| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * Resample.java |
|---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.filters.supervised.instance; |
|---|
| 24 | |
|---|
| 25 | import weka.core.Capabilities; |
|---|
| 26 | import weka.core.Instance; |
|---|
| 27 | import weka.core.Instances; |
|---|
| 28 | import weka.core.Option; |
|---|
| 29 | import weka.core.OptionHandler; |
|---|
| 30 | import weka.core.RevisionUtils; |
|---|
| 31 | import weka.core.Utils; |
|---|
| 32 | import weka.core.Capabilities.Capability; |
|---|
| 33 | import weka.filters.Filter; |
|---|
| 34 | import weka.filters.SupervisedFilter; |
|---|
| 35 | |
|---|
| 36 | import java.util.Collections; |
|---|
| 37 | import java.util.Enumeration; |
|---|
| 38 | import java.util.Random; |
|---|
| 39 | import java.util.Vector; |
|---|
| 40 | |
|---|
| 41 | /** |
|---|
| 42 | <!-- globalinfo-start --> |
|---|
| 43 | * Produces a random subsample of a dataset using either sampling with replacement or without replacement.<br/> |
|---|
| 44 | * The original dataset must fit entirely in memory. The number of instances in the generated dataset may be specified. The dataset must have a nominal class attribute. If not, use the unsupervised version. The filter can be made to maintain the class distribution in the subsample, or to bias the class distribution toward a uniform distribution. When used in batch mode (i.e. in the FilteredClassifier), subsequent batches are NOT resampled. |
|---|
| 45 | * <p/> |
|---|
| 46 | <!-- globalinfo-end --> |
|---|
| 47 | * |
|---|
| 48 | <!-- options-start --> |
|---|
| 49 | * Valid options are: <p/> |
|---|
| 50 | * |
|---|
| 51 | * <pre> -S <num> |
|---|
| 52 | * Specify the random number seed (default 1)</pre> |
|---|
| 53 | * |
|---|
| 54 | * <pre> -Z <num> |
|---|
| 55 | * The size of the output dataset, as a percentage of |
|---|
| 56 | * the input dataset (default 100)</pre> |
|---|
| 57 | * |
|---|
| 58 | * <pre> -B <num> |
|---|
| 59 | * Bias factor towards uniform class distribution. |
|---|
| 60 | * 0 = distribution in input data -- 1 = uniform distribution. |
|---|
| 61 | * (default 0)</pre> |
|---|
| 62 | * |
|---|
| 63 | * <pre> -no-replacement |
|---|
| 64 | * Disables replacement of instances |
|---|
| 65 | * (default: with replacement)</pre> |
|---|
| 66 | * |
|---|
| 67 | * <pre> -V |
|---|
| 68 | * Inverts the selection - only available with '-no-replacement'.</pre> |
|---|
| 69 | * |
|---|
| 70 | <!-- options-end --> |
|---|
| 71 | * |
|---|
| 72 | * @author Len Trigg (len@reeltwo.com) |
|---|
| 73 | * @author FracPete (fracpete at waikato dot ac dot nz) |
|---|
| 74 | * @version $Revision: 5492 $ |
|---|
| 75 | */ |
|---|
| 76 | public class Resample |
|---|
| 77 | extends Filter |
|---|
| 78 | implements SupervisedFilter, OptionHandler { |
|---|
| 79 | |
|---|
| 80 | /** for serialization. */ |
|---|
| 81 | static final long serialVersionUID = 7079064953548300681L; |
|---|
| 82 | |
|---|
| 83 | /** The subsample size, percent of original set, default 100%. */ |
|---|
| 84 | protected double m_SampleSizePercent = 100; |
|---|
| 85 | |
|---|
| 86 | /** The random number generator seed. */ |
|---|
| 87 | protected int m_RandomSeed = 1; |
|---|
| 88 | |
|---|
| 89 | /** The degree of bias towards uniform (nominal) class distribution. */ |
|---|
| 90 | protected double m_BiasToUniformClass = 0; |
|---|
| 91 | |
|---|
| 92 | /** Whether to perform sampling with replacement or without. */ |
|---|
