1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * PrincipalComponents.java |
---|
19 | * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand |
---|
20 | */ |
---|
21 | |
---|
22 | package weka.filters.unsupervised.attribute; |
---|
23 | |
---|
24 | import weka.core.Attribute; |
---|
25 | import weka.core.Capabilities; |
---|
26 | import weka.core.FastVector; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.OptionHandler; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.SparseInstance; |
---|
34 | import weka.core.Utils; |
---|
35 | import weka.core.Capabilities.Capability; |
---|
36 | import weka.core.matrix.EigenvalueDecomposition; |
---|
37 | import weka.core.matrix.Matrix; |
---|
38 | import weka.filters.Filter; |
---|
39 | import weka.filters.UnsupervisedFilter; |
---|
40 | |
---|
41 | import java.util.Enumeration; |
---|
42 | import java.util.Vector; |
---|
43 | |
---|
44 | /** |
---|
45 | <!-- globalinfo-start --> |
---|
46 | * Performs a principal components analysis and transformation of the data.<br/> |
---|
47 | * Dimensionality reduction is accomplished by choosing enough eigenvectors to account for some percentage of the variance in the original data -- default 0.95 (95%).<br/> |
---|
48 | * Based on code of the attribute selection scheme 'PrincipalComponents' by Mark Hall and Gabi Schmidberger. |
---|
49 | * <p/> |
---|
50 | <!-- globalinfo-end --> |
---|
51 | * |
---|
52 | <!-- options-start --> |
---|
53 | * Valid options are: <p/> |
---|
54 | * |
---|
55 | * <pre> -D |
---|
56 | * Don't normalize input data.</pre> |
---|
57 | * |
---|
58 | * <pre> -R <num> |
---|
59 | * Retain enough PC attributes to account |
---|
60 | * for this proportion of variance in the original data. |
---|
61 | * (default: 0.95)</pre> |
---|
62 | * |
---|
63 | * <pre> -A <num> |
---|
64 | * Maximum number of attributes to include in |
---|
65 | * transformed attribute names. |
---|
66 | * (-1 = include all, default: 5)</pre> |
---|
67 | * |
---|
68 | * <pre> -M <num> |
---|
69 | * Maximum number of PC attributes to retain. |
---|
70 | * (-1 = include all, default: -1)</pre> |
---|
71 | * |
---|
72 | <!-- options-end --> |
---|
73 | * |
---|
74 | * @author Mark Hall (mhall@cs.waikato.ac.nz) -- attribute selection code |
---|
75 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) -- attribute selection code |
---|
76 | * @author fracpete (fracpete at waikato dot ac dot nz) -- filter code |
---|
77 | * @version $Revision: 5987 $ |
---|
78 | */ |
---|
79 | public class PrincipalComponents |
---|
80 | extends Filter |
---|
81 | implements OptionHandler, UnsupervisedFilter { |
---|
82 | |
---|
83 | /** for serialization. */ |
---|
84 | private static final long serialVersionUID = 4626939780964387784L; |
---|
85 | |
---|
86 | /** The data to transform analyse/transform. */ |
---|
87 | protected Instances m_TrainInstances; |
---|
88 | |
---|
89 | /** Keep a copy for the class attribute (if set). */ |
---|
90 | protected Instances m_TrainCopy; |
---|
91 | |
---|
92 | /** The header for the transformed data format. */ |
---|
93 | protected Instances m_TransformedFormat; |
---|
94 | |
---|
95 | /** Data has a class set. */ |
---|
96 | protected boolean m_HasClass; |
---|
97 | |
---|
98 | /** Class index. */ |
---|
99 | protected int m_ClassIndex; |
---|
100 | |
---|
101 | /** Number of attributes. */ |
---|
102 | protected int m_NumAttribs; |
---|
103 | |
---|
104 | /** Number of instances. */ |
---|
105 | protected int m_NumInstances; |
---|
106 | |
---|
107 | /** Correlation matrix for the original data. */ |
---|
108 | protected double[][] m_Correlation; |
---|
109 | |
---|
110 | /** Will hold the unordered linear transformations of the (normalized) |
---|
111 | original data. */ |
---|
112 | protected double[][] m_Eigenvectors; |
---|
113 | |
---|
114 | /** Eigenvalues for the corresponding eigenvectors. */ |
