| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * SubspaceCluster.java |
|---|
| 19 | * Copyright (C) 2001 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.datagenerators.clusterers; |
|---|
| 24 | |
|---|
| 25 | import weka.core.Attribute; |
|---|
| 26 | import weka.core.FastVector; |
|---|
| 27 | import weka.core.Instance; |
|---|
| 28 | import weka.core.DenseInstance; |
|---|
| 29 | import weka.core.Instances; |
|---|
| 30 | import weka.core.Option; |
|---|
| 31 | import weka.core.Range; |
|---|
| 32 | import weka.core.RevisionUtils; |
|---|
| 33 | import weka.core.Tag; |
|---|
| 34 | import weka.core.Utils; |
|---|
| 35 | import weka.datagenerators.ClusterDefinition; |
|---|
| 36 | import weka.datagenerators.ClusterGenerator; |
|---|
| 37 | |
|---|
| 38 | import java.util.Enumeration; |
|---|
| 39 | import java.util.Random; |
|---|
| 40 | import java.util.Vector; |
|---|
| 41 | |
|---|
| 42 | /** |
|---|
| 43 | <!-- globalinfo-start --> |
|---|
| 44 | * A data generator that produces data points in hyperrectangular subspace clusters. |
|---|
| 45 | * <p/> |
|---|
| 46 | <!-- globalinfo-end --> |
|---|
| 47 | * |
|---|
| 48 | <!-- options-start --> |
|---|
| 49 | * Valid options are: <p/> |
|---|
| 50 | * |
|---|
| 51 | * <pre> -h |
|---|
| 52 | * Prints this help.</pre> |
|---|
| 53 | * |
|---|
| 54 | * <pre> -o <file> |
|---|
| 55 | * The name of the output file, otherwise the generated data is |
|---|
| 56 | * printed to stdout.</pre> |
|---|
| 57 | * |
|---|
| 58 | * <pre> -r <name> |
|---|
| 59 | * The name of the relation.</pre> |
|---|
| 60 | * |
|---|
| 61 | * <pre> -d |
|---|
| 62 | * Whether to print debug informations.</pre> |
|---|
| 63 | * |
|---|
| 64 | * <pre> -S |
|---|
| 65 | * The seed for random function (default 1)</pre> |
|---|
| 66 | * |
|---|
| 67 | * <pre> -a <num> |
|---|
| 68 | * The number of attributes (default 1).</pre> |
|---|
| 69 | * |
|---|
| 70 | * <pre> -c |
|---|
| 71 | * Class Flag, if set, the cluster is listed in extra attribute.</pre> |
|---|
| 72 | * |
|---|
| 73 | * <pre> -b <range> |
|---|
| 74 | * The indices for boolean attributes.</pre> |
|---|
| 75 | * |
|---|
| 76 | * <pre> -m <range> |
|---|
| 77 | * The indices for nominal attributes.</pre> |
|---|
| 78 | * |
|---|
| 79 | * <pre> -P <num> |
|---|
| 80 | * The noise rate in percent (default 0.0). |
|---|
| 81 | * Can be between 0% and 30%. (Remark: The original |
|---|
| 82 | * algorithm only allows noise up to 10%.)</pre> |
|---|
| 83 | * |
|---|
| 84 | * <pre> -C <cluster-definition> |
|---|
| 85 | * A cluster definition of class 'SubspaceClusterDefinition' |
|---|
| 86 | * (definition needs to be quoted to be recognized as |
|---|
| 87 | * a single argument).</pre> |
|---|
| 88 | * |
|---|
| 89 | * <pre> |
|---|
| 90 | * Options specific to weka.datagenerators.clusterers.SubspaceClusterDefinition: |
|---|
| 91 | * </pre> |
|---|
| 92 | * |
|---|
| 93 | * <pre> -A <range> |
|---|
| 94 | * Generates randomly distributed instances in the cluster.</pre> |
|---|
| 95 | * |
|---|
| 96 | * <pre> -U <range> |
|---|
| 97 | * Generates uniformly distributed instances in the cluster.</pre> |
|---|
| 98 | * |
|---|
| 99 | * <pre> -G <range> |
|---|
| 100 | * Generates gaussian distributed instances in the cluster.</pre> |
|---|
| 101 | * |
|---|
| 102 | * <pre> -D <num>,<num> |
|---|
| 103 | * The attribute min/max (-A and -U) or mean/stddev (-G) for |
|---|
| 104 | * the cluster.</pre> |
|---|
| 105 | * |
|---|
| 106 | * <pre> -N <num>..<num> |
|---|
| 107 | * The range of number of instances per cluster (default 1..50).</pre> |
|---|
| 108 | * |
|---|
| 109 | * <pre> -I |
|---|
| 110 | * Uses integer instead of continuous values (default continuous).</pre> |
|---|
| 111 | * |
|---|
| 112 | <!-- options-end --> |
|---|
| 113 | * |
|---|
| 114 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) |
|---|
| 115 | * @author FracPete (fracpete at waikato dot ac dot nz) |
|---|
| 116 | * @version $Revision: 5987 $ |
|---|
| 117 | */ |
|---|
| 118 | public class SubspaceCluster |
|---|
| 119 | extends ClusterGenerator { |
|---|
| 120 | |
|---|
| 121 | /** for serialization */ |
|---|
| 122 | static final long serialVersionUID = -3454999858505621128L; |
|---|
| 123 | |
|---|
| 124 | /** noise rate in percent (option P, between 0 and 30)*/ |
|---|
| 125 | protected double m_NoiseRate; |
|---|
| 126 | |
|---|
| 127 | /** cluster list */ |
|---|
| 128 | protected ClusterDefinition[] m_Clusters; |
|---|
| 129 | |
|---|
| 130 | /** if nominal, store number of values */ |
|---|
| 131 | protected int[] m_numValues; |
|---|
| 132 | |
|---|
| 133 | /** store global min values */ |
|---|
| 134 | protected double[] m_globalMinValue; |
|---|
| 135 | |
|---|
| 136 | /** store global max values */ |
|---|
| 137 | protected double[] m_globalMaxValue; |
|---|
| 138 | |
|---|
| 139 | /** cluster type: uniform/random */ |
|---|
| 140 | public static final int UNIFORM_RANDOM = 0; |