| 93 | protected boolean m_NoReplacement = false; |
|---|
| 94 | |
|---|
| 95 | /** Whether to invert the selection (only if instances are drawn WITHOUT |
|---|
| 96 | * replacement). |
|---|
| 97 | * @see #m_NoReplacement */ |
|---|
| 98 | protected boolean m_InvertSelection = false; |
|---|
| 99 | |
|---|
| 100 | /** |
|---|
| 101 | * Returns a string describing this filter. |
|---|
| 102 | * |
|---|
| 103 | * @return a description of the filter suitable for |
|---|
| 104 | * displaying in the explorer/experimenter gui |
|---|
| 105 | */ |
|---|
| 106 | public String globalInfo() { |
|---|
| 107 | return |
|---|
| 108 | "Produces a random subsample of a dataset using either sampling " |
|---|
| 109 | + "with replacement or without replacement.\n" |
|---|
| 110 | + "The original dataset must " |
|---|
| 111 | + "fit entirely in memory. The number of instances in the generated " |
|---|
| 112 | + "dataset may be specified. The dataset must have a nominal class " |
|---|
| 113 | + "attribute. If not, use the unsupervised version. The filter can be " |
|---|
| 114 | + "made to maintain the class distribution in the subsample, or to bias " |
|---|
| 115 | + "the class distribution toward a uniform distribution. When used in batch " |
|---|
| 116 | + "mode (i.e. in the FilteredClassifier), subsequent batches are NOT resampled."; |
|---|
| 117 | } |
|---|
| 118 | |
|---|
| 119 | /** |
|---|
| 120 | * Returns an enumeration describing the available options. |
|---|
| 121 | * |
|---|
| 122 | * @return an enumeration of all the available options. |
|---|
| 123 | */ |
|---|
| 124 | public Enumeration listOptions() { |
|---|
| 125 | Vector result = new Vector(); |
|---|
| 126 | |
|---|
| 127 | result.addElement(new Option( |
|---|
| 128 | "\tSpecify the random number seed (default 1)", |
|---|
| 129 | "S", 1, "-S <num>")); |
|---|
| 130 | |
|---|
| 131 | result.addElement(new Option( |
|---|
| 132 | "\tThe size of the output dataset, as a percentage of\n" |
|---|
| 133 | +"\tthe input dataset (default 100)", |
|---|
| 134 | "Z", 1, "-Z <num>")); |
|---|
| 135 | |
|---|
| 136 | result.addElement(new Option( |
|---|
| 137 | "\tBias factor towards uniform class distribution.\n" |
|---|
| 138 | +"\t0 = distribution in input data -- 1 = uniform distribution.\n" |
|---|
| 139 | +"\t(default 0)", |
|---|
| 140 | "B", 1, "-B <num>")); |
|---|
| 141 | |
|---|
| 142 | result.addElement(new Option( |
|---|
| 143 | "\tDisables replacement of instances\n" |
|---|
| 144 | +"\t(default: with replacement)", |
|---|
| 145 | "no-replacement", 0, "-no-replacement")); |
|---|
| 146 | |
|---|
| 147 | result.addElement(new Option( |
|---|
| 148 | "\tInverts the selection - only available with '-no-replacement'.", |
|---|
| 149 | "V", 0, "-V")); |
|---|
| 150 | |
|---|
| 151 | return result.elements(); |
|---|
| 152 | } |
|---|
| 153 | |
|---|
| 154 | |
|---|
| 155 | /** |
|---|
| 156 | * Parses a given list of options. <p/> |
|---|
| 157 | * |
|---|
| 158 | <!-- options-start --> |
|---|
| 159 | * Valid options are: <p/> |
|---|
| 160 | * |
|---|
| 161 | * <pre> -S <num> |
|---|
| 162 | * Specify the random number seed (default 1)</pre> |
|---|
| 163 | * |
|---|
| 164 | * <pre> -Z <num> |
|---|
| 165 | * The size of the output dataset, as a percentage of |
|---|
| 166 | * the input dataset (default 100)</pre> |
|---|
| 167 | * |
|---|
| 168 | * <pre> -B <num> |
|---|
| 169 | * Bias factor towards uniform class distribution. |
|---|
| 170 | * 0 = distribution in input data -- 1 = uniform distribution. |