---|
115 | protected double[] m_Eigenvalues = null; |
---|
116 | |
---|
117 | /** Sorted eigenvalues. */ |
---|
118 | protected int[] m_SortedEigens; |
---|
119 | |
---|
120 | /** sum of the eigenvalues. */ |
---|
121 | protected double m_SumOfEigenValues = 0.0; |
---|
122 | |
---|
123 | /** Filters for replacing missing values. */ |
---|
124 | protected ReplaceMissingValues m_ReplaceMissingFilter; |
---|
125 | |
---|
126 | /** Filter for normalizing the data. */ |
---|
127 | protected Normalize m_NormalizeFilter; |
---|
128 | |
---|
129 | /** Filter for turning nominal values into numeric ones. */ |
---|
130 | protected NominalToBinary m_NominalToBinaryFilter; |
---|
131 | |
---|
132 | /** Filter for removing class attribute, nominal attributes with 0 or 1 value. */ |
---|
133 | protected Remove m_AttributeFilter; |
---|
134 | |
---|
135 | /** The number of attributes in the pc transformed data. */ |
---|
136 | protected int m_OutputNumAtts = -1; |
---|
137 | |
---|
138 | /** normalize the input data? */ |
---|
139 | protected boolean m_Normalize = true; |
---|
140 | |
---|
141 | /** the amount of varaince to cover in the original data when |
---|
142 | retaining the best n PC's. */ |
---|
143 | protected double m_CoverVariance = 0.95; |
---|
144 | |
---|
145 | /** maximum number of attributes in the transformed attribute name. */ |
---|
146 | protected int m_MaxAttrsInName = 5; |
---|
147 | |
---|
148 | /** maximum number of attributes in the transformed data (-1 for all). */ |
---|
149 | protected int m_MaxAttributes = -1; |
---|
150 | |
---|
151 | /** |
---|
152 | * Returns a string describing this filter. |
---|
153 | * |
---|
154 | * @return a description of the filter suitable for |
---|
155 | * displaying in the explorer/experimenter gui |
---|
156 | */ |
---|
157 | public String globalInfo() { |
---|
158 | return |
---|
159 | "Performs a principal components analysis and transformation of " |
---|
160 | + "the data.\n" |
---|
161 | + "Dimensionality reduction is accomplished by choosing enough eigenvectors " |
---|
162 | + "to account for some percentage of the variance in the original data -- " |
---|
163 | + "default 0.95 (95%).\n" |
---|
164 | + "Based on code of the attribute selection scheme 'PrincipalComponents' " |
---|
165 | + "by Mark Hall and Gabi Schmidberger."; |
---|
166 | } |
---|
167 | |
---|
168 | /** |
---|
169 | * Returns an enumeration describing the available options. |
---|
170 | * |
---|
171 | * @return an enumeration of all the available options. |
---|
172 | */ |
---|
173 | public Enumeration listOptions() { |
---|
174 | Vector result = new Vector(); |
---|
175 | |
---|
176 | result.addElement(new Option( |
---|
177 | "\tDon't normalize input data.", |
---|
178 | "D", 0, "-D")); |
---|
179 | |
---|
180 | result.addElement(new Option( |
---|
181 | "\tRetain enough PC attributes to account\n" |
---|
182 | +"\tfor this proportion of variance in the original data.\n" |
---|
183 | + "\t(default: 0.95)", |
---|
184 | "R", 1, "-R <num>")); |
---|
185 | |
---|
186 | result.addElement(new Option( |
---|
187 | "\tMaximum number of attributes to include in \n" |
---|
188 | + "\ttransformed attribute names.\n" |
---|
189 | + "\t(-1 = include all, default: 5)", |
---|
190 | "A", 1, "-A <num>")); |
---|
191 | |
---|
192 | result.addElement(new Option( |
---|
193 | "\tMaximum number of PC attributes to retain.\n" |
---|
194 | + "\t(-1 = include all, default: -1)", |
---|
195 | "M", 1, "-M <num>")); |
---|
196 | |
---|
197 | return result.elements(); |
---|
198 | } |
---|
199 | |
---|
200 | /** |
---|
201 | * Parses a list of options for this object. <p/> |
---|
202 | * |
---|
203 | <!-- options-start --> |
---|
204 | * Valid options are: <p/> |
---|
205 | * |
---|
206 | * <pre> -D |
---|
207 | * Don't normalize input data.</pre> |
---|