|---|
| 141 | /** cluster type: total uniform */ |
|---|
| 142 | public static final int TOTAL_UNIFORM = 1; |
|---|
| 143 | /** cluster type: gaussian */ |
|---|
| 144 | public static final int GAUSSIAN = 2; |
|---|
| 145 | /** the tags for the cluster types */ |
|---|
| 146 | public static final Tag[] TAGS_CLUSTERTYPE = { |
|---|
| 147 | new Tag(UNIFORM_RANDOM, "uniform/random"), |
|---|
| 148 | new Tag(TOTAL_UNIFORM, "total uniform"), |
|---|
| 149 | new Tag(GAUSSIAN, "gaussian") |
|---|
| 150 | }; |
|---|
| 151 | |
|---|
| 152 | /** cluster subtype: continuous */ |
|---|
| 153 | public static final int CONTINUOUS = 0; |
|---|
| 154 | /** cluster subtype: integer */ |
|---|
| 155 | public static final int INTEGER = 1; |
|---|
| 156 | /** the tags for the cluster types */ |
|---|
| 157 | public static final Tag[] TAGS_CLUSTERSUBTYPE = { |
|---|
| 158 | new Tag(CONTINUOUS, "continuous"), |
|---|
| 159 | new Tag(INTEGER, "integer") |
|---|
| 160 | }; |
|---|
| 161 | |
|---|
| 162 | /** |
|---|
| 163 | * initializes the generator, sets the number of clusters to 0, since user |
|---|
| 164 | * has to specify them explicitly |
|---|
| 165 | */ |
|---|
| 166 | public SubspaceCluster() { |
|---|
| 167 | super(); |
|---|
| 168 | |
|---|
| 169 | setNoiseRate(defaultNoiseRate()); |
|---|
| 170 | } |
|---|
| 171 | |
|---|
| 172 | /** |
|---|
| 173 | * Returns a string describing this data generator. |
|---|
| 174 | * |
|---|
| 175 | * @return a description of the data generator suitable for |
|---|
| 176 | * displaying in the explorer/experimenter gui |
|---|
| 177 | */ |
|---|
| 178 | public String globalInfo() { |
|---|
| 179 | return "A data generator that produces data points in " |
|---|
| 180 | + "hyperrectangular subspace clusters."; |
|---|
| 181 | } |
|---|
| 182 | |
|---|
| 183 | /** |
|---|
| 184 | * Returns an enumeration describing the available options. |
|---|
| 185 | * |
|---|
| 186 | * @return an enumeration of all the available options |
|---|
| 187 | */ |
|---|
| 188 | public Enumeration listOptions() { |
|---|
| 189 | Vector result = enumToVector(super.listOptions()); |
|---|
| 190 | |
|---|
| 191 | result.addElement(new Option( |
|---|
| 192 | "\tThe noise rate in percent (default " |
|---|
| 193 | + defaultNoiseRate() + ").\n" |
|---|
| 194 | + "\tCan be between 0% and 30%. (Remark: The original \n" |
|---|
| 195 | + "\talgorithm only allows noise up to 10%.)", |
|---|
| 196 | "P", 1, "-P <num>")); |
|---|
| 197 | |
|---|
| 198 | result.addElement(new Option( |
|---|
| 199 | "\tA cluster definition of class '" |
|---|
| 200 | + SubspaceClusterDefinition.class.getName().replaceAll(".*\\.", "") + "'\n" |
|---|
| 201 | + "\t(definition needs to be quoted to be recognized as \n" |
|---|
| 202 | + "\ta single argument).", |
|---|
| 203 | "C", 1, "-C <cluster-definition>")); |
|---|
| 204 | |
|---|
| 205 | result.addElement(new Option( |
|---|
| 206 | "", "", 0, |
|---|
| 207 | "\nOptions specific to " |
|---|
| 208 | + SubspaceClusterDefinition.class.getName() + ":")); |
|---|
| 209 | |
|---|
| 210 | result.addAll( |
|---|
| 211 | enumToVector(new SubspaceClusterDefinition(this).listOptions())); |
|---|
| 212 | |
|---|
| 213 | return result.elements(); |
|---|
| 214 | } |
|---|
| 215 | |
|---|
| 216 | /** |
|---|
| 217 | * Parses a list of options for this object. <p/> |
|---|
| 218 | * |
|---|
| 219 | <!-- options-start --> |
|---|
| 220 | * Valid options are: <p/> |
|---|
| 221 | * |
|---|
| 222 | * <pre> -h |
|---|
| 223 | * Prints this help.</pre> |
|---|
| 224 | * |
|---|
| 225 | * <pre> -o <file> |
|---|
| 226 | * The name of the output file, otherwise the generated data is |
|---|
| 227 | * printed to stdout.</pre> |
|---|
| 228 | * |
|---|
| 229 | * <pre> -r <name> |
|---|
| 230 | * The name of the relation.</pre> |
|---|
| 231 | * |
|---|
| 232 | * <pre> -d |
|---|
| 233 | * Whether to print debug informations.</pre> |
|---|
| 234 | * |
|---|
| 235 | * <pre> -S |
|---|
| 236 | * The seed for random function (default 1)</pre> |
|---|
| 237 | * |
|---|
| 238 | * <pre> -a <num> |
|---|
| 239 | * The number of attributes (default 1).</pre> |
|---|
| 240 | * |
|---|
| 241 | * <pre> -c |
|---|
| 242 | * Class Flag, if set, the cluster is listed in extra attribute.</pre> |
|---|
| 243 | * |
|---|
| 244 | * <pre> -b <range> |
|---|
| 245 | * The indices for boolean attributes.</pre> |
|---|
| 246 | * |
|---|
| 247 | * <pre> -m <range> |
|---|
| 248 | * The indices for nominal attributes.</pre> |
|---|
| 249 | * |
|---|
| 250 | * <pre> -P <num> |
|---|
| 251 | * The noise rate in percent (default 0.0). |
|---|
| 252 | * Can be between 0% and 30%. (Remark: The original |
|---|
| 253 | * algorithm only allows noise up to 10%.)</pre> |
|---|
| 254 | * |
|---|
| 255 | * <pre> -C <cluster-definition> |
|---|
| 256 | * A cluster definition of class 'SubspaceClusterDefinition' |
|---|
| 257 | * (definition needs to be quoted to be recognized as |