|---|
| 171 | * (default 0)</pre> |
|---|
| 172 | * |
|---|
| 173 | * <pre> -no-replacement |
|---|
| 174 | * Disables replacement of instances |
|---|
| 175 | * (default: with replacement)</pre> |
|---|
| 176 | * |
|---|
| 177 | * <pre> -V |
|---|
| 178 | * Inverts the selection - only available with '-no-replacement'.</pre> |
|---|
| 179 | * |
|---|
| 180 | <!-- options-end --> |
|---|
| 181 | * |
|---|
| 182 | * @param options the list of options as an array of strings |
|---|
| 183 | * @throws Exception if an option is not supported |
|---|
| 184 | */ |
|---|
| 185 | public void setOptions(String[] options) throws Exception { |
|---|
| 186 | String tmpStr; |
|---|
| 187 | |
|---|
| 188 | tmpStr = Utils.getOption('S', options); |
|---|
| 189 | if (tmpStr.length() != 0) |
|---|
| 190 | setRandomSeed(Integer.parseInt(tmpStr)); |
|---|
| 191 | else |
|---|
| 192 | setRandomSeed(1); |
|---|
| 193 | |
|---|
| 194 | tmpStr = Utils.getOption('B', options); |
|---|
| 195 | if (tmpStr.length() != 0) |
|---|
| 196 | setBiasToUniformClass(Double.parseDouble(tmpStr)); |
|---|
| 197 | else |
|---|
| 198 | setBiasToUniformClass(0); |
|---|
| 199 | |
|---|
| 200 | tmpStr = Utils.getOption('Z', options); |
|---|
| 201 | if (tmpStr.length() != 0) |
|---|
| 202 | setSampleSizePercent(Double.parseDouble(tmpStr)); |
|---|
| 203 | else |
|---|
| 204 | setSampleSizePercent(100); |
|---|
| 205 | |
|---|
| 206 | setNoReplacement(Utils.getFlag("no-replacement", options)); |
|---|
| 207 | |
|---|
| 208 | if (getNoReplacement()) |
|---|
| 209 | setInvertSelection(Utils.getFlag('V', options)); |
|---|
| 210 | |
|---|
| 211 | if (getInputFormat() != null) { |
|---|
| 212 | setInputFormat(getInputFormat()); |
|---|
| 213 | } |
|---|
| 214 | } |
|---|
| 215 | |
|---|
| 216 | /** |
|---|
| 217 | * Gets the current settings of the filter. |
|---|
| 218 | * |
|---|
| 219 | * @return an array of strings suitable for passing to setOptions |
|---|
| 220 | */ |
|---|
| 221 | public String [] getOptions() { |
|---|
| 222 | Vector<String> result; |
|---|
| 223 | |
|---|
| 224 | result = new Vector<String>(); |
|---|
| 225 | |
|---|
| 226 | result.add("-B"); |
|---|
| 227 | result.add("" + getBiasToUniformClass()); |
|---|
| 228 | |
|---|
| 229 | result.add("-S"); |
|---|
| 230 | result.add("" + getRandomSeed()); |
|---|
| 231 | |
|---|
| 232 | result.add("-Z"); |
|---|
| 233 | result.add("" + getSampleSizePercent()); |
|---|
| 234 | |
|---|
| 235 | if (getNoReplacement()) { |
|---|
| 236 | result.add("-no-replacement"); |
|---|
| 237 | if (getInvertSelection()) |
|---|
| 238 | result.add("-V"); |
|---|
| 239 | } |
|---|
| 240 | |
|---|
| 241 | return result.toArray(new String[result.size()]); |
|---|
| 242 | } |
|---|
| 243 | |
|---|
| 244 | /** |
|---|
| 245 | * Returns the tip text for this property. |
|---|
| 246 | * |
|---|
| 247 | * @return tip text for this property suitable for |
|---|
| 248 | * displaying in the explorer/experimenter gui |
|---|
| 249 | */ |
|---|
| 250 | public String biasToUniformClassTipText() { |
|---|
| 251 | return "Whether to use bias towards a uniform class. A value of 0 leaves the class " |
|---|
| 252 | + "distribution as-is, a value of 1 ensures the class distribution is " |
|---|
| 253 | + "uniform in the output data."; |
|---|
| 254 | } |
|---|
| 255 | |
|---|
| 256 | /** |
|---|
| 257 | * Gets the bias towards a uniform class. A value of 0 leaves the class |
|---|
| 258 | * distribution as-is, a value of 1 ensures the class distributions are |