208 | * |
---|
209 | * <pre> -R <num> |
---|
210 | * Retain enough PC attributes to account |
---|
211 | * for this proportion of variance in the original data. |
---|
212 | * (default: 0.95)</pre> |
---|
213 | * |
---|
214 | * <pre> -A <num> |
---|
215 | * Maximum number of attributes to include in |
---|
216 | * transformed attribute names. |
---|
217 | * (-1 = include all, default: 5)</pre> |
---|
218 | * |
---|
219 | * <pre> -M <num> |
---|
220 | * Maximum number of PC attributes to retain. |
---|
221 | * (-1 = include all, default: -1)</pre> |
---|
222 | * |
---|
223 | <!-- options-end --> |
---|
224 | * |
---|
225 | * @param options the list of options as an array of strings |
---|
226 | * @throws Exception if an option is not supported |
---|
227 | */ |
---|
228 | public void setOptions(String[] options) throws Exception { |
---|
229 | String tmpStr; |
---|
230 | |
---|
231 | tmpStr = Utils.getOption('R', options); |
---|
232 | if (tmpStr.length() != 0) |
---|
233 | setVarianceCovered(Double.parseDouble(tmpStr)); |
---|
234 | else |
---|
235 | setVarianceCovered(0.95); |
---|
236 | |
---|
237 | tmpStr = Utils.getOption('A', options); |
---|
238 | if (tmpStr.length() != 0) |
---|
239 | setMaximumAttributeNames(Integer.parseInt(tmpStr)); |
---|
240 | else |
---|
241 | setMaximumAttributeNames(5); |
---|
242 | |
---|
243 | tmpStr = Utils.getOption('M', options); |
---|
244 | if (tmpStr.length() != 0) |
---|
245 | setMaximumAttributes(Integer.parseInt(tmpStr)); |
---|
246 | else |
---|
247 | setMaximumAttributes(-1); |
---|
248 | |
---|
249 | setNormalize(!Utils.getFlag('D', options)); |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Gets the current settings of the filter. |
---|
254 | * |
---|
255 | * @return an array of strings suitable for passing to setOptions |
---|
256 | */ |
---|
257 | public String[] getOptions() { |
---|
258 | Vector<String> result; |
---|
259 | |
---|
260 | result = new Vector<String>(); |
---|
261 | |
---|
262 | result.add("-R"); |
---|
263 | result.add("" + getVarianceCovered()); |
---|
264 | |
---|
265 | result.add("-A"); |
---|
266 | result.add("" + getMaximumAttributeNames()); |
---|
267 | |
---|
268 | result.add("-M"); |
---|
269 | result.add("" + getMaximumAttributes()); |
---|
270 | |
---|
271 | if (!getNormalize()) |
---|
272 | result.add("-D"); |
---|
273 | |
---|
274 | return result.toArray(new String[result.size()]); |
---|
275 | } |
---|
276 | |
---|
277 | /** |
---|
278 | * Returns the tip text for this property. |
---|
279 | * |
---|
280 | * @return tip text for this property suitable for |
---|
281 | * displaying in the explorer/experimenter gui |
---|
282 | */ |
---|
283 | public String normalizeTipText() { |
---|
284 | return "Normalize input data."; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Set whether input data will be normalized. |
---|
289 | * |
---|
290 | * @param value true if input data is to be normalized |
---|
291 | */ |
---|
292 | public void setNormalize(boolean value) { |
---|
293 | m_Normalize = value; |
---|
294 | } |
---|
295 | |
---|
296 | /** |
---|
297 | * Gets whether or not input data is to be normalized. |
---|
298 | * |
---|
299 | * @return true if input data is to be normalized |
---|
300 | */ |
---|
301 | public boolean getNormalize() { |
---|
302 | return m_Normalize; |
---|
303 | } |
---|
304 | |
---|
305 | /** |
---|
306 | * Returns the tip text for this property. |
---|
307 | * |
---|
308 | * @return tip text for this property suitable for |
---|
309 | * displaying in the explorer/experimenter gui |
---|
310 | */ |
---|
311 | public String varianceCoveredTipText() { |
---|
312 | return "Retain enough PC attributes to account for this proportion of variance."; |
---|
313 | } |
---|
314 | |
---|
315 | /** |
---|
316 | * Sets the amount of variance to account for when retaining |
---|
