1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RDG1.java |
---|
19 | * Copyright (C) 2000 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.datagenerators.classifiers.classification; |
---|
24 | |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.FastVector; |
---|
27 | import weka.core.Instance; |
---|
28 | import weka.core.DenseInstance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.RevisionHandler; |
---|
32 | import weka.core.RevisionUtils; |
---|
33 | import weka.core.Utils; |
---|
34 | import weka.datagenerators.ClassificationGenerator; |
---|
35 | import weka.datagenerators.Test; |
---|
36 | |
---|
37 | import java.io.Serializable; |
---|
38 | import java.util.Enumeration; |
---|
39 | import java.util.Random; |
---|
40 | import java.util.Vector; |
---|
41 | |
---|
42 | /** |
---|
43 | <!-- globalinfo-start --> |
---|
44 | * A data generator that produces data randomly by producing a decision list.<br/> |
---|
45 | * The decision list consists of rules.<br/> |
---|
46 | * Instances are generated randomly one by one. If decision list fails to classify the current instance, a new rule according to this current instance is generated and added to the decision list.<br/> |
---|
47 | * <br/> |
---|
48 | * The option -V switches on voting, which means that at the end of the generation all instances are reclassified to the class value that is supported by the most rules.<br/> |
---|
49 | * <br/> |
---|
50 | * This data generator can generate 'boolean' attributes (= nominal with the values {true, false}) and numeric attributes. The rules can be 'A' or 'NOT A' for boolean values and 'B < random_value' or 'B >= random_value' for numeric values. |
---|
51 | * <p/> |
---|
52 | <!-- globalinfo-end --> |
---|
53 | * |
---|
54 | <!-- options-start --> |
---|
55 | * Valid options are: <p/> |
---|
56 | * |
---|
57 | * <pre> -h |
---|
58 | * Prints this help.</pre> |
---|
59 | * |
---|
60 | * <pre> -o <file> |
---|
61 | * The name of the output file, otherwise the generated data is |
---|
62 | * printed to stdout.</pre> |
---|
63 | * |
---|
64 | * <pre> -r <name> |
---|
65 | * The name of the relation.</pre> |
---|
66 | * |
---|
67 | * <pre> -d |
---|
68 | * Whether to print debug informations.</pre> |
---|
69 | * |
---|
70 | * <pre> -S |
---|
71 | * The seed for random function (default 1)</pre> |
---|
72 | * |
---|
73 | * <pre> -n <num> |
---|
74 | * The number of examples to generate (default 100)</pre> |
---|
75 | * |
---|
76 | * <pre> -a <num> |
---|
77 | * The number of attributes (default 10).</pre> |
---|
78 | * |
---|
79 | * <pre> -c <num> |
---|
80 | * The number of classes (default 2)</pre> |
---|
81 | * |
---|
82 | * <pre> -R <num> |
---|
83 | * maximum size for rules (default 10) </pre> |
---|
84 | * |
---|
85 | * <pre> -M <num> |
---|
86 | * minimum size for rules (default 1) </pre> |
---|
87 | * |
---|
88 | * <pre> -I <num> |
---|
89 | * number of irrelevant attributes (default 0)</pre> |
---|
90 | * |
---|
91 | * <pre> -N |
---|
92 | * number of numeric attributes (default 0)</pre> |
---|
93 | * |
---|
94 | * <pre> -V |
---|
95 | * switch on voting (default is no voting)</pre> |
---|
96 | * |
---|
97 | <!-- options-end --> |
---|
98 | * |
---|
99 | * Following an example of a generated dataset: <br/> |
---|
100 | * <pre> |
---|
101 | * % |
---|
102 | * % weka.datagenerators.RDG1 -r expl -a 2 -c 3 -n 4 -N 1 -I 0 -M 2 -R 10 -S 2 |
---|
103 | * % |
---|
104 | * relation expl |
---|
105 | * |
---|
106 | * attribute a0 {false,true} |
---|
107 | * attribute a1 numeric |
---|
108 | * attribute class {c0,c1,c2} |
---|
109 | * |
---|
110 | * data |
---|
111 | * |
---|
112 | * true,0.496823,c0 |
---|
113 | * false,0.743158,c1 |
---|
114 | * false,0.408285,c1 |
---|
115 | * false,0.993687,c2 |
---|
116 | * % |
---|
117 | * % Number of attributes chosen as irrelevant = 0 |
---|
