 | m_StringPredictors[i], |
---|
681 | m_DatePredictors[i], |
---|
682 | m_RelationalPredictors[i], |
---|
683 | m_multiInstanceHandler, |
---|
684 | i, |
---|
685 | m_handleMissingPredictors[i], |
---|
686 | m_handleMissingClass[i]); |
---|
687 | |
---|
688 | if (!result[0] && !result[1]) |
---|
689 | fail("Training set is altered during training (" |
---|
690 | + getClassTypeString(i) + " class)!"); |
---|
691 | } |
---|
692 | } |
---|
693 | |
---|
694 | /** |
---|
695 | * Builds a model using the current Kernel using the given data and |
---|
696 | * returns the produced output. |
---|
697 | * |
---|
698 | * @param data the instances to test the Kernel on |
---|
699 | * @return a String containing the output of the Kernel. |
---|
700 | */ |
---|
701 | protected String useKernel(Instances data) throws Exception { |
---|
702 | Kernel kernel = null; |
---|
703 | StringBuffer text = new StringBuffer(); |
---|
704 | |
---|
705 | try { |
---|
706 | kernel = Kernel.makeCopy(m_Kernel); |
---|
707 | } |
---|
708 | catch (Exception e) { |
---|
709 | e.printStackTrace(); |
---|
710 | fail("Problem setting up to use Kernel: " + e); |
---|
711 | } |
---|
712 | |
---|
713 | kernel.buildKernel(data); |
---|
714 | for (int n = 0; n < data.numInstances(); n++) { |
---|
715 | for (int i = n; i < data.numInstances(); i++) { |
---|
716 | text.append( |
---|
717 | (n+1) + "-" + (i+1) + ": " |
---|
718 | + kernel.eval(n, i, data.instance(i)) + "\n"); |
---|
719 | } |
---|
720 | } |
---|
721 | |
---|
722 | return text.toString(); |
---|
723 | } |
---|
724 | |
---|
725 | /** |
---|
726 | * Provides a hook for derived classes to further modify the data. Currently, |
---|
727 | * the data is just passed through. |
---|
728 | * |
---|
729 | * @param data the data to process |
---|
730 | * @return the processed data |
---|
731 | */ |
---|
732 | protected Instances process(Instances data) { |
---|
733 | return data; |
---|
734 | } |
---|
735 | |
---|
736 | /** |
---|
737 | * Runs a regression test -- this checks that the output of the tested |
---|
738 | * object matches that in a reference version. When this test is |
---|
739 | * run without any pre-existing reference output, the reference version |
---|
740 | * is created. |
---|
741 | */ |
---|
742 | public void testRegression() throws Exception { |
---|
743 | int i; |
---|
744 | boolean succeeded; |
---|
745 | Regression reg; |
---|
746 | Instances train; |
---|
747 | |
---|
748 | // don't bother if not working correctly |
---|
749 | if (m_Tester.hasClasspathProblems()) |
---|
750 | return; |
---|
751 | |
---|
752 | reg = new Regression(this.getClass()); |
---|
753 | succeeded = false; |
---|
754 | train = null; |
---|
755 | |
---|
756 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
757 | // does the Kernel support this type of class at all? |
---|
758 | if (!canPredict(i)) |
---|
759 | continue; |
---|
760 | |
---|
761 | train = m_Tester.makeTestDataset( |
---|
762 | 42, m_Tester.getNumInstances(), |
---|
763 | m_NominalPredictors[i] ? 2 : 0, |
---|
764 | m_NumericPredictors[i] ? 1 : 0, |
---|
765 | m_StringPredictors[i] ? 1 : 0, |
---|
766 | m_DatePredictors[i] ? 1 : 0, |
---|
767 | m_RelationalPredictors[i] ? 1 : 0, |
---|
768 | 2, |
---|
769 | i, |
---|
770 | m_multiInstanceHandler); |
---|
771 | |
---|
772 | try { |
---|
773 | m_RegressionResults[i] = CheckKernel.attributeTypeToString(i) |
---|