|---|
| 258 | * a single argument).</pre> |
|---|
| 259 | * |
|---|
| 260 | * <pre> |
|---|
| 261 | * Options specific to weka.datagenerators.clusterers.SubspaceClusterDefinition: |
|---|
| 262 | * </pre> |
|---|
| 263 | * |
|---|
| 264 | * <pre> -A <range> |
|---|
| 265 | * Generates randomly distributed instances in the cluster.</pre> |
|---|
| 266 | * |
|---|
| 267 | * <pre> -U <range> |
|---|
| 268 | * Generates uniformly distributed instances in the cluster.</pre> |
|---|
| 269 | * |
|---|
| 270 | * <pre> -G <range> |
|---|
| 271 | * Generates gaussian distributed instances in the cluster.</pre> |
|---|
| 272 | * |
|---|
| 273 | * <pre> -D <num>,<num> |
|---|
| 274 | * The attribute min/max (-A and -U) or mean/stddev (-G) for |
|---|
| 275 | * the cluster.</pre> |
|---|
| 276 | * |
|---|
| 277 | * <pre> -N <num>..<num> |
|---|
| 278 | * The range of number of instances per cluster (default 1..50).</pre> |
|---|
| 279 | * |
|---|
| 280 | * <pre> -I |
|---|
| 281 | * Uses integer instead of continuous values (default continuous).</pre> |
|---|
| 282 | * |
|---|
| 283 | <!-- options-end --> |
|---|
| 284 | * |
|---|
| 285 | * @param options the list of options as an array of strings |
|---|
| 286 | * @throws Exception if an option is not supported |
|---|
| 287 | */ |
|---|
| 288 | public void setOptions(String[] options) throws Exception { |
|---|
| 289 | String tmpStr; |
|---|
| 290 | SubspaceClusterDefinition cl; |
|---|
| 291 | Vector list; |
|---|
| 292 | int clCount; |
|---|
| 293 | |
|---|
| 294 | super.setOptions(options); |
|---|
| 295 | |
|---|
| 296 | m_numValues = new int[getNumAttributes()]; |
|---|
| 297 | // numValues might be changed by a cluster definition |
|---|
| 298 | // (only relevant for nominal data) |
|---|
| 299 | for (int i = 0; i < getNumAttributes(); i++) |
|---|
| 300 | m_numValues[i] = 1; |
|---|
| 301 | |
|---|
| 302 | tmpStr = Utils.getOption('P', options); |
|---|
| 303 | if (tmpStr.length() != 0) |
|---|
| 304 | setNoiseRate(Double.parseDouble(tmpStr)); |
|---|
| 305 | else |
|---|
| 306 | setNoiseRate(defaultNoiseRate()); |
|---|
| 307 | |
|---|
| 308 | // cluster definitions |
|---|
| 309 | list = new Vector(); |
|---|
| 310 | |
|---|
| 311 | clCount = 0; |
|---|
| 312 | do { |
|---|
| 313 | tmpStr = Utils.getOption('C', options); |
|---|
| 314 | if (tmpStr.length() != 0) { |
|---|
| 315 | clCount++; |
|---|
| 316 | cl = new SubspaceClusterDefinition(this); |
|---|
| 317 | cl.setOptions(Utils.splitOptions(tmpStr)); |
|---|
| 318 | list.add(cl); |
|---|
| 319 | } |
|---|
| 320 | } |
|---|
| 321 | while (tmpStr.length() != 0); |
|---|
| 322 | |
|---|
| 323 | m_Clusters = (ClusterDefinition[]) |
|---|
| 324 | list.toArray(new ClusterDefinition[list.size()]); |
|---|
| 325 | // in case no cluster definition was provided, make sure that there's at |
|---|
| 326 | // least one definition present -> see getClusters() |
|---|
| 327 | getClusters(); |
|---|
| 328 | } |
|---|
| 329 | |
|---|
| 330 | |
|---|
| 331 | /** |
|---|
| 332 | * Gets the current settings of the datagenerator. |
|---|
| 333 | * |
|---|
| 334 | * @return an array of strings suitable for passing to setOptions |
|---|
| 335 | */ |
|---|
| 336 | public String[] getOptions() { |
|---|
| 337 | Vector result; |
|---|
| 338 | String[] options; |
|---|
| 339 | int i; |
|---|
| 340 | |
|---|
| 341 | result = new Vector(); |
|---|
| 342 | options = super.getOptions(); |
|---|
| 343 | for (i = 0; i < options.length; i++) |
|---|
| 344 | result.add(options[i]); |
|---|
| 345 | |
|---|
| 346 | result.add("-P"); |
|---|
| 347 | result.add("" + getNoiseRate()); |
|---|
| 348 | |
|---|
| 349 | for (i = 0; i < getClusters().length; i++) { |
|---|
| 350 | result.add("-C"); |
|---|
| 351 | result.add(Utils.joinOptions(getClusters()[i].getOptions())); |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | return (String[]) result.toArray(new String[result.size()]); |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | /** |
|---|
| 358 | * returns the current cluster definitions, if necessary initializes them |
|---|
| 359 | * |
|---|
| 360 | * @return the current cluster definitions |
|---|
| 361 | */ |
|---|
| 362 | protected ClusterDefinition[] getClusters() { |
|---|
| 363 | if ( (m_Clusters == null) || (m_Clusters.length == 0) ) { |
|---|
| 364 | if (m_Clusters != null) |
|---|
| 365 | System.out.println("NOTE: at least 1 cluster definition is necessary, " |
|---|
| 366 | + "created default one."); |
|---|
| 367 | m_Clusters = new ClusterDefinition[]{new SubspaceClusterDefinition(this)}; |
|---|
| 368 | } |
|---|
| 369 | |
|---|
| 370 | return m_Clusters; |
|---|
| 371 | } |
|---|
| 372 | |
|---|
| 373 | /** |
|---|
| 374 | * returns the default number of attributes |
|---|
| 375 | * |
|---|
| 376 | * @return the default number of attributes |
|---|
| 377 | */ |
|---|
| 378 | protected int defaultNumAttributes() { |
|---|
| 379 | return 1; |
|---|
| 380 | } |