|---|
| 259 | * uniform in the output data. |
|---|
| 260 | * |
|---|
| 261 | * @return the current bias |
|---|
| 262 | */ |
|---|
| 263 | public double getBiasToUniformClass() { |
|---|
| 264 | return m_BiasToUniformClass; |
|---|
| 265 | } |
|---|
| 266 | |
|---|
| 267 | /** |
|---|
| 268 | * Sets the bias towards a uniform class. A value of 0 leaves the class |
|---|
| 269 | * distribution as-is, a value of 1 ensures the class distributions are |
|---|
| 270 | * uniform in the output data. |
|---|
| 271 | * |
|---|
| 272 | * @param newBiasToUniformClass the new bias value, between 0 and 1. |
|---|
| 273 | */ |
|---|
| 274 | public void setBiasToUniformClass(double newBiasToUniformClass) { |
|---|
| 275 | m_BiasToUniformClass = newBiasToUniformClass; |
|---|
| 276 | } |
|---|
| 277 | |
|---|
| 278 | /** |
|---|
| 279 | * Returns the tip text for this property. |
|---|
| 280 | * |
|---|
| 281 | * @return tip text for this property suitable for |
|---|
| 282 | * displaying in the explorer/experimenter gui |
|---|
| 283 | */ |
|---|
| 284 | public String randomSeedTipText() { |
|---|
| 285 | return "Sets the random number seed for subsampling."; |
|---|
| 286 | } |
|---|
| 287 | |
|---|
| 288 | /** |
|---|
| 289 | * Gets the random number seed. |
|---|
| 290 | * |
|---|
| 291 | * @return the random number seed. |
|---|
| 292 | */ |
|---|
| 293 | public int getRandomSeed() { |
|---|
| 294 | return m_RandomSeed; |
|---|
| 295 | } |
|---|
| 296 | |
|---|
| 297 | /** |
|---|
| 298 | * Sets the random number seed. |
|---|
| 299 | * |
|---|
| 300 | * @param newSeed the new random number seed. |
|---|
| 301 | */ |
|---|
| 302 | public void setRandomSeed(int newSeed) { |
|---|
| 303 | m_RandomSeed = newSeed; |
|---|
| 304 | } |
|---|
| 305 | |
|---|
| 306 | /** |
|---|
| 307 | * Returns the tip text for this property. |
|---|
| 308 | * |
|---|
| 309 | * @return tip text for this property suitable for |
|---|
| 310 | * displaying in the explorer/experimenter gui |
|---|
| 311 | */ |
|---|
| 312 | public String sampleSizePercentTipText() { |
|---|
| 313 | return "The subsample size as a percentage of the original set."; |
|---|
| 314 | } |
|---|
| 315 | |
|---|
| 316 | /** |
|---|
| 317 | * Gets the subsample size as a percentage of the original set. |
|---|
| 318 | * |
|---|
| 319 | * @return the subsample size |
|---|
| 320 | */ |
|---|
| 321 | public double getSampleSizePercent() { |
|---|
| 322 | return m_SampleSizePercent; |
|---|
| 323 | } |
|---|
| 324 | |
|---|
| 325 | /** |
|---|
| 326 | * Sets the size of the subsample, as a percentage of the original set. |
|---|
| 327 | * |
|---|
| 328 | * @param newSampleSizePercent the subsample set size, between 0 and 100. |
|---|
| 329 | */ |
|---|
| 330 | public void setSampleSizePercent(double newSampleSizePercent) { |
|---|
| 331 | m_SampleSizePercent = newSampleSizePercent; |
|---|
| 332 | } |
|---|
| 333 | |
|---|
| 334 | /** |
|---|
| 335 | * Returns the tip text for this property. |
|---|
| 336 | * |
|---|
| 337 | * @return tip text for this property suitable for |
|---|
| 338 | * displaying in the explorer/experimenter gui |
|---|
| 339 | */ |
|---|
| 340 | public String noReplacementTipText() { |
|---|
| 341 | return "Disables the replacement of instances."; |
|---|
| 342 | } |
|---|
| 343 | |
|---|
| 344 | /** |
|---|
| 345 | * Gets whether instances are drawn with or without replacement. |
|---|
| 346 | * |
|---|
| 347 | * @return true if the replacement is disabled |