317 | * principal components. |
---|
318 | * |
---|
319 | * @param value the proportion of total variance to account for |
---|
320 | */ |
---|
321 | public void setVarianceCovered(double value) { |
---|
322 | m_CoverVariance = value; |
---|
323 | } |
---|
324 | |
---|
325 | /** |
---|
326 | * Gets the proportion of total variance to account for when |
---|
327 | * retaining principal components. |
---|
328 | * |
---|
329 | * @return the proportion of variance to account for |
---|
330 | */ |
---|
331 | public double getVarianceCovered() { |
---|
332 | return m_CoverVariance; |
---|
333 | } |
---|
334 | |
---|
335 | /** |
---|
336 | * Returns the tip text for this property. |
---|
337 | * |
---|
338 | * @return tip text for this property suitable for |
---|
339 | * displaying in the explorer/experimenter gui |
---|
340 | */ |
---|
341 | public String maximumAttributeNamesTipText() { |
---|
342 | return "The maximum number of attributes to include in transformed attribute names."; |
---|
343 | } |
---|
344 | |
---|
345 | /** |
---|
346 | * Sets maximum number of attributes to include in |
---|
347 | * transformed attribute names. |
---|
348 | * |
---|
349 | * @param value the maximum number of attributes |
---|
350 | */ |
---|
351 | public void setMaximumAttributeNames(int value) { |
---|
352 | m_MaxAttrsInName = value; |
---|
353 | } |
---|
354 | |
---|
355 | /** |
---|
356 | * Gets maximum number of attributes to include in |
---|
357 | * transformed attribute names. |
---|
358 | * |
---|
359 | * @return the maximum number of attributes |
---|
360 | */ |
---|
361 | public int getMaximumAttributeNames() { |
---|
362 | return m_MaxAttrsInName; |
---|
363 | } |
---|
364 | |
---|
365 | /** |
---|
366 | * Returns the tip text for this property. |
---|
367 | * |
---|
368 | * @return tip text for this property suitable for |
---|
369 | * displaying in the explorer/experimenter gui |
---|
370 | */ |
---|
371 | public String maximumAttributesTipText() { |
---|
372 | return "The maximum number of PC attributes to retain."; |
---|
373 | } |
---|
374 | |
---|
375 | /** |
---|
376 | * Sets maximum number of PC attributes to retain. |
---|
377 | * |
---|
378 | * @param value the maximum number of attributes |
---|
379 | */ |
---|
380 | public void setMaximumAttributes(int value) { |
---|
381 | m_MaxAttributes = value; |
---|
382 | } |
---|
383 | |
---|
384 | /** |
---|
385 | * Gets maximum number of PC attributes to retain. |
---|
386 | * |
---|
387 | * @return the maximum number of attributes |
---|
388 | */ |
---|
389 | public int getMaximumAttributes() { |
---|
390 | return m_MaxAttributes; |
---|
391 | } |
---|
392 | |
---|
393 | /** |
---|
394 | * Returns the capabilities of this evaluator. |
---|
395 | * |
---|
396 | * @return the capabilities of this evaluator |
---|
397 | * @see Capabilities |
---|
398 | */ |
---|
399 | public Capabilities getCapabilities() { |
---|
400 | Capabilities result = super.getCapabilities(); |
---|
401 | result.disableAll(); |
---|
402 | |
---|
403 | // attributes |
---|
404 | result.enable(Capability.NOMINAL_ATTRIBUTES); |
---|
405 | result.enable(Capability.NUMERIC_ATTRIBUTES); |
---|
406 | result.enable(Capability.DATE_ATTRIBUTES); |
---|
407 | result.enable(Capability.MISSING_VALUES); |
---|
408 | |
---|
409 | // class |
---|
410 | result.enable(Capability.NOMINAL_CLASS); |
---|
411 | result.enable(Capability.NUMERIC_CLASS); |
---|
412 | result.enable(Capability.DATE_CLASS); |
---|
413 | result.enable(Capability.MISSING_CLASS_VALUES); |
---|
414 | result.enable(Capability.NO_CLASS); |
---|
415 | |
---|
416 | return result; |
---|
417 | } |
---|
418 | |
---|
419 | /** |
---|
420 | * Determines the output format based on the input format and returns |
---|
421 | * this. In case the output format cannot be returned immediately, i.e., |
---|