118 | * % |
---|
119 | * % DECISIONLIST (number of rules = 3): |
---|
120 | * % RULE 0: c0 := a1 < 0.986, a0 |
---|
121 | * % RULE 1: c1 := a1 < 0.95, not(a0) |
---|
122 | * % RULE 2: c2 := not(a0), a1 >= 0.562 |
---|
123 | * </pre> |
---|
124 | * |
---|
125 | * @author Gabi Schmidberger (gabi@cs.waikato.ac.nz) |
---|
126 | * @version $Revision: 5987 $ |
---|
127 | */ |
---|
128 | public class RDG1 |
---|
129 | extends ClassificationGenerator { |
---|
130 | |
---|
131 | /** for serialization */ |
---|
132 | static final long serialVersionUID = 7751005204635320414L; |
---|
133 | |
---|
134 | /** |
---|
135 | * class to represent decisionlist |
---|
136 | */ |
---|
137 | private class RuleList |
---|
138 | implements Serializable, RevisionHandler { |
---|
139 | |
---|
140 | /** for serialization */ |
---|
141 | static final long serialVersionUID = 2830125413361938177L; |
---|
142 | |
---|
143 | /** rule list */ |
---|
144 | private FastVector m_RuleList = null; |
---|
145 | |
---|
146 | /** class */ |
---|
147 | double m_ClassValue = 0.0; |
---|
148 | |
---|
149 | /** |
---|
150 | * returns the class value |
---|
151 | * |
---|
152 | * @return the class value |
---|
153 | */ |
---|
154 | public double getClassValue() { |
---|
155 | return m_ClassValue; |
---|
156 | } |
---|
157 | |
---|
158 | /** |
---|
159 | * sets the class value |
---|
160 | * |
---|
161 | * @param newClassValue the new classvalue |
---|
162 | */ |
---|
163 | public void setClassValue(double newClassValue) { |
---|
164 | m_ClassValue = newClassValue; |
---|
165 | } |
---|
166 | |
---|
167 | /** |
---|
168 | * adds the given test to the list |
---|
169 | * |
---|
170 | * @param newTest the test to add |
---|
171 | */ |
---|
172 | private void addTest (Test newTest) { |
---|
173 | if (m_RuleList == null) |
---|
174 | m_RuleList = new FastVector(); |
---|
175 | |
---|
176 | m_RuleList.addElement(newTest); |
---|
177 | } |
---|
178 | |
---|
179 | /** |
---|
180 | * classifies the given example |
---|
181 | * |
---|
182 | * @param example the instance to classify |
---|
183 | * @return the classification |
---|
184 | * @throws Exception if classification fails |
---|
185 | */ |
---|
186 | private double classifyInstance (Instance example) throws Exception { |
---|
187 | boolean passedAllTests = true; |
---|
188 | for (Enumeration e = m_RuleList.elements(); |
---|
189 | passedAllTests && e.hasMoreElements(); ) { |
---|
190 | Test test = (Test) e.nextElement(); |
---|
191 | passedAllTests = test.passesTest(example); |
---|
192 | } |
---|
193 | if (passedAllTests) return m_ClassValue; |
---|
194 | else return -1.0; |
---|
195 | } |
---|
196 | |
---|
197 | /** |
---|
198 | * returns a string representation of the rule list |
---|
199 | * |
---|
200 | * @return the rule list as string |
---|
201 | */ |
---|
202 | public String toString () { |
---|
203 | StringBuffer str = new StringBuffer(); |
---|
204 | str = str.append(" c" + (int) m_ClassValue + " := "); |
---|
205 | Enumeration e = m_RuleList.elements(); |
---|
206 | if (e.hasMoreElements()) { |
---|
207 | Test test = (Test) e.nextElement(); |
---|
208 | str = str.append(test.toPrologString()); |
---|
209 | } |
---|
210 | while (e.hasMoreElements()) { |
---|
211 | Test test = (Test) e.nextElement(); |
---|
212 | str = str.append(", " + test.toPrologString()); |
---|
213 | } |
---|
214 | return str.toString(); |
---|
215 | } |
---|
216 | |
---|
217 | /** |
---|
218 | * Returns the revision string. |
---|
219 | * |
---|
220 | * @return the revision |
---|
221 | */ |
---|
222 | public String getRevision() { |
---|
223 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
224 | } |
---|
225 | } /*end class RuleList ******/ |
---|
226 | |
---|
227 | /** Number of attribute the dataset should have */ |
---|
228 | protected int m_NumAttributes; |
---|
229 | |
---|