|---|
| 381 | |
|---|
| 382 | /** |
|---|
| 383 | * Sets the number of attributes the dataset should have. |
|---|
| 384 | * @param numAttributes the new number of attributes |
|---|
| 385 | */ |
|---|
| 386 | public void setNumAttributes(int numAttributes) { |
|---|
| 387 | super.setNumAttributes(numAttributes); |
|---|
| 388 | m_numValues = new int[getNumAttributes()]; |
|---|
| 389 | } |
|---|
| 390 | |
|---|
| 391 | /** |
|---|
| 392 | * Returns the tip text for this property |
|---|
| 393 | * |
|---|
| 394 | * @return tip text for this property suitable for |
|---|
| 395 | * displaying in the explorer/experimenter gui |
|---|
| 396 | */ |
|---|
| 397 | public String numAttributesTipText() { |
|---|
| 398 | return "The number of attributes the generated data will contain (Note: they must be covered by the cluster definitions!)"; |
|---|
| 399 | } |
|---|
| 400 | |
|---|
| 401 | /** |
|---|
| 402 | * returns the default noise rate |
|---|
| 403 | * |
|---|
| 404 | * @return the default noise rate |
|---|
| 405 | */ |
|---|
| 406 | protected double defaultNoiseRate() { |
|---|
| 407 | return 0.0; |
|---|
| 408 | } |
|---|
| 409 | |
|---|
| 410 | /** |
|---|
| 411 | * Gets the percentage of noise set. |
|---|
| 412 | * |
|---|
| 413 | * @return the percentage of noise set |
|---|
| 414 | */ |
|---|
| 415 | public double getNoiseRate() { |
|---|
| 416 | return m_NoiseRate; |
|---|
| 417 | } |
|---|
| 418 | |
|---|
| 419 | /** |
|---|
| 420 | * Sets the percentage of noise set. |
|---|
| 421 | * |
|---|
| 422 | * @param newNoiseRate new percentage of noise |
|---|
| 423 | */ |
|---|
| 424 | public void setNoiseRate(double newNoiseRate) { |
|---|
| 425 | m_NoiseRate = newNoiseRate; |
|---|
| 426 | } |
|---|
| 427 | |
|---|
| 428 | /** |
|---|
| 429 | * Returns the tip text for this property |
|---|
| 430 | * |
|---|
| 431 | * @return tip text for this property suitable for |
|---|
| 432 | * displaying in the explorer/experimenter gui |
|---|
| 433 | */ |
|---|
| 434 | public String noiseRateTipText() { |
|---|
| 435 | return "The noise rate to use."; |
|---|
| 436 | } |
|---|
| 437 | |
|---|
| 438 | /** |
|---|
| 439 | * returns the currently set clusters |
|---|
| 440 | * |
|---|
| 441 | * @return the currently set clusters |
|---|
| 442 | */ |
|---|
| 443 | public ClusterDefinition[] getClusterDefinitions() { |
|---|
| 444 | return getClusters(); |
|---|
| 445 | } |
|---|
| 446 | |
|---|
| 447 | /** |
|---|
| 448 | * sets the clusters to use |
|---|
| 449 | * |
|---|
| 450 | * @param value the clusters do use |
|---|
| 451 | * @throws Exception if clusters are not the correct class |
|---|
| 452 | */ |
|---|
| 453 | public void setClusterDefinitions(ClusterDefinition[] value) |
|---|
| 454 | throws Exception { |
|---|
| 455 | |
|---|
| 456 | String indexStr; |
|---|
| 457 | |
|---|
| 458 | indexStr = ""; |
|---|
| 459 | m_Clusters = value; |
|---|
| 460 | for (int i = 0; i < getClusters().length; i++) { |
|---|
| 461 | if (!(getClusters()[i] instanceof SubspaceClusterDefinition)) { |
|---|
| 462 | if (indexStr.length() != 0) |
|---|
| 463 | indexStr += ","; |
|---|
| 464 | indexStr += "" + (i+1); |
|---|
| 465 | } |
|---|
| 466 | getClusters()[i].setParent(this); |
|---|
| 467 | getClusters()[i].setOptions(getClusters()[i].getOptions()); // for initializing! |
|---|
| 468 | } |
|---|
| 469 | |
|---|
| 470 | // any wrong classes encountered? |
|---|
| 471 | if (indexStr.length() != 0) |
|---|
| 472 | throw new Exception("These cluster definitions are not '" |
|---|
| 473 | + SubspaceClusterDefinition.class.getName() + "': " + indexStr); |
|---|
| 474 | } |
|---|
| 475 | |
|---|
| 476 | /** |
|---|
| 477 | * Returns the tip text for this property |
|---|
| 478 | * |
|---|
| 479 | * @return tip text for this property suitable for |
|---|
| 480 | * displaying in the explorer/experimenter gui |
|---|
| 481 | */ |
|---|
| 482 | public String clusterDefinitionsTipText() { |
|---|
| 483 | return "The clusters to use."; |
|---|
| 484 | } |
|---|
| 485 | |
|---|
| 486 | /** |
|---|
| 487 | * Checks, whether all attributes are covered by cluster definitions and |
|---|
| 488 | * returns TRUE in that case. |
|---|
| 489 | * |
|---|
| 490 | * @return whether all attributes are covered |
|---|
| 491 | */ |
|---|
| 492 | protected boolean checkCoverage() { |
|---|
| 493 | int i; |
|---|
| 494 | int n; |
|---|
| 495 | int[] count; |
|---|
| 496 | Range r; |
|---|
| 497 | String attrIndex; |
|---|
| 498 | SubspaceClusterDefinition cl; |
|---|
| 499 | |
|---|
| 500 | // check whether all the attributes are covered |
|---|
| 501 | count = new int[getNumAttributes()]; |
|---|
| 502 | for (i = 0; i < getNumAttributes(); i++) { |
|---|
| 503 | for (n = 0; n < getClusters().length; n++) { |
|---|
| 504 | cl = (SubspaceClusterDefinition) getClusters()[n]; |
|---|
| 505 | r = new Range(cl.getAttrIndexRange()); |
|---|
| 506 | r.setUpper(getNumAttributes()); |
|---|