|---|
| 348 | */ |
|---|
| 349 | public boolean getNoReplacement() { |
|---|
| 350 | return m_NoReplacement; |
|---|
| 351 | } |
|---|
| 352 | |
|---|
| 353 | /** |
|---|
| 354 | * Sets whether instances are drawn with or with out replacement. |
|---|
| 355 | * |
|---|
| 356 | * @param value if true then the replacement of instances is disabled |
|---|
| 357 | */ |
|---|
| 358 | public void setNoReplacement(boolean value) { |
|---|
| 359 | m_NoReplacement = value; |
|---|
| 360 | } |
|---|
| 361 | |
|---|
| 362 | /** |
|---|
| 363 | * Returns the tip text for this property. |
|---|
| 364 | * |
|---|
| 365 | * @return tip text for this property suitable for |
|---|
| 366 | * displaying in the explorer/experimenter gui |
|---|
| 367 | */ |
|---|
| 368 | public String invertSelectionTipText() { |
|---|
| 369 | return "Inverts the selection (only if instances are drawn WITHOUT replacement)."; |
|---|
| 370 | } |
|---|
| 371 | |
|---|
| 372 | /** |
|---|
| 373 | * Gets whether selection is inverted (only if instances are drawn WIHTOUT |
|---|
| 374 | * replacement). |
|---|
| 375 | * |
|---|
| 376 | * @return true if the replacement is disabled |
|---|
| 377 | * @see #m_NoReplacement |
|---|
| 378 | */ |
|---|
| 379 | public boolean getInvertSelection() { |
|---|
| 380 | return m_InvertSelection; |
|---|
| 381 | } |
|---|
| 382 | |
|---|
| 383 | /** |
|---|
| 384 | * Sets whether the selection is inverted (only if instances are drawn WIHTOUT |
|---|
| 385 | * replacement). |
|---|
| 386 | * |
|---|
| 387 | * @param value if true then selection is inverted |
|---|
| 388 | */ |
|---|
| 389 | public void setInvertSelection(boolean value) { |
|---|
| 390 | m_InvertSelection = value; |
|---|
| 391 | } |
|---|
| 392 | |
|---|
| 393 | /** |
|---|
| 394 | * Returns the Capabilities of this filter. |
|---|
| 395 | * |
|---|
| 396 | * @return the capabilities of this object |
|---|
| 397 | * @see Capabilities |
|---|
| 398 | */ |
|---|
| 399 | public Capabilities getCapabilities() { |
|---|
| 400 | Capabilities result = super.getCapabilities(); |
|---|
| 401 | result.disableAll(); |
|---|
| 402 | |
|---|
| 403 | // attributes |
|---|
| 404 | result.enableAllAttributes(); |
|---|
| 405 | result.enable(Capability.MISSING_VALUES); |
|---|
| 406 | |
|---|
| 407 | // class |
|---|
| 408 | result.enable(Capability.NOMINAL_CLASS); |
|---|
| 409 | |
|---|
| 410 | return result; |
|---|
| 411 | } |
|---|
| 412 | |
|---|
| 413 | /** |
|---|
| 414 | * Sets the format of the input instances. |
|---|
| 415 | * |
|---|
| 416 | * @param instanceInfo an Instances object containing the input |
|---|
| 417 | * instance structure (any instances contained in the object are |
|---|
| 418 | * ignored - only the structure is required). |
|---|
| 419 | * @return true if the outputFormat may be collected immediately |
|---|
| 420 | * @throws Exception if the input format can't be set |
|---|
| 421 | * successfully |
|---|
| 422 | */ |
|---|
| 423 | public boolean setInputFormat(Instances instanceInfo) |
|---|
| 424 | throws Exception { |
|---|
| 425 | |
|---|
| 426 | super.setInputFormat(instanceInfo); |
|---|
| 427 | setOutputFormat(instanceInfo); |
|---|
| 428 | return true; |
|---|
| 429 | } |
|---|
| 430 | |
|---|
| 431 | /** |
|---|
| 432 | * Input an instance for filtering. Filter requires all |
|---|
| 433 | * training instances be read before producing output. |
|---|
| 434 | * |
|---|
| 435 | * @param instance the input instance |
|---|