230 | /** Number of Classes the dataset should have */ |
---|
231 | protected int m_NumClasses; |
---|
232 | |
---|
233 | /** maximum rule size*/ |
---|
234 | private int m_MaxRuleSize; |
---|
235 | |
---|
236 | /** minimum rule size*/ |
---|
237 | private int m_MinRuleSize; |
---|
238 | |
---|
239 | /** number of irrelevant attributes.*/ |
---|
240 | private int m_NumIrrelevant; |
---|
241 | |
---|
242 | /** number of numeric attribute*/ |
---|
243 | private int m_NumNumeric; |
---|
244 | |
---|
245 | /** flag that stores if voting is wished*/ |
---|
246 | private boolean m_VoteFlag = false; |
---|
247 | |
---|
248 | /** decision list */ |
---|
249 | private FastVector m_DecisionList = null; |
---|
250 | |
---|
251 | /** array defines which attributes are irrelevant, with: |
---|
252 | * true = attribute is irrelevant; false = attribute is not irrelevant*/ |
---|
253 | boolean[] m_AttList_Irr; |
---|
254 | |
---|
255 | /** |
---|
256 | * initializes the generator with default values |
---|
257 | */ |
---|
258 | public RDG1() { |
---|
259 | super(); |
---|
260 | |
---|
261 | setNumAttributes(defaultNumAttributes()); |
---|
262 | setNumClasses(defaultNumClasses()); |
---|
263 | setMaxRuleSize(defaultMaxRuleSize()); |
---|
264 | setMinRuleSize(defaultMinRuleSize()); |
---|
265 | setNumIrrelevant(defaultNumIrrelevant()); |
---|
266 | setNumNumeric(defaultNumNumeric()); |
---|
267 | } |
---|
268 | |
---|
269 | /** |
---|
270 | * Returns a string describing this data generator. |
---|
271 | * |
---|
272 | * @return a description of the data generator suitable for |
---|
273 | * displaying in the explorer/experimenter gui |
---|
274 | */ |
---|
275 | public String globalInfo() { |
---|
276 | return |
---|
277 | "A data generator that produces data randomly by producing a decision list.\n" |
---|
278 | + "The decision list consists of rules.\n" |
---|
279 | + "Instances are generated randomly one by one. If decision list fails " |
---|
280 | + "to classify the current instance, a new rule according to this current " |
---|
281 | + "instance is generated and added to the decision list.\n\n" |
---|
282 | + "The option -V switches on voting, which means that at the end " |
---|
283 | + "of the generation all instances are " |
---|
284 | + "reclassified to the class value that is supported by the most rules.\n\n" |
---|
285 | + "This data generator can generate 'boolean' attributes (= nominal with " |
---|
286 | + "the values {true, false}) and numeric attributes. The rules can be " |
---|
287 | + "'A' or 'NOT A' for boolean values and 'B < random_value' or " |
---|
288 | + "'B >= random_value' for numeric values."; |
---|
289 | } |
---|
290 | |
---|
291 | /** |
---|
292 | * Returns an enumeration describing the available options. |
---|
293 | * |
---|
294 | * @return an enumeration of all the available options |
---|
295 | */ |
---|
296 | public Enumeration listOptions() { |
---|
297 | Vector result = enumToVector(super.listOptions()); |
---|
298 | |
---|
299 | result.addElement(new Option( |
---|
300 | "\tThe number of attributes (default " |
---|
301 | + defaultNumAttributes() + ").", |
---|
302 | "a", 1, "-a <num>")); |
---|
303 | |
---|
304 | result.addElement(new Option( |
---|
305 | "\tThe number of classes (default " + defaultNumClasses() + ")", |
---|
306 | "c", 1, "-c <num>")); |
---|
307 | |
---|
308 | result.addElement(new Option( |
---|
309 | "\tmaximum size for rules (default " |
---|
310 | + defaultMaxRuleSize() + ") ", |
---|
311 | "R", 1, "-R <num>")); |
---|
312 | |
---|
313 | result.addElement(new Option( |
---|
314 | "\tminimum size for rules (default " |
---|
315 | + defaultMinRuleSize() + ") ", |
---|
316 | "M", 1, "-M <num>")); |
---|
317 | |
---|
318 | result.addElement(new Option( |
---|
319 | "\tnumber of irrelevant attributes (default " |
---|
320 | + defaultNumIrrelevant() + ")", |
---|
321 | "I", 1, "-I <num>")); |