| 507 | if (r.isInRange(i)) |
|---|
| 508 | count[i]++; |
|---|
| 509 | } |
|---|
| 510 | } |
|---|
| 511 | |
|---|
| 512 | // list all indices that are not covered |
|---|
| 513 | attrIndex = ""; |
|---|
| 514 | for (i = 0; i < count.length; i++) { |
|---|
| 515 | if (count[i] == 0) { |
|---|
| 516 | if (attrIndex.length() != 0) |
|---|
| 517 | attrIndex += ","; |
|---|
| 518 | attrIndex += (i+1); |
|---|
| 519 | } |
|---|
| 520 | } |
|---|
| 521 | |
|---|
| 522 | if (attrIndex.length() != 0) |
|---|
| 523 | throw new IllegalArgumentException( |
|---|
| 524 | "The following attributes are not covered by a cluster " |
|---|
| 525 | + "definition: " + attrIndex + "\n"); |
|---|
| 526 | |
|---|
| 527 | return true; |
|---|
| 528 | } |
|---|
| 529 | |
|---|
| 530 | /** |
|---|
| 531 | * Gets the single mode flag. |
|---|
| 532 | * |
|---|
| 533 | * @return true if methode generateExample can be used. |
|---|
| 534 | */ |
|---|
| 535 | public boolean getSingleModeFlag() { |
|---|
| 536 | return false; |
|---|
| 537 | } |
|---|
| 538 | |
|---|
| 539 | /** |
|---|
| 540 | * Initializes the format for the dataset produced. |
|---|
| 541 | * |
|---|
| 542 | * @return the output data format |
|---|
| 543 | * @throws Exception data format could not be defined |
|---|
| 544 | */ |
|---|
| 545 | |
|---|
| 546 | public Instances defineDataFormat() throws Exception { |
|---|
| 547 | |
|---|
| 548 | // initialize |
|---|
| 549 | setOptions(getOptions()); |
|---|
| 550 | |
|---|
| 551 | checkCoverage(); |
|---|
| 552 | |
|---|
| 553 | Random random = new Random (getSeed()); |
|---|
| 554 | setRandom(random); |
|---|
| 555 | Instances dataset; |
|---|
| 556 | FastVector attributes = new FastVector(3); |
|---|
| 557 | Attribute attribute; |
|---|
| 558 | boolean classFlag = getClassFlag(); |
|---|
| 559 | |
|---|
| 560 | FastVector classValues = null; |
|---|
| 561 | if (classFlag) |
|---|
| 562 | classValues = new FastVector(getClusters().length); |
|---|
| 563 | FastVector boolValues = new FastVector(2); |
|---|
| 564 | boolValues.addElement("false"); |
|---|
| 565 | boolValues.addElement("true"); |
|---|
| 566 | FastVector nomValues = null; |
|---|
| 567 | |
|---|
| 568 | // define dataset |
|---|
| 569 | for (int i = 0; i < getNumAttributes(); i++) { |
|---|
| 570 | // define boolean attribute |
|---|
| 571 | if (m_booleanCols.isInRange(i)) { |
|---|
| 572 | attribute = new Attribute("B" + i, boolValues); |
|---|
| 573 | } |
|---|
| 574 | else if (m_nominalCols.isInRange(i)) { |
|---|
| 575 | // define nominal attribute |
|---|
| 576 | nomValues = new FastVector(m_numValues[i]); |
|---|
| 577 | for (int j = 0; j < m_numValues[i]; j++) |
|---|
| 578 | nomValues.addElement("value-" + j); |
|---|
| 579 | attribute = new Attribute("N" + i, nomValues); |
|---|
| 580 | } |
|---|
| 581 | else { |
|---|
| 582 | // numerical attribute |
|---|
| 583 | attribute = new Attribute("X" + i); |
|---|
| 584 | } |
|---|
| 585 | attributes.addElement(attribute); |
|---|
| 586 | } |
|---|
| 587 | |
|---|
| 588 | if (classFlag) { |
|---|
| 589 | for (int i = 0; i < getClusters().length; i++) |
|---|
| 590 | classValues.addElement("c" + i); |
|---|
| 591 | attribute = new Attribute ("class", classValues); |
|---|
| 592 | attributes.addElement(attribute); |
|---|
| 593 | } |
|---|
| 594 | |
|---|
| 595 | dataset = new Instances(getRelationNameToUse(), attributes, 0); |
|---|
| 596 | if (classFlag) |
|---|
| 597 | dataset.setClassIndex(m_NumAttributes); |
|---|
| 598 | |
|---|
| 599 | // set dataset format of this class |
|---|
| 600 | Instances format = new Instances(dataset, 0); |
|---|
| 601 | setDatasetFormat(format); |
|---|
| 602 | |
|---|
| 603 | for (int i = 0; i < getClusters().length; i++) { |
|---|
| 604 | SubspaceClusterDefinition cl = (SubspaceClusterDefinition) getClusters()[i]; |
|---|
| 605 | cl.setNumInstances(random); |
|---|
| 606 | cl.setParent(this); |
|---|
| 607 | } |
|---|
| 608 | |
|---|
| 609 | return dataset; |
|---|
| 610 | } |
|---|
| 611 | |
|---|
| 612 | /** |
|---|
| 613 | * Returns true if attribute is boolean |
|---|
| 614 | *@param index of the attribute |
|---|
| 615 | *@return true if the attribute is boolean |
|---|
| 616 | */ |
|---|
| 617 | public boolean isBoolean(int index) { |
|---|
| 618 | return m_booleanCols.isInRange(index); |
|---|
| 619 | } |
|---|
| 620 | |
|---|
| 621 | /** |
|---|
| 622 | * Returns true if attribute is nominal |
|---|
| 623 | *@param index of the attribute |
|---|
| 624 | *@return true if the attribute is nominal |
|---|
| 625 | */ |
|---|
| 626 | public boolean isNominal(int index) { |
|---|
| 627 | return m_nominalCols.isInRange(index); |
|---|
| 628 | } |
|---|
| 629 | |
|---|
| 630 | /** |
|---|
| 631 | * returns array that stores the number of values for a nominal attribute. |
|---|
| 632 | * |
|---|
| 633 | * @return the array that stores the number of values for a nominal attribute |
|---|
| 634 | */ |
|---|