422 | * immediateOutputFormat() returns false, then this method will be called |
---|
423 | * from batchFinished(). |
---|
424 | * |
---|
425 | * @param inputFormat the input format to base the output format on |
---|
426 | * @return the output format |
---|
427 | * @throws Exception in case the determination goes wrong |
---|
428 | * @see #hasImmediateOutputFormat() |
---|
429 | * @see #batchFinished() |
---|
430 | */ |
---|
431 | protected Instances determineOutputFormat(Instances inputFormat) throws Exception { |
---|
432 | double cumulative; |
---|
433 | FastVector attributes; |
---|
434 | int i; |
---|
435 | int j; |
---|
436 | StringBuffer attName; |
---|
437 | double[] coeff_mags; |
---|
438 | int num_attrs; |
---|
439 | int[] coeff_inds; |
---|
440 | double coeff_value; |
---|
441 | int numAttsLowerBound; |
---|
442 | |
---|
443 | if (m_Eigenvalues == null) |
---|
444 | return inputFormat; |
---|
445 | |
---|
446 | if (m_MaxAttributes > 0) |
---|
447 | numAttsLowerBound = m_NumAttribs - m_MaxAttributes; |
---|
448 | else |
---|
449 | numAttsLowerBound = 0; |
---|
450 | if (numAttsLowerBound < 0) |
---|
451 | numAttsLowerBound = 0; |
---|
452 | |
---|
453 | cumulative = 0.0; |
---|
454 | attributes = new FastVector(); |
---|
455 | for (i = m_NumAttribs - 1; i >= numAttsLowerBound; i--) { |
---|
456 | attName = new StringBuffer(); |
---|
457 | // build array of coefficients |
---|
458 | coeff_mags = new double[m_NumAttribs]; |
---|
459 | for (j = 0; j < m_NumAttribs; j++) |
---|
460 | coeff_mags[j] = -Math.abs(m_Eigenvectors[j][m_SortedEigens[i]]); |
---|
461 | num_attrs = (m_MaxAttrsInName > 0) ? Math.min(m_NumAttribs, m_MaxAttrsInName) : m_NumAttribs; |
---|
462 | |
---|
463 | // this array contains the sorted indices of the coefficients |
---|
464 | if (m_NumAttribs > 0) { |
---|
465 | // if m_maxAttrsInName > 0, sort coefficients by decreasing magnitude |
---|
466 | coeff_inds = Utils.sort(coeff_mags); |
---|
467 | } |
---|
468 | else { |
---|
469 | // if m_maxAttrsInName <= 0, use all coeffs in original order |
---|
470 | coeff_inds = new int[m_NumAttribs]; |
---|
471 | for (j = 0; j < m_NumAttribs; j++) |
---|
472 | coeff_inds[j] = j; |
---|
473 | } |
---|
474 | // build final attName string |
---|
475 | for (j = 0; j < num_attrs; j++) { |
---|
476 | coeff_value = m_Eigenvectors[coeff_inds[j]][m_SortedEigens[i]]; |
---|
477 | if (j > 0 && coeff_value >= 0) |
---|
478 | attName.append("+"); |
---|
479 | attName.append( |
---|
480 | Utils.doubleToString(coeff_value,5,3) |
---|
481 | + inputFormat.attribute(coeff_inds[j]).name()); |
---|
482 | } |
---|
483 | if (num_attrs < m_NumAttribs) |
---|
484 | attName.append("..."); |
---|
485 | |
---|
486 | attributes.addElement(new Attribute(attName.toString())); |
---|
487 | cumulative += m_Eigenvalues[m_SortedEigens[i]]; |
---|
488 | |
---|
489 | if ((cumulative / m_SumOfEigenValues) >= m_CoverVariance) |
---|
490 | break; |
---|
491 | } |
---|
492 | |
---|
493 | if (m_HasClass) |
---|
494 | attributes.addElement(m_TrainCopy.classAttribute().copy()); |
---|
495 | |
---|
496 | Instances outputFormat = |
---|
497 | new Instances( |
---|
498 | m_TrainCopy.relationName() + "_principal components", attributes, 0); |
---|
499 | |
---|
500 | // set the class to be the last attribute if necessary |
---|
501 | if (m_HasClass) |
---|
502 | outputFormat.setClassIndex(outputFormat.numAttributes() - 1); |
---|
503 | |
---|
504 | m_OutputNumAtts = outputFormat.numAttributes(); |
---|
505 | |
---|
506 | return outputFormat; |
---|
507 | } |
---|
508 | |
---|
509 | /** |
---|
510 | * Fill the correlation matrix. |
---|
511 | */ |
---|
512 | protected void fillCorrelation() { |
---|
513 | int i; |
---|
514 | int j; |
---|
515 | int k; |
---|
516 | double[] att1; |
---|
517 | double[] att2; |
---|
518 | double corr; |
---|
519 | |
---|
520 | m_Correlation = new double[m_NumAttribs][m_NumAttribs]; |