---|
322 | |
---|
323 | result.addElement(new Option( |
---|
324 | "\tnumber of numeric attributes (default " |
---|
325 | + defaultNumNumeric() + ")", |
---|
326 | "N", 1, "-N")); |
---|
327 | |
---|
328 | result.addElement(new Option( |
---|
329 | "\tswitch on voting (default is no voting)", |
---|
330 | "V", 1, "-V")); |
---|
331 | |
---|
332 | return result.elements(); |
---|
333 | } |
---|
334 | |
---|
335 | /** |
---|
336 | * Parses a list of options for this object. <p/> |
---|
337 | * |
---|
338 | <!-- options-start --> |
---|
339 | * Valid options are: <p/> |
---|
340 | * |
---|
341 | * <pre> -h |
---|
342 | * Prints this help.</pre> |
---|
343 | * |
---|
344 | * <pre> -o <file> |
---|
345 | * The name of the output file, otherwise the generated data is |
---|
346 | * printed to stdout.</pre> |
---|
347 | * |
---|
348 | * <pre> -r <name> |
---|
349 | * The name of the relation.</pre> |
---|
350 | * |
---|
351 | * <pre> -d |
---|
352 | * Whether to print debug informations.</pre> |
---|
353 | * |
---|
354 | * <pre> -S |
---|
355 | * The seed for random function (default 1)</pre> |
---|
356 | * |
---|
357 | * <pre> -n <num> |
---|
358 | * The number of examples to generate (default 100)</pre> |
---|
359 | * |
---|
360 | * <pre> -a <num> |
---|
361 | * The number of attributes (default 10).</pre> |
---|
362 | * |
---|
363 | * <pre> -c <num> |
---|
364 | * The number of classes (default 2)</pre> |
---|
365 | * |
---|
366 | * <pre> -R <num> |
---|
367 | * maximum size for rules (default 10) </pre> |
---|
368 | * |
---|
369 | * <pre> -M <num> |
---|
370 | * minimum size for rules (default 1) </pre> |
---|
371 | * |
---|
372 | * <pre> -I <num> |
---|
373 | * number of irrelevant attributes (default 0)</pre> |
---|
374 | * |
---|
375 | * <pre> -N |
---|
376 | * number of numeric attributes (default 0)</pre> |
---|
377 | * |
---|
378 | * <pre> -V |
---|
379 | * switch on voting (default is no voting)</pre> |
---|
380 | * |
---|
381 | <!-- options-end --> |
---|
382 | * |
---|
383 | * @param options the list of options as an array of strings |
---|
384 | * @throws Exception if an option is not supported |
---|
385 | */ |
---|
386 | public void setOptions(String[] options) throws Exception { |
---|
387 | String tmpStr; |
---|
388 | |
---|
389 | super.setOptions(options); |
---|
390 | |
---|
391 | tmpStr = Utils.getOption('a', options); |
---|
392 | if (tmpStr.length() != 0) |
---|
393 | setNumAttributes(Integer.parseInt(tmpStr)); |
---|
394 | else |
---|
395 | setNumAttributes(defaultNumAttributes()); |
---|
396 | |
---|
397 | tmpStr = Utils.getOption('c', options); |
---|
398 | if (tmpStr.length() != 0) |
---|
399 | setNumClasses(Integer.parseInt(tmpStr)); |
---|
400 | else |
---|
401 | setNumClasses(defaultNumClasses()); |
---|
402 | |
---|
403 | tmpStr = Utils.getOption('R', options); |
---|
404 | if (tmpStr.length() != 0) |
---|
405 | setMaxRuleSize(Integer.parseInt(tmpStr)); |
---|
406 | else |
---|
407 | setMaxRuleSize(defaultMaxRuleSize()); |
---|
408 | |
---|
409 | tmpStr = Utils.getOption('M', options); |
---|
410 | if (tmpStr.length() != 0) |
---|
411 | setMinRuleSize(Integer.parseInt(tmpStr)); |
---|
412 | else |
---|
413 | setMinRuleSize(defaultMinRuleSize()); |
---|
414 | |
---|
415 | tmpStr = Utils.getOption('I', options); |
---|
416 | if (tmpStr.length() != 0) |
---|
417 | setNumIrrelevant(Integer.parseInt(tmpStr)); |
---|
418 | else |
---|
419 | setNumIrrelevant(defaultNumIrrelevant()); |
---|
420 | |
---|
421 | if ((getNumAttributes() - getNumIrrelevant()) < getMinRuleSize()) |
---|
422 | throw new Exception("Possible rule size is below minimal rule size."); |
---|
423 | |
---|
424 | tmpStr = Utils.getOption('N', options); |
---|
425 | if (tmpStr.length() != 0) |
---|
426 | setNumNumeric(Integer.parseInt(tmpStr)); |
---|
427 | else |
---|
428 | setNumNumeric(defaultNumNumeric()); |