| 635 | public int[] getNumValues() { |
|---|
| 636 | return m_numValues; |
|---|
| 637 | } |
|---|
| 638 | |
|---|
| 639 | /** |
|---|
| 640 | * Generate an example of the dataset. |
|---|
| 641 | * @return the instance generated |
|---|
| 642 | * @throws Exception if format not defined or generating <br/> |
|---|
| 643 | * examples one by one is not possible, because voting is chosen |
|---|
| 644 | */ |
|---|
| 645 | |
|---|
| 646 | public Instance generateExample() throws Exception { |
|---|
| 647 | throw new Exception("Examples cannot be generated one by one."); |
|---|
| 648 | } |
|---|
| 649 | |
|---|
| 650 | /** |
|---|
| 651 | * Generate all examples of the dataset. |
|---|
| 652 | * @return the instance generated |
|---|
| 653 | * @throws Exception if format not defined |
|---|
| 654 | */ |
|---|
| 655 | |
|---|
| 656 | public Instances generateExamples() throws Exception { |
|---|
| 657 | Instances format = getDatasetFormat(); |
|---|
| 658 | Instance example = null; |
|---|
| 659 | |
|---|
| 660 | if (format == null) |
|---|
| 661 | throw new Exception("Dataset format not defined."); |
|---|
| 662 | |
|---|
| 663 | // generate examples for one cluster after another |
|---|
| 664 | for (int cNum = 0; cNum < getClusters().length; cNum++) { |
|---|
| 665 | SubspaceClusterDefinition cl = (SubspaceClusterDefinition) getClusters()[cNum]; |
|---|
| 666 | |
|---|
| 667 | //get the number of instances to create |
|---|
| 668 | int instNum = cl.getNumInstances(); |
|---|
| 669 | |
|---|
| 670 | //class value is c + cluster number |
|---|
| 671 | String cName = "c" + cNum; |
|---|
| 672 | |
|---|
| 673 | switch (cl.getClusterType().getSelectedTag().getID()) { |
|---|
| 674 | case (UNIFORM_RANDOM): |
|---|
| 675 | for (int i = 0; i < instNum; i++) { |
|---|
| 676 | // generate example |
|---|
| 677 | example = generateExample(format, getRandom(), cl, cName); |
|---|
| 678 | if (example != null) |
|---|
| 679 | format.add(example); |
|---|
| 680 | } |
|---|
| 681 | break; |
|---|
| 682 | case (TOTAL_UNIFORM): |
|---|
| 683 | // generate examples |
|---|
| 684 | if (!cl.isInteger()) |
|---|
| 685 | generateUniformExamples(format, instNum, cl, cName); |
|---|
| 686 | else |
|---|
| 687 | generateUniformIntegerExamples(format, instNum, cl, cName); |
|---|
| 688 | break; |
|---|
| 689 | case (GAUSSIAN): |
|---|
| 690 | // generate examples |
|---|
| 691 | generateGaussianExamples(format, instNum, getRandom(), cl, cName); |
|---|
| 692 | break; |
|---|
| 693 | } |
|---|
| 694 | } |
|---|
| 695 | |
|---|
| 696 | return format; |
|---|
| 697 | } |
|---|
| 698 | |
|---|
| 699 | /** |
|---|
| 700 | * Generate an example of the dataset. |
|---|
| 701 | * |
|---|
| 702 | * @param format the dataset format |
|---|
| 703 | * @param randomG the random number generator to use |
|---|
| 704 | * @param cl the cluster definition |
|---|
| 705 | * @param cName the class value |
|---|
| 706 | * @return the generated instance |
|---|
| 707 | */ |
|---|
| 708 | private Instance generateExample( |
|---|
| 709 | Instances format, Random randomG, SubspaceClusterDefinition cl, |
|---|
| 710 | String cName) { |
|---|
| 711 | |
|---|
| 712 | boolean makeInteger = cl.isInteger(); |
|---|
| 713 | int num = -1; |
|---|
| 714 | Instance example = null; |
|---|
| 715 | int numAtts = m_NumAttributes; |
|---|
| 716 | if (getClassFlag()) numAtts++; |
|---|
| 717 | |
|---|
| 718 | example = new DenseInstance(numAtts); |
|---|
| 719 | example.setDataset(format); |
|---|
| 720 | boolean[] attributes = cl.getAttributes(); |
|---|
| 721 | double[] minValue = cl.getMinValue(); |
|---|
| 722 | double[] maxValue = cl.getMaxValue(); |
|---|
| 723 | double value; |
|---|
| 724 | |
|---|
| 725 | int clusterI = -1; |
|---|
| 726 | for (int i = 0; i < m_NumAttributes; i++) { |
|---|
| 727 | if (attributes[i]) { |
|---|
| 728 | clusterI++; |
|---|
| 729 | num++; |
|---|
| 730 | // boolean or nominal attribute |
|---|
| 731 | if (isBoolean(i) || isNominal(i)) { |
|---|
| 732 | |
|---|
| 733 | if (minValue[clusterI] == maxValue[clusterI]) { |
|---|
| 734 | value = minValue[clusterI]; |
|---|
| 735 | } |
|---|
| 736 | else { |
|---|
| 737 | int numValues = (int)(maxValue[clusterI] - minValue[clusterI] + 1.0); |
|---|
| 738 | value = randomG.nextInt(numValues); |
|---|
| 739 | value += minValue[clusterI]; |
|---|
| 740 | } |
|---|
| 741 | } |
|---|
| 742 | else { |
|---|
| 743 | // numeric attribute |
|---|
| 744 | value = randomG.nextDouble() * |
|---|
| 745 | (maxValue[num] - minValue[num]) + minValue[num]; |
|---|
| 746 | if (makeInteger) |
|---|
| 747 | value = Math.round(value); |
|---|
| 748 | } |
|---|
| 749 | example.setValue(i, value); |
|---|
| 750 | } |
|---|
| 751 | else { |
|---|
| 752 | example.setMissing(i); |
|---|
| 753 | } |
|---|
| 754 | } |
|---|
| 755 | |
|---|
| 756 | if (getClassFlag()) |
|---|
| 757 | example.setClassValue(cName); |
|---|
| 758 | |
|---|
| 759 | return example; |
|---|