---|
521 | att1 = new double [m_NumInstances]; |
---|
522 | att2 = new double [m_NumInstances]; |
---|
523 | |
---|
524 | for (i = 0; i < m_NumAttribs; i++) { |
---|
525 | for (j = 0; j < m_NumAttribs; j++) { |
---|
526 | if (i == j) { |
---|
527 | m_Correlation[i][j] = 1.0; |
---|
528 | } |
---|
529 | else { |
---|
530 | for (k = 0; k < m_NumInstances; k++) { |
---|
531 | att1[k] = m_TrainInstances.instance(k).value(i); |
---|
532 | att2[k] = m_TrainInstances.instance(k).value(j); |
---|
533 | } |
---|
534 | corr = Utils.correlation(att1,att2,m_NumInstances); |
---|
535 | m_Correlation[i][j] = corr; |
---|
536 | m_Correlation[j][i] = corr; |
---|
537 | } |
---|
538 | } |
---|
539 | } |
---|
540 | } |
---|
541 | |
---|
542 | /** |
---|
543 | * Transform an instance in original (unormalized) format. |
---|
544 | * |
---|
545 | * @param instance an instance in the original (unormalized) format |
---|
546 | * @return a transformed instance |
---|
547 | * @throws Exception if instance can't be transformed |
---|
548 | */ |
---|
549 | protected Instance convertInstance(Instance instance) throws Exception { |
---|
550 | Instance result; |
---|
551 | double[] newVals; |
---|
552 | Instance tempInst; |
---|
553 | double cumulative; |
---|
554 | int i; |
---|
555 | int j; |
---|
556 | double tempval; |
---|
557 | int numAttsLowerBound; |
---|
558 | |
---|
559 | newVals = new double[m_OutputNumAtts]; |
---|
560 | tempInst = (Instance) instance.copy(); |
---|
561 | |
---|
562 | m_ReplaceMissingFilter.input(tempInst); |
---|
563 | m_ReplaceMissingFilter.batchFinished(); |
---|
564 | tempInst = m_ReplaceMissingFilter.output(); |
---|
565 | |
---|
566 | if (m_Normalize) { |
---|
567 | m_NormalizeFilter.input(tempInst); |
---|
568 | m_NormalizeFilter.batchFinished(); |
---|
569 | tempInst = m_NormalizeFilter.output(); |
---|
570 | } |
---|
571 | |
---|
572 | m_NominalToBinaryFilter.input(tempInst); |
---|
573 | m_NominalToBinaryFilter.batchFinished(); |
---|
574 | tempInst = m_NominalToBinaryFilter.output(); |
---|
575 | |
---|
576 | if (m_AttributeFilter != null) { |
---|
577 | m_AttributeFilter.input(tempInst); |
---|
578 | m_AttributeFilter.batchFinished(); |
---|
579 | tempInst = m_AttributeFilter.output(); |
---|
580 | } |
---|
581 | |
---|
582 | if (m_HasClass) |
---|
583 | newVals[m_OutputNumAtts - 1] = instance.value(instance.classIndex()); |
---|
584 | |
---|
585 | if (m_MaxAttributes > 0) |
---|
586 | numAttsLowerBound = m_NumAttribs - m_MaxAttributes; |
---|
587 | else |
---|
588 | numAttsLowerBound = 0; |
---|
589 | if (numAttsLowerBound < 0) |
---|
590 | numAttsLowerBound = 0; |
---|
591 | |
---|
592 | cumulative = 0; |
---|
593 | for (i = m_NumAttribs - 1; i >= numAttsLowerBound; i--) { |
---|
594 | tempval = 0.0; |
---|
595 | for (j = 0; j < m_NumAttribs; j++) |
---|
596 | tempval += m_Eigenvectors[j][m_SortedEigens[i]] * tempInst.value(j); |
---|
597 | |
---|
598 | newVals[m_NumAttribs - i - 1] = tempval; |
---|
599 | cumulative += m_Eigenvalues[m_SortedEigens[i]]; |
---|
600 | if ((cumulative / m_SumOfEigenValues) >= m_CoverVariance) |
---|
601 | break; |
---|
602 | } |
---|
603 | |
---|
604 | // create instance |
---|
605 | if (instance instanceof SparseInstance) |
---|
606 | result = new SparseInstance(instance.weight(), newVals); |
---|
607 | else |
---|
608 | result = new DenseInstance(instance.weight(), newVals); |
---|
609 | |
---|
610 | return result; |
---|
611 | } |
---|
612 | |
---|
613 | /** |
---|
614 | * Initializes the filter with the given input data. |
---|
615 | * |
---|
616 | * @param instances the data to process |
---|
617 | * @throws Exception in case the processing goes wrong |
---|
618 | * @see #batchFinished() |
---|
619 | */ |
---|
620 | protected void setup(Instances instances) throws Exception { |
---|
621 | int i; |
---|
622 | int j; |
---|