---|
429 | |
---|
430 | setVoteFlag(Utils.getFlag('V', options)); |
---|
431 | } |
---|
432 | |
---|
433 | /** |
---|
434 | * Gets the current settings of the datagenerator RDG1. |
---|
435 | * |
---|
436 | * @return an array of strings suitable for passing to setOptions |
---|
437 | */ |
---|
438 | public String[] getOptions() { |
---|
439 | Vector result; |
---|
440 | String[] options; |
---|
441 | int i; |
---|
442 | |
---|
443 | result = new Vector(); |
---|
444 | options = super.getOptions(); |
---|
445 | for (i = 0; i < options.length; i++) |
---|
446 | result.add(options[i]); |
---|
447 | |
---|
448 | result.add("-a"); |
---|
449 | result.add("" + getNumAttributes()); |
---|
450 | |
---|
451 | result.add("-c"); |
---|
452 | result.add("" + getNumClasses()); |
---|
453 | |
---|
454 | result.add("-N"); |
---|
455 | result.add("" + getNumNumeric()); |
---|
456 | |
---|
457 | result.add("-I"); |
---|
458 | result.add("" + getNumIrrelevant()); |
---|
459 | |
---|
460 | result.add("-M"); |
---|
461 | result.add("" + getMinRuleSize()); |
---|
462 | |
---|
463 | result.add("-R"); |
---|
464 | result.add("" + getMaxRuleSize()); |
---|
465 | |
---|
466 | if (getVoteFlag()) |
---|
467 | result.add("-V"); |
---|
468 | |
---|
469 | return (String[]) result.toArray(new String[result.size()]); |
---|
470 | } |
---|
471 | |
---|
472 | /** |
---|
473 | * returns the default number of attributes |
---|
474 | * |
---|
475 | * @return the default number of attributes |
---|
476 | */ |
---|
477 | protected int defaultNumAttributes() { |
---|
478 | return 10; |
---|
479 | } |
---|
480 | |
---|
481 | /** |
---|
482 | * Sets the number of attributes the dataset should have. |
---|
483 | * @param numAttributes the new number of attributes |
---|
484 | */ |
---|
485 | public void setNumAttributes(int numAttributes) { |
---|
486 | m_NumAttributes = numAttributes; |
---|
487 | } |
---|
488 | |
---|
489 | /** |
---|
490 | * Gets the number of attributes that should be produced. |
---|
491 | * @return the number of attributes that should be produced |
---|
492 | */ |
---|
493 | public int getNumAttributes() { |
---|
494 | return m_NumAttributes; |
---|
495 | } |
---|
496 | |
---|
497 | /** |
---|
498 | * Returns the tip text for this property |
---|
499 | * |
---|
500 | * @return tip text for this property suitable for |
---|
501 | * displaying in the explorer/experimenter gui |
---|
502 | */ |
---|
503 | public String numAttributesTipText() { |
---|
504 | return "The number of attributes the generated data will contain."; |
---|
505 | } |
---|
506 | |
---|
507 | /** |
---|
508 | * returns the default number of classes |
---|
509 | * |
---|
510 | * @return the default number of classes |
---|
511 | */ |
---|
512 | protected int defaultNumClasses() { |
---|
513 | return 2; |
---|
514 | } |
---|
515 | |
---|
516 | /** |
---|
517 | * Sets the number of classes the dataset should have. |
---|
518 | * @param numClasses the new number of classes |
---|
519 | */ |
---|
520 | public void setNumClasses(int numClasses) { |
---|
521 | m_NumClasses = numClasses; |
---|
522 | } |
---|
523 | |
---|
524 | /** |
---|
525 | * Gets the number of classes the dataset should have. |
---|
526 | * @return the number of classes the dataset should have |
---|
527 | */ |
---|
528 | public int getNumClasses() { |
---|
529 | return m_NumClasses; |
---|
530 | } |
---|
531 | |
---|
532 | /** |
---|
533 | * Returns the tip text for this property |
---|
534 | * |
---|
535 | * @return tip text for this property suitable for |
---|
536 | * displaying in the explorer/experimenter gui |
---|
537 | */ |
---|
538 | public String numClassesTipText() { |
---|
539 | return "The number of classes to generate."; |
---|
540 | } |
---|
541 | |
---|
542 | /** |
---|
543 | * returns the default max size of rules |
---|
544 | * |
---|