| 760 | } |
|---|
| 761 | |
|---|
| 762 | /** |
|---|
| 763 | * Generate examples for a uniform cluster dataset. |
|---|
| 764 | * |
|---|
| 765 | * @param format the dataset format |
|---|
| 766 | * @param numInstances the number of instances to generator |
|---|
| 767 | * @param cl the cluster definition |
|---|
| 768 | * @param cName the class value |
|---|
| 769 | */ |
|---|
| 770 | private void generateUniformExamples( |
|---|
| 771 | Instances format, int numInstances, SubspaceClusterDefinition cl, |
|---|
| 772 | String cName) { |
|---|
| 773 | |
|---|
| 774 | Instance example = null; |
|---|
| 775 | int numAtts = m_NumAttributes; |
|---|
| 776 | if (getClassFlag()) numAtts++; |
|---|
| 777 | |
|---|
| 778 | example = new DenseInstance(numAtts); |
|---|
| 779 | example.setDataset(format); |
|---|
| 780 | boolean[] attributes = cl.getAttributes(); |
|---|
| 781 | double[] minValue = cl.getMinValue(); |
|---|
| 782 | double[] maxValue = cl.getMaxValue(); |
|---|
| 783 | double[] diff = new double[minValue.length]; |
|---|
| 784 | |
|---|
| 785 | for (int i = 0; i < minValue.length; i++) |
|---|
| 786 | diff[i] = (maxValue[i] - minValue[i]); |
|---|
| 787 | |
|---|
| 788 | for (int j = 0; j < numInstances; j++) { |
|---|
| 789 | int num = -1; |
|---|
| 790 | for (int i = 0; i < m_NumAttributes; i++) { |
|---|
| 791 | if (attributes[i]) { |
|---|
| 792 | num++; |
|---|
| 793 | double value = minValue[num] + (diff[num] * (double)((double)j / (double)(numInstances - 1))); |
|---|
| 794 | example.setValue(i, value); |
|---|
| 795 | } |
|---|
| 796 | else { |
|---|
| 797 | example.setMissing(i); |
|---|
| 798 | } |
|---|
| 799 | } |
|---|
| 800 | if (getClassFlag()) |
|---|
| 801 | example.setClassValue(cName); |
|---|
| 802 | format.add(example); |
|---|
| 803 | } |
|---|
| 804 | } |
|---|
| 805 | |
|---|
| 806 | /** |
|---|
| 807 | * Generate examples for a uniform cluster dataset. |
|---|
| 808 | * |
|---|
| 809 | * @param format the dataset format |
|---|
| 810 | * @param numInstances the number of instances to generator |
|---|
| 811 | * @param cl the cluster definition |
|---|
| 812 | * @param cName the class value |
|---|
| 813 | */ |
|---|
| 814 | private void generateUniformIntegerExamples( |
|---|
| 815 | Instances format, int numInstances, SubspaceClusterDefinition cl, |
|---|
| 816 | String cName) { |
|---|
| 817 | |
|---|
| 818 | Instance example = null; |
|---|
| 819 | int numAtts = m_NumAttributes; |
|---|
| 820 | if (getClassFlag()) numAtts++; |
|---|
| 821 | |
|---|
| 822 | example = new DenseInstance(numAtts); |
|---|
| 823 | example.setDataset(format); |
|---|
| 824 | boolean[] attributes = cl.getAttributes(); |
|---|
| 825 | double[] minValue = cl.getMinValue(); |
|---|
| 826 | double[] maxValue = cl.getMaxValue(); |
|---|
| 827 | int[] minInt = new int[minValue.length]; |
|---|
| 828 | int[] maxInt = new int[maxValue.length]; |
|---|
| 829 | int[] intValue = new int[maxValue.length]; |
|---|
| 830 | int[] numInt = new int[minValue.length]; |
|---|
| 831 | |
|---|
| 832 | int num = 1; |
|---|
| 833 | for (int i = 0; i < minValue.length; i++) { |
|---|
| 834 | minInt[i] = (int)Math.ceil(minValue[i]); |
|---|
| 835 | maxInt[i] = (int)Math.floor(maxValue[i]); |
|---|
| 836 | numInt[i] = (maxInt[i] - minInt[i] + 1); |
|---|
| 837 | num = num * numInt[i]; |
|---|
| 838 | } |
|---|
| 839 | int numEach = numInstances / num; |
|---|
| 840 | int rest = numInstances - numEach * num; |
|---|
| 841 | |
|---|
| 842 | // initialize with smallest values combination |
|---|
| 843 | for (int i = 0; i < m_NumAttributes; i++) { |
|---|
| 844 | if (attributes[i]) { |
|---|
| 845 | example.setValue(i, (double)minInt[i]); |
|---|
| 846 | intValue[i] = minInt[i]; |
|---|
| 847 | } |
|---|
| 848 | else { |
|---|
| 849 | example.setMissing(i); |
|---|
| 850 | } |
|---|
| 851 | } |
|---|
| 852 | if (getClassFlag()) |
|---|
| 853 | example.setClassValue(cName); |
|---|
| 854 | int added = 0; |
|---|
| 855 | int attr = 0; |
|---|
| 856 | // do while not added all |
|---|
| 857 | do { |
|---|
| 858 | // add all for one value combination |
|---|
| 859 | for (int k = 0; k < numEach; k++) { |
|---|
| 860 | format.add(example); |
|---|
| 861 | example = (Instance) example.copy(); |
|---|
| 862 | added++; |
|---|
| 863 | } |
|---|
| 864 | if (rest > 0) { |
|---|
| 865 | format.add(example); |
|---|
| 866 | example = (Instance) example.copy(); |
|---|
| 867 | added++; |
|---|
| 868 | rest--; |
|---|
| 869 | } |
|---|
| 870 | |
|---|
| 871 | if (added >= numInstances) break; |
|---|
| 872 | // switch to the next value combination |
|---|
| 873 | boolean done = false; |
|---|
| 874 | do { |
|---|
| 875 | if (attributes[attr] && (intValue[attr] + 1 <= maxInt[attr])) { |
|---|
| 876 | intValue[attr]++; |
|---|
| 877 | done = true; |
|---|
| 878 | } |
|---|
| 879 | else { |
|---|
| 880 | attr++; |
|---|
| 881 | } |
|---|
| 882 | } while (!done); |
|---|
| 883 | |
|---|