623 | Vector<Integer> deleteCols; |
---|
624 | int[] todelete; |
---|
625 | double[][] v; |
---|
626 | Matrix corr; |
---|
627 | EigenvalueDecomposition eig; |
---|
628 | Matrix V; |
---|
629 | |
---|
630 | m_TrainInstances = new Instances(instances); |
---|
631 | |
---|
632 | // make a copy of the training data so that we can get the class |
---|
633 | // column to append to the transformed data (if necessary) |
---|
634 | m_TrainCopy = new Instances(m_TrainInstances, 0); |
---|
635 | |
---|
636 | m_ReplaceMissingFilter = new ReplaceMissingValues(); |
---|
637 | m_ReplaceMissingFilter.setInputFormat(m_TrainInstances); |
---|
638 | m_TrainInstances = Filter.useFilter(m_TrainInstances, m_ReplaceMissingFilter); |
---|
639 | |
---|
640 | if (m_Normalize) { |
---|
641 | m_NormalizeFilter = new Normalize(); |
---|
642 | m_NormalizeFilter.setInputFormat(m_TrainInstances); |
---|
643 | m_TrainInstances = Filter.useFilter(m_TrainInstances, m_NormalizeFilter); |
---|
644 | } |
---|
645 | |
---|
646 | m_NominalToBinaryFilter = new NominalToBinary(); |
---|
647 | m_NominalToBinaryFilter.setInputFormat(m_TrainInstances); |
---|
648 | m_TrainInstances = Filter.useFilter(m_TrainInstances, m_NominalToBinaryFilter); |
---|
649 | |
---|
650 | // delete any attributes with only one distinct value or are all missing |
---|
651 | deleteCols = new Vector<Integer>(); |
---|
652 | for (i = 0; i < m_TrainInstances.numAttributes(); i++) { |
---|
653 | if (m_TrainInstances.numDistinctValues(i) <= 1) |
---|
654 | deleteCols.addElement(i); |
---|
655 | } |
---|
656 | |
---|
657 | if (m_TrainInstances.classIndex() >=0) { |
---|
658 | // get rid of the class column |
---|
659 | m_HasClass = true; |
---|
660 | m_ClassIndex = m_TrainInstances.classIndex(); |
---|
661 | deleteCols.addElement(new Integer(m_ClassIndex)); |
---|
662 | } |
---|
663 | |
---|
664 | // remove columns from the data if necessary |
---|
665 | if (deleteCols.size() > 0) { |
---|
666 | m_AttributeFilter = new Remove(); |
---|
667 | todelete = new int [deleteCols.size()]; |
---|
668 | for (i = 0; i < deleteCols.size(); i++) |
---|
669 | todelete[i] = ((Integer)(deleteCols.elementAt(i))).intValue(); |
---|
670 | m_AttributeFilter.setAttributeIndicesArray(todelete); |
---|
671 | m_AttributeFilter.setInvertSelection(false); |
---|
672 | m_AttributeFilter.setInputFormat(m_TrainInstances); |
---|
673 | m_TrainInstances = Filter.useFilter(m_TrainInstances, m_AttributeFilter); |
---|
674 | } |
---|
675 | |
---|
676 | // can evaluator handle the processed data ? e.g., enough attributes? |
---|
677 | getCapabilities().testWithFail(m_TrainInstances); |
---|
678 | |
---|
679 | m_NumInstances = m_TrainInstances.numInstances(); |
---|
680 | m_NumAttribs = m_TrainInstances.numAttributes(); |
---|
681 | |
---|
682 | fillCorrelation(); |
---|
683 | |
---|
684 | // get eigen vectors/values |
---|
685 | corr = new Matrix(m_Correlation); |
---|
686 | eig = corr.eig(); |
---|
687 | V = eig.getV(); |
---|
688 | v = new double[m_NumAttribs][m_NumAttribs]; |
---|
689 | for (i = 0; i < v.length; i++) { |
---|
690 | for (j = 0; j < v[0].length; j++) |
---|
691 | v[i][j] = V.get(i, j); |
---|
692 | } |
---|
693 | m_Eigenvectors = (double[][]) v.clone(); |
---|
694 | m_Eigenvalues = (double[]) eig.getRealEigenvalues().clone(); |
---|
695 | |
---|
696 | // any eigenvalues less than 0 are not worth anything --- change to 0 |
---|
697 | for (i = 0; i < m_Eigenvalues.length; i++) { |
---|
698 | if (m_Eigenvalues[i] < 0) |
---|
699 | m_Eigenvalues[i] = 0.0; |
---|
700 | } |
---|
701 | m_SortedEigens = Utils.sort(m_Eigenvalues); |
---|
702 | m_SumOfEigenValues = Utils.sum(m_Eigenvalues); |
---|
703 | |
---|
704 | m_TransformedFormat = determineOutputFormat(m_TrainInstances); |
---|
705 | setOutputFormat(m_TransformedFormat); |
---|
706 | |
---|
707 | m_TrainInstances = null; |
---|