545 | * @return the default max size of rules |
---|
546 | */ |
---|
547 | protected int defaultMaxRuleSize() { |
---|
548 | return 10; |
---|
549 | } |
---|
550 | |
---|
551 | /** |
---|
552 | * Gets the maximum number of tests in rules. |
---|
553 | * |
---|
554 | * @return the maximum number of tests allowed in rules |
---|
555 | */ |
---|
556 | public int getMaxRuleSize() { |
---|
557 | return m_MaxRuleSize; |
---|
558 | } |
---|
559 | |
---|
560 | /** |
---|
561 | * Sets the maximum number of tests in rules. |
---|
562 | * |
---|
563 | * @param newMaxRuleSize new maximum number of tests allowed in rules. |
---|
564 | */ |
---|
565 | public void setMaxRuleSize(int newMaxRuleSize) { |
---|
566 | m_MaxRuleSize = newMaxRuleSize; |
---|
567 | } |
---|
568 | |
---|
569 | /** |
---|
570 | * Returns the tip text for this property |
---|
571 | * |
---|
572 | * @return tip text for this property suitable for |
---|
573 | * displaying in the explorer/experimenter gui |
---|
574 | */ |
---|
575 | public String maxRuleSizeTipText() { |
---|
576 | return "The maximum number of tests in rules."; |
---|
577 | } |
---|
578 | |
---|
579 | /** |
---|
580 | * returns the default min size of rules |
---|
581 | * |
---|
582 | * @return the default min size of rules |
---|
583 | */ |
---|
584 | protected int defaultMinRuleSize() { |
---|
585 | return 1; |
---|
586 | } |
---|
587 | |
---|
588 | /** |
---|
589 | * Gets the minimum number of tests in rules. |
---|
590 | * |
---|
591 | * @return the minimum number of tests allowed in rules |
---|
592 | */ |
---|
593 | public int getMinRuleSize() { |
---|
594 | return m_MinRuleSize; |
---|
595 | } |
---|
596 | |
---|
597 | /** |
---|
598 | * Sets the minimum number of tests in rules. |
---|
599 | * |
---|
600 | * @param newMinRuleSize new minimum number of test in rules. |
---|
601 | */ |
---|
602 | public void setMinRuleSize(int newMinRuleSize) { |
---|
603 | m_MinRuleSize = newMinRuleSize; |
---|
604 | } |
---|
605 | |
---|
606 | /** |
---|
607 | * Returns the tip text for this property |
---|
608 | * |
---|
609 | * @return tip text for this property suitable for |
---|
610 | * displaying in the explorer/experimenter gui |
---|
611 | */ |
---|
612 | public String minRuleSizeTipText() { |
---|
613 | return "The minimum number of tests in rules."; |
---|
614 | } |
---|
615 | |
---|
616 | /** |
---|
617 | * returns the default number of irrelevant attributes |
---|
618 | * |
---|
619 | * @return the default number of irrelevant attributes |
---|
620 | */ |
---|
621 | protected int defaultNumIrrelevant() { |
---|
622 | return 0; |
---|
623 | } |
---|
624 | |
---|
625 | /** |
---|
626 | * Gets the number of irrelevant attributes. |
---|
627 | * |
---|
628 | * @return the number of irrelevant attributes |
---|
629 | */ |
---|
630 | public int getNumIrrelevant() { |
---|
631 | return m_NumIrrelevant; |
---|
632 | } |
---|
633 | |
---|
634 | /** |
---|
635 | * Sets the number of irrelevant attributes. |
---|
636 | * |
---|
637 | * @param newNumIrrelevant the number of irrelevant attributes. |
---|
638 | */ |
---|
639 | public void setNumIrrelevant(int newNumIrrelevant) { |
---|
640 | m_NumIrrelevant = newNumIrrelevant; |
---|
641 | } |
---|
642 | |
---|
643 | /** |
---|
644 | * Returns the tip text for this property |
---|
645 | * |
---|
646 | * @return tip text for this property suitable for |
---|
647 | * displaying in the explorer/experimenter gui |
---|
648 | */ |
---|
649 | public String numIrrelevantTipText() { |
---|
650 | return "The number of irrelevant attributes."; |
---|
651 | } |
---|
652 | |
---|
653 | /** |
---|
654 | * returns the default number of numeric attributes |
---|
655 | * |
---|
656 | * @return the default number of numeric attributes |
---|
657 | */ |
---|
658 | protected int defaultNumNumeric() { |
---|
659 | return 0; |
---|
660 | } |
---|
661 | |
---|