| 884 | example.setValue(attr, (double)intValue[attr]); |
|---|
| 885 | } while (added < numInstances); |
|---|
| 886 | } |
|---|
| 887 | |
|---|
| 888 | /** |
|---|
| 889 | * Generate examples for a uniform cluster dataset. |
|---|
| 890 | * |
|---|
| 891 | * @param format the dataset format |
|---|
| 892 | * @param numInstances the number of instances to generate |
|---|
| 893 | * @param random the random number generator |
|---|
| 894 | * @param cl the cluster definition |
|---|
| 895 | * @param cName the class value |
|---|
| 896 | */ |
|---|
| 897 | private void generateGaussianExamples( |
|---|
| 898 | Instances format, int numInstances, Random random, |
|---|
| 899 | SubspaceClusterDefinition cl, String cName) { |
|---|
| 900 | |
|---|
| 901 | boolean makeInteger = cl.isInteger(); |
|---|
| 902 | Instance example = null; |
|---|
| 903 | int numAtts = m_NumAttributes; |
|---|
| 904 | if (getClassFlag()) numAtts++; |
|---|
| 905 | |
|---|
| 906 | example = new DenseInstance(numAtts); |
|---|
| 907 | example.setDataset(format); |
|---|
| 908 | boolean[] attributes = cl.getAttributes(); |
|---|
| 909 | double[] meanValue = cl.getMeanValue(); |
|---|
| 910 | double[] stddevValue = cl.getStddevValue(); |
|---|
| 911 | |
|---|
| 912 | for (int j = 0; j < numInstances; j++) { |
|---|
| 913 | int num = -1; |
|---|
| 914 | for (int i = 0; i < m_NumAttributes; i++) { |
|---|
| 915 | if (attributes[i]) { |
|---|
| 916 | num++; |
|---|
| 917 | double value = meanValue[num] + (random.nextGaussian() * stddevValue[num]); |
|---|
| 918 | if (makeInteger) |
|---|
| 919 | value = Math.round(value); |
|---|
| 920 | example.setValue(i, value); |
|---|
| 921 | } |
|---|
| 922 | else { |
|---|
| 923 | example.setMissing(i); |
|---|
| 924 | } |
|---|
| 925 | } |
|---|
| 926 | if (getClassFlag()) |
|---|
| 927 | example.setClassValue(cName); |
|---|
| 928 | format.add(example); |
|---|
| 929 | } |
|---|
| 930 | } |
|---|
| 931 | |
|---|
| 932 | /** |
|---|
| 933 | * Compiles documentation about the data generation after |
|---|
| 934 | * the generation process |
|---|
| 935 | * |
|---|
| 936 | * @return string with additional information about generated dataset |
|---|
| 937 | * @throws Exception no input structure has been defined |
|---|
| 938 | */ |
|---|
| 939 | public String generateFinished() throws Exception { |
|---|
| 940 | return ""; |
|---|
| 941 | } |
|---|
| 942 | |
|---|
| 943 | /** |
|---|
| 944 | * Compiles documentation about the data generation before |
|---|
| 945 | * the generation process |
|---|
| 946 | * |
|---|
| 947 | * @return string with additional information |
|---|
| 948 | */ |
|---|
| 949 | public String generateStart() { |
|---|
| 950 | StringBuffer docu = new StringBuffer(); |
|---|
| 951 | |
|---|
| 952 | int sumInst = 0; |
|---|
| 953 | for (int cNum = 0; cNum < getClusters().length; cNum++) { |
|---|
| 954 | SubspaceClusterDefinition cl = (SubspaceClusterDefinition) getClusters()[cNum]; |
|---|
| 955 | docu.append("%\n"); |
|---|
| 956 | docu.append("% Cluster: c"+ cNum + " "); |
|---|
| 957 | switch (cl.getClusterType().getSelectedTag().getID()) { |
|---|
| 958 | case UNIFORM_RANDOM: |
|---|
| 959 | docu.append("Uniform Random"); |
|---|
| 960 | break; |
|---|
| 961 | case TOTAL_UNIFORM: |
|---|
| 962 | docu.append("Total Random"); |
|---|
| 963 | break; |
|---|
| 964 | case GAUSSIAN: |
|---|
| 965 | docu.append("Gaussian"); |
|---|
| 966 | break; |
|---|
| 967 | } |
|---|
| 968 | if (cl.isInteger()) { |
|---|
| 969 | docu.append(" / INTEGER"); |
|---|
| 970 | } |
|---|
| 971 | |
|---|
| 972 | docu.append("\n% ----------------------------------------------\n"); |
|---|
| 973 | docu.append("%"+cl.attributesToString()); |
|---|
| 974 | |
|---|
| 975 | docu.append("\n% Number of Instances: " + cl.getInstNums() + "\n"); |
|---|
| 976 | docu.append( "% Generated Number of Instances: " + cl.getNumInstances() + "\n"); |
|---|
| 977 | sumInst += cl.getNumInstances(); |
|---|
| 978 | } |
|---|
| 979 | docu.append("%\n% ----------------------------------------------\n"); |
|---|
| 980 | docu.append("% Total Number of Instances: " + sumInst + "\n"); |
|---|
| 981 | docu.append("% in " + getClusters().length + " Cluster(s)\n%"); |
|---|
| 982 | |
|---|
| 983 | return docu.toString(); |
|---|
| 984 | } |
|---|
| 985 | |
|---|
| 986 | /** |
|---|
| 987 | * Returns the revision string. |
|---|
| 988 | * |
|---|
| 989 | * @return the revision |
|---|
| 990 | */ |
|---|
| 991 | public String getRevision() { |
|---|
| 992 | return RevisionUtils.extract("$Revision: 5987 $"); |
|---|
| 993 | } |
|---|
| 994 | |
|---|
| 995 | /** |
|---|
| 996 | * Main method for testing this class. |
|---|
| 997 | * |
|---|
| 998 | * @param args should contain arguments for the data producer: |
|---|
| 999 | */ |
|---|
| 1000 | public static void main(String[] args) { |
|---|
| 1001 | runDataGenerator(new SubspaceCluster(), args); |
|---|
| 1002 | } |
|---|
| 1003 | } |
|---|