708 | } |
---|
709 | |
---|
710 | /** |
---|
711 | * Sets the format of the input instances. |
---|
712 | * |
---|
713 | * @param instanceInfo an Instances object containing the input |
---|
714 | * instance structure (any instances contained |
---|
715 | * in the object are ignored - only the structure |
---|
716 | * is required). |
---|
717 | * @return true if the outputFormat may be collected |
---|
718 | * immediately |
---|
719 | * @throws Exception if the input format can't be set successfully |
---|
720 | */ |
---|
721 | public boolean setInputFormat(Instances instanceInfo) throws Exception { |
---|
722 | super.setInputFormat(instanceInfo); |
---|
723 | |
---|
724 | m_Eigenvalues = null; |
---|
725 | m_OutputNumAtts = -1; |
---|
726 | m_AttributeFilter = null; |
---|
727 | m_NominalToBinaryFilter = null; |
---|
728 | m_SumOfEigenValues = 0.0; |
---|
729 | |
---|
730 | return false; |
---|
731 | } |
---|
732 | |
---|
733 | /** |
---|
734 | * Input an instance for filtering. Filter requires all |
---|
735 | * training instances be read before producing output. |
---|
736 | * |
---|
737 | * @param instance the input instance |
---|
738 | * @return true if the filtered instance may now be |
---|
739 | * collected with output(). |
---|
740 | * @throws IllegalStateException if no input format has been set |
---|
741 | * @throws Exception if conversion fails |
---|
742 | */ |
---|
743 | public boolean input(Instance instance) throws Exception { |
---|
744 | Instance inst; |
---|
745 | |
---|
746 | if (getInputFormat() == null) |
---|
747 | throw new IllegalStateException("No input instance format defined"); |
---|
748 | |
---|
749 | if (isNewBatch()) { |
---|
750 | resetQueue(); |
---|
751 | m_NewBatch = false; |
---|
752 | } |
---|
753 | |
---|
754 | if (isFirstBatchDone()) { |
---|
755 | inst = convertInstance(instance); |
---|
756 | inst.setDataset(getOutputFormat()); |
---|
757 | push(inst); |
---|
758 | return true; |
---|
759 | } |
---|
760 | else { |
---|
761 | bufferInput(instance); |
---|
762 | return false; |
---|
763 | } |
---|
764 | } |
---|
765 | |
---|
766 | /** |
---|
767 | * Signify that this batch of input to the filter is finished. |
---|
768 | * |
---|
769 | * @return true if there are instances pending output |
---|
770 | * @throws NullPointerException if no input structure has been defined, |
---|
771 | * @throws Exception if there was a problem finishing the batch. |
---|
772 | */ |
---|
773 | public boolean batchFinished() throws Exception { |
---|
774 | int i; |
---|
775 | Instances insts; |
---|
776 | Instance inst; |
---|
777 | |
---|
778 | if (getInputFormat() == null) |
---|
779 | throw new NullPointerException("No input instance format defined"); |
---|
780 | |
---|
781 | insts = getInputFormat(); |
---|
782 | |
---|
783 | if (!isFirstBatchDone()) |
---|
784 | setup(insts); |
---|
785 | |
---|
786 | for (i = 0; i < insts.numInstances(); i++) { |
---|
787 | inst = convertInstance(insts.instance(i)); |
---|
788 | inst.setDataset(getOutputFormat()); |
---|
789 | push(inst); |
---|
790 | } |
---|
791 | |
---|
792 | flushInput(); |
---|
793 | m_NewBatch = true; |
---|
794 | m_FirstBatchDone = true; |
---|
795 | |
---|
796 | return (numPendingOutput() != 0); |
---|
797 | } |
---|
798 | |
---|
799 | /** |
---|
800 | * Returns the revision string. |
---|
801 | * |
---|
802 | * @return the revision |
---|
803 | */ |
---|
804 | public String getRevision() { |
---|
805 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
806 | } |
---|
807 | |
---|
808 | /** |
---|
809 | * Main method for running this filter. |
---|
810 | * |
---|
811 | * @param args should contain arguments to the filter: use -h for help |
---|
812 | */ |
---|
813 | public static void main(String[] args) { |
---|
814 | runFilter(new PrincipalComponents(), args); |
---|
815 | } |
---|
816 | } |
---|