662 | /** |
---|
663 | * Gets the number of numerical attributes. |
---|
664 | * |
---|
665 | * @return the number of numerical attributes. |
---|
666 | */ |
---|
667 | public int getNumNumeric() { |
---|
668 | return m_NumNumeric; |
---|
669 | } |
---|
670 | |
---|
671 | /** |
---|
672 | * Sets the number of numerical attributes. |
---|
673 | * |
---|
674 | * @param newNumNumeric the number of numerical attributes. |
---|
675 | */ |
---|
676 | public void setNumNumeric(int newNumNumeric) { |
---|
677 | m_NumNumeric = newNumNumeric; |
---|
678 | } |
---|
679 | |
---|
680 | /** |
---|
681 | * Returns the tip text for this property |
---|
682 | * |
---|
683 | * @return tip text for this property suitable for |
---|
684 | * displaying in the explorer/experimenter gui |
---|
685 | */ |
---|
686 | public String numNumericTipText() { |
---|
687 | return "The number of numerical attributes."; |
---|
688 | } |
---|
689 | |
---|
690 | /** |
---|
691 | * Gets the vote flag. |
---|
692 | * |
---|
693 | * @return voting flag. |
---|
694 | */ |
---|
695 | public boolean getVoteFlag() { |
---|
696 | return m_VoteFlag; |
---|
697 | } |
---|
698 | |
---|
699 | /** |
---|
700 | * Sets the vote flag. |
---|
701 | * |
---|
702 | * @param newVoteFlag boolean with the new setting of the vote flag. |
---|
703 | */ |
---|
704 | public void setVoteFlag(boolean newVoteFlag) { |
---|
705 | m_VoteFlag = newVoteFlag; |
---|
706 | } |
---|
707 | |
---|
708 | /** |
---|
709 | * Returns the tip text for this property |
---|
710 | * |
---|
711 | * @return tip text for this property suitable for |
---|
712 | * displaying in the explorer/experimenter gui |
---|
713 | */ |
---|
714 | public String voteFlagTipText() { |
---|
715 | return "Whether to use voting or not."; |
---|
716 | } |
---|
717 | |
---|
718 | /** |
---|
719 | * Gets the single mode flag. |
---|
720 | * |
---|
721 | * @return true if methode generateExample can be used. |
---|
722 | */ |
---|
723 | public boolean getSingleModeFlag() { |
---|
724 | return (!getVoteFlag()); |
---|
725 | } |
---|
726 | |
---|
727 | /** |
---|
728 | * Gets the array that defines which of the attributes |
---|
729 | * are seen to be irrelevant. |
---|
730 | * |
---|
731 | * @return the array that defines the irrelevant attributes |
---|
732 | */ |
---|
733 | public boolean[] getAttList_Irr() { |
---|
734 | return m_AttList_Irr; |
---|
735 | } |
---|
736 | |
---|
737 | /** |
---|
738 | * Sets the array that defines which of the attributes |
---|
739 | * are seen to be irrelevant. |
---|
740 | * |
---|
741 | * @param newAttList_Irr array that defines the irrelevant attributes. |
---|
742 | */ |
---|
743 | public void setAttList_Irr(boolean[] newAttList_Irr) { |
---|
744 | m_AttList_Irr = newAttList_Irr; |
---|
745 | } |
---|
746 | |
---|
747 | /** |
---|
748 | * Returns the tip text for this property |
---|
749 | * |
---|
750 | * @return tip text for this property suitable for |
---|
751 | * displaying in the explorer/experimenter gui |
---|
752 | */ |
---|
753 | public String attList_IrrTipText() { |
---|
754 | return "The array with the indices of the irrelevant attributes."; |
---|
755 | } |
---|
756 | |
---|
757 | /** |
---|
758 | * Initializes the format for the dataset produced. |
---|
759 | * |
---|
760 | * @return the output data format |
---|
761 | * @throws Exception data format could not be defined |
---|
762 | */ |
---|
763 | public Instances defineDataFormat() throws Exception { |
---|
764 | Instances dataset; |
---|
765 | Random random = new Random (getSeed()); |
---|
766 | setRandom(random); |
---|
767 | |
---|
768 | m_DecisionList = new FastVector(); |
---|
769 | |
---|
770 | // number of examples is the same as given per option |
---|
771 | setNumExamplesAct(getNumExamples()); |
---|
772 | |
---|
773 | // define dataset |
---|
774 | dataset = defineDataset(random); |
---|