| 436 | * @return true if the filtered instance may now be |
|---|
| 437 | * collected with output(). |
|---|
| 438 | * @throws IllegalStateException if no input structure has been defined |
|---|
| 439 | */ |
|---|
| 440 | public boolean input(Instance instance) { |
|---|
| 441 | |
|---|
| 442 | if (getInputFormat() == null) { |
|---|
| 443 | throw new IllegalStateException("No input instance format defined"); |
|---|
| 444 | } |
|---|
| 445 | if (m_NewBatch) { |
|---|
| 446 | resetQueue(); |
|---|
| 447 | m_NewBatch = false; |
|---|
| 448 | } |
|---|
| 449 | if (isFirstBatchDone()) { |
|---|
| 450 | push(instance); |
|---|
| 451 | return true; |
|---|
| 452 | } else { |
|---|
| 453 | bufferInput(instance); |
|---|
| 454 | return false; |
|---|
| 455 | } |
|---|
| 456 | } |
|---|
| 457 | |
|---|
| 458 | /** |
|---|
| 459 | * Signify that this batch of input to the filter is finished. |
|---|
| 460 | * If the filter requires all instances prior to filtering, |
|---|
| 461 | * output() may now be called to retrieve the filtered instances. |
|---|
| 462 | * |
|---|
| 463 | * @return true if there are instances pending output |
|---|
| 464 | * @throws IllegalStateException if no input structure has been defined |
|---|
| 465 | */ |
|---|
| 466 | public boolean batchFinished() { |
|---|
| 467 | |
|---|
| 468 | if (getInputFormat() == null) { |
|---|
| 469 | throw new IllegalStateException("No input instance format defined"); |
|---|
| 470 | } |
|---|
| 471 | |
|---|
| 472 | if (!isFirstBatchDone()) { |
|---|
| 473 | // Do the subsample, and clear the input instances. |
|---|
| 474 | createSubsample(); |
|---|
| 475 | } |
|---|
| 476 | flushInput(); |
|---|
| 477 | |
|---|
| 478 | m_NewBatch = true; |
|---|
| 479 | m_FirstBatchDone = true; |
|---|
| 480 | return (numPendingOutput() != 0); |
|---|
| 481 | } |
|---|
| 482 | |
|---|
| 483 | /** |
|---|
| 484 | * creates the subsample with replacement. |
|---|
| 485 | * |
|---|
| 486 | * @param random the random number generator to use |
|---|
| 487 | * @param origSize the original size of the dataset |
|---|
| 488 | * @param sampleSize the size to generate |
|---|
| 489 | * @param actualClasses the number of classes found in the data |
|---|
| 490 | * @param classIndices the indices where classes start |
|---|
| 491 | */ |
|---|
| 492 | public void createSubsampleWithReplacement(Random random, int origSize, |
|---|
| 493 | int sampleSize, int actualClasses, int[] classIndices) { |
|---|
| 494 | |
|---|
| 495 | for (int i = 0; i < sampleSize; i++) { |
|---|
| 496 | int index = 0; |
|---|
| 497 | if (random.nextDouble() < m_BiasToUniformClass) { |
|---|
| 498 | // Pick a random class (of those classes that actually appear) |
|---|
| 499 | int cIndex = random.nextInt(actualClasses); |
|---|
| 500 | for (int j = 0, k = 0; j < classIndices.length - 1; j++) { |
|---|
| 501 | if ((classIndices[j] != classIndices[j + 1]) && (k++ >= cIndex)) { |
|---|
| 502 | // Pick a random instance of the designated class |
|---|
| 503 | index = classIndices[j] |
|---|
| 504 | + random.nextInt(classIndices[j + 1] - classIndices[j]); |
|---|
| 505 | break; |
|---|
| 506 | } |
|---|
| 507 | } |
|---|
| 508 | } |
|---|
| 509 | else { |
|---|
| 510 | index = random.nextInt(origSize); |
|---|
| 511 | } |
|---|
| 512 | push((Instance) getInputFormat().instance(index).copy()); |
|---|
| 513 | } |
|---|
| 514 | } |
|---|
| 515 | |
|---|
| 516 | /** |
|---|
| 517 | * creates the subsample without replacement. |
|---|
| 518 | * |
|---|