774 | + " class:\n" |
---|
775 | + useKernel(train); |
---|
776 | succeeded = true; |
---|
777 | reg.println(m_RegressionResults[i]); |
---|
778 | } |
---|
779 | catch (Exception e) { |
---|
780 | String msg = e.getMessage().toLowerCase(); |
---|
781 | if (msg.indexOf("not in classpath") > -1) |
---|
782 | return; |
---|
783 | |
---|
784 | m_RegressionResults[i] = null; |
---|
785 | } |
---|
786 | } |
---|
787 | |
---|
788 | if (!succeeded) { |
---|
789 | fail("Problem during regression testing: no successful predictions for any class type"); |
---|
790 | } |
---|
791 | |
---|
792 | try { |
---|
793 | String diff = reg.diff(); |
---|
794 | if (diff == null) { |
---|
795 | System.err.println("Warning: No reference available, creating."); |
---|
796 | } else if (!diff.equals("")) { |
---|
797 | fail("Regression test failed. Difference:\n" + diff); |
---|
798 | } |
---|
799 | } |
---|
800 | catch (java.io.IOException ex) { |
---|
801 | fail("Problem during regression testing.\n" + ex); |
---|
802 | } |
---|
803 | } |
---|
804 | |
---|
805 | /** |
---|
806 | * tests the listing of the options |
---|
807 | */ |
---|
808 | public void testListOptions() { |
---|
809 | if (m_OptionTester.getOptionHandler() != null) { |
---|
810 | if (!m_OptionTester.checkListOptions()) |
---|
811 | fail("Options cannot be listed via listOptions."); |
---|
812 | } |
---|
813 | } |
---|
814 | |
---|
815 | /** |
---|
816 | * tests the setting of the options |
---|
817 | */ |
---|
818 | public void testSetOptions() { |
---|
819 | if (m_OptionTester.getOptionHandler() != null) { |
---|
820 | if (!m_OptionTester.checkSetOptions()) |
---|
821 | fail("setOptions method failed."); |
---|
822 | } |
---|
823 | } |
---|
824 | |
---|
825 | /** |
---|
826 | * tests whether there are any remaining options |
---|
827 | */ |
---|
828 | public void testRemainingOptions() { |
---|
829 | if (m_OptionTester.getOptionHandler() != null) { |
---|
830 | if (!m_OptionTester.checkRemainingOptions()) |
---|
831 | fail("There were 'left-over' options."); |
---|
832 | } |
---|
833 | } |
---|
834 | |
---|
835 | /** |
---|
836 | * tests the whether the user-supplied options stay the same after setting. |
---|
837 | * getting, and re-setting again. |
---|
838 | * |
---|
839 | * @see #getOptionTester() |
---|
840 | */ |
---|
841 | public void testCanonicalUserOptions() { |
---|
842 | if (m_OptionTester.getOptionHandler() != null) { |
---|
843 | if (!m_OptionTester.checkCanonicalUserOptions()) |
---|
844 | fail("setOptions method failed"); |
---|
845 | } |
---|
846 | } |
---|
847 | |
---|
848 | /** |
---|
849 | * tests the resetting of the options to the default ones |
---|
850 | */ |
---|
851 | public void testResettingOptions() { |
---|
852 | if (m_OptionTester.getOptionHandler() != null) { |
---|
853 | if (!m_OptionTester.checkSetOptions()) |
---|
854 | fail("Resetting of options failed"); |
---|
855 | } |
---|
856 | } |
---|
857 | |
---|
858 | /** |
---|
859 | * tests for a globalInfo method |
---|
860 | */ |
---|
861 | public void testGlobalInfo() { |
---|
862 | if (!m_GOETester.checkGlobalInfo()) |
---|
863 | fail("No globalInfo method"); |
---|
864 | } |
---|
865 | |
---|
866 | /** |
---|
867 | * tests the tool tips |
---|
868 | */ |
---|
869 | public void testToolTips() { |
---|
870 | if (!m_GOETester.checkToolTips()) |
---|
871 | fail("Tool tips inconsistent"); |
---|
872 | } |
---|
873 | } |
---|