| 519 | * @param random the random number generator to use |
|---|
| 520 | * @param origSize the original size of the dataset |
|---|
| 521 | * @param sampleSize the size to generate |
|---|
| 522 | * @param actualClasses the number of classes found in the data |
|---|
| 523 | * @param classIndices the indices where classes start |
|---|
| 524 | */ |
|---|
| 525 | public void createSubsampleWithoutReplacement(Random random, int origSize, |
|---|
| 526 | int sampleSize, int actualClasses, int[] classIndices) { |
|---|
| 527 | |
|---|
| 528 | if (sampleSize > origSize) { |
|---|
| 529 | sampleSize = origSize; |
|---|
| 530 | System.err.println( |
|---|
| 531 | "Resampling without replacement can only use percentage <=100% - " |
|---|
| 532 | + "Using full dataset!"); |
|---|
| 533 | } |
|---|
| 534 | |
|---|
| 535 | Vector<Integer>[] indices = new Vector[classIndices.length - 1]; |
|---|
| 536 | Vector<Integer>[] indicesNew = new Vector[classIndices.length - 1]; |
|---|
| 537 | |
|---|
| 538 | // generate list of all indices to draw from |
|---|
| 539 | for (int i = 0; i < classIndices.length - 1; i++) { |
|---|
| 540 | indices[i] = new Vector<Integer>(classIndices[i + 1] - classIndices[i]); |
|---|
| 541 | indicesNew[i] = new Vector<Integer>(indices[i].capacity()); |
|---|
| 542 | for (int n = classIndices[i]; n < classIndices[i + 1]; n++) |
|---|
| 543 | indices[i].add(n); |
|---|
| 544 | } |
|---|
| 545 | |
|---|
| 546 | // draw X samples |
|---|
| 547 | int currentSize = origSize; |
|---|
| 548 | for (int i = 0; i < sampleSize; i++) { |
|---|
| 549 | int index = 0; |
|---|
| 550 | if (random.nextDouble() < m_BiasToUniformClass) { |
|---|
| 551 | // Pick a random class (of those classes that actually appear) |
|---|
| 552 | int cIndex = random.nextInt(actualClasses); |
|---|
| 553 | for (int j = 0, k = 0; j < classIndices.length - 1; j++) { |
|---|
| 554 | if ((classIndices[j] != classIndices[j + 1]) && (k++ >= cIndex)) { |
|---|
| 555 | // no more indices for this class left, try again |
|---|
| 556 | if (indices[j].size() == 0) { |
|---|
| 557 | i--; |
|---|
| 558 | break; |
|---|
| 559 | } |
|---|
| 560 | // Pick a random instance of the designated class |
|---|
| 561 | index = random.nextInt(indices[j].size()); |
|---|
| 562 | indicesNew[j].add(indices[j].get(index)); |
|---|
| 563 | indices[j].remove(index); |
|---|
| 564 | break; |
|---|
| 565 | } |
|---|
| 566 | } |
|---|
| 567 | } |
|---|
| 568 | else { |
|---|
| 569 | index = random.nextInt(currentSize); |
|---|
| 570 | for (int n = 0; n < actualClasses; n++) { |
|---|
| 571 | if (index < indices[n].size()) { |
|---|
| 572 | indicesNew[n].add(indices[n].get(index)); |
|---|
| 573 | indices[n].remove(index); |
|---|
| 574 | break; |
|---|
| 575 | } |
|---|
| 576 | else { |
|---|
| 577 | index -= indices[n].size(); |
|---|
| 578 | } |
|---|
| 579 | } |
|---|
| 580 | currentSize--; |
|---|
| 581 | } |
|---|
| 582 | } |
|---|
| 583 | |
|---|
| 584 | // sort indices |
|---|
| 585 | if (getInvertSelection()) { |
|---|
| 586 | indicesNew = indices; |
|---|
| 587 | } |
|---|
| 588 | else { |
|---|
| 589 | for (int i = 0; i < indicesNew.length; i++) |
|---|
| 590 | Collections.sort(indicesNew[i]); |
|---|
| 591 | } |
|---|
| 592 | |
|---|
| 593 | // add to ouput |
|---|
| 594 | for (int i = 0; i < indicesNew.length; i++) { |
|---|
| 595 | for (int n = 0; n < indicesNew[i].size(); n++) |
|---|
| 596 | push((Instance) getInputFormat().instance(indicesNew[i].get(n)).copy()); |
|---|
| 597 | } |
|---|
| 598 | |
|---|
| 599 | // clean up |
|---|
| 600 | for (int i = 0; i < indices.length; i++) { |
|---|
| 601 | indices[i].clear(); |
|---|
| 602 | indicesNew[i].clear(); |
|---|
| 603 | } |
|---|
| 604 | indices = null; |
|---|
| 605 | indicesNew = null; |
|---|
| 606 | } |
|---|
| 607 | |
|---|
| 608 | /** |
|---|
| 609 | * Creates a subsample of the current set of input instances. The output |
|---|
| 610 | * instances are pushed onto the output queue for collection. |
|---|
| 611 | */ |
|---|
| 612 | protected void createSubsample() { |
|---|
| 613 | int origSize = getInputFormat().numInstances(); |
|---|
| 614 | int sampleSize = (int) (origSize * m_SampleSizePercent / 100); |
|---|
| 615 | |
|---|
| 616 | // Subsample that takes class distribution into consideration |
|---|
| 617 | |
|---|
| 618 | // Sort according to class attribute. |
|---|
| 619 | getInputFormat().sort(getInputFormat().classIndex()); |
|---|
| 620 | |
|---|
| 621 | // Create an index of where each class value starts |
|---|
| 622 | int[] classIndices = new int [getInputFormat().numClasses() + 1]; |
|---|
| 623 | int currentClass = 0; |
|---|
| 624 | classIndices[currentClass] = 0; |
|---|
| 625 | for (int i = 0; i < getInputFormat().numInstances(); i++) { |
|---|
| 626 | Instance current = getInputFormat().instance(i); |
|---|
| 627 | if (current.classIsMissing()) { |
|---|
| 628 | for (int j = currentClass + 1; j < classIndices.length; j++) { |
|---|
| 629 | classIndices[j] = i; |
|---|
| 630 | } |
|---|
| 631 | break; |
|---|
| 632 | } else if (current.classValue() != currentClass) { |
|---|
| 633 | for (int j = currentClass + 1; j <= current.classValue(); j++) { |
|---|
| 634 | classIndices[j] = i; |
|---|
| 635 | } |
|---|
| 636 | currentClass = (int) current.classValue(); |
|---|
| 637 | } |
|---|
| 638 | } |
|---|
| 639 | if (currentClass <= getInputFormat().numClasses()) { |
|---|
| 640 | for (int j = currentClass + 1; j < classIndices.length; j++) { |
|---|
| 641 | classIndices[j] = getInputFormat().numInstances(); |
|---|
| 642 | } |
|---|
| 643 | } |
|---|
| 644 | |
|---|
| 645 | int actualClasses = 0; |
|---|
| 646 | for (int i = 0; i < classIndices.length - 1; i++) { |
|---|
| 647 | if (classIndices[i] != classIndices[i + 1]) { |
|---|
| 648 | actualClasses++; |
|---|
| 649 | } |
|---|
| 650 | } |
|---|
| 651 | |
|---|
| 652 | // Create the new sample |
|---|
| 653 | Random random = new Random(m_RandomSeed); |
|---|
| 654 | |
|---|
| 655 | // Convert pending input instances |
|---|
| 656 | if (getNoReplacement()) |
|---|
| 657 | createSubsampleWithoutReplacement( |
|---|
| 658 | random, origSize, sampleSize, actualClasses, classIndices); |
|---|
| 659 | else |
|---|
| 660 | createSubsampleWithReplacement( |
|---|
| 661 | random, origSize, sampleSize, actualClasses, classIndices); |
|---|
| 662 | } |
|---|
| 663 | |
|---|
| 664 | /** |
|---|
| 665 | * Returns the revision string. |
|---|
| 666 | * |
|---|
| 667 | * @return the revision |
|---|
| 668 | */ |
|---|
| 669 | public String getRevision() { |
|---|
| 670 | return RevisionUtils.extract("$Revision: 5492 $"); |
|---|
| 671 | } |
|---|
| 672 | |
|---|
| 673 | /** |
|---|
| 674 | * Main method for testing this class. |
|---|
| 675 | * |
|---|
| 676 | * @param argv should contain arguments to the filter: |
|---|
| 677 | * use -h for help |
|---|
| 678 | */ |
|---|
| 679 | public static void main(String [] argv) { |
|---|
| 680 | runFilter(new Resample(), argv); |
|---|
| 681 | } |
|---|
| 682 | } |
|---|