775 | return dataset; |
---|
776 | } |
---|
777 | |
---|
778 | /** |
---|
779 | * Generate an example of the dataset dataset. |
---|
780 | * @return the instance generated |
---|
781 | * @throws Exception if format not defined or generating <br/> |
---|
782 | * examples one by one is not possible, because voting is chosen |
---|
783 | */ |
---|
784 | public Instance generateExample() throws Exception { |
---|
785 | Random random = getRandom(); |
---|
786 | Instances format = getDatasetFormat(); |
---|
787 | |
---|
788 | if (format == null) |
---|
789 | throw new Exception("Dataset format not defined."); |
---|
790 | if (getVoteFlag()) |
---|
791 | throw new Exception("Examples cannot be generated one by one."); |
---|
792 | |
---|
793 | // generate values for all attributes |
---|
794 | format = generateExamples(1, random, format); |
---|
795 | |
---|
796 | return format.lastInstance(); |
---|
797 | } |
---|
798 | |
---|
799 | /** |
---|
800 | * Generate all examples of the dataset. |
---|
801 | * @return the instance generated |
---|
802 | * @throws Exception if format not defined or generating <br/> |
---|
803 | * examples one by one is not possible, because voting is chosen |
---|
804 | */ |
---|
805 | public Instances generateExamples() throws Exception { |
---|
806 | Random random = getRandom(); |
---|
807 | Instances format = getDatasetFormat(); |
---|
808 | if (format == null) |
---|
809 | throw new Exception("Dataset format not defined."); |
---|
810 | |
---|
811 | // generate values for all attributes |
---|
812 | format = generateExamples(getNumExamplesAct(), random, format); |
---|
813 | |
---|
814 | // vote all examples, and set new class value |
---|
815 | if (getVoteFlag()) |
---|
816 | format = voteDataset(format); |
---|
817 | |
---|
818 | return format; |
---|
819 | } |
---|
820 | |
---|
821 | /** |
---|
822 | * Generate all examples of the dataset. |
---|
823 | * @param num the number of examples to generate |
---|
824 | * @param random the random number generator to use |
---|
825 | * @param format the dataset format |
---|
826 | * @return the instance generated |
---|
827 | * @throws Exception if format not defined or generating <br/> |
---|
828 | * examples one by one is not possible, because voting is chosen |
---|
829 | */ |
---|
830 | public Instances generateExamples(int num, |
---|
831 | Random random, |
---|
832 | Instances format) throws Exception { |
---|
833 | |
---|
834 | if (format == null) |
---|
835 | throw new Exception("Dataset format not defined."); |
---|
836 | |
---|
837 | // generate values for all attributes |
---|
838 | for (int i = 0; i < num; i++) { |
---|
839 | // over all examples to be produced |
---|
840 | Instance example = generateExample(random, format); |
---|
841 | |
---|
842 | // set class of example using decision list |
---|
843 | boolean classDefined = classifyExample(example); |
---|
844 | if (!classDefined) { |
---|
845 | // set class with newly generated rule |
---|
846 | example = updateDecisionList(random, example); |
---|
847 | } |
---|
848 | example.setDataset(format); |
---|
849 | format.add(example); |
---|
850 | } |
---|
851 | |
---|
852 | return (format); |
---|
853 | } |
---|
854 | |
---|
855 | /** |
---|
856 | * Generates a new rule for the decision list. |
---|
857 | * and classifies the new example |
---|
858 | * @param random random number generator |
---|
859 | * @param example example used to update decision list |
---|
860 | * @return the classified example |
---|
861 | * @throws Exception if dataset format not defined |
---|
862 | */ |
---|
863 | private Instance updateDecisionList(Random random, Instance example) |
---|
864 | throws Exception { |
---|
865 | |
---|
866 | FastVector TestList; |
---|
867 | Instances format = getDatasetFormat(); |
---|
868 | if (format == null) |
---|
869 | throw new Exception("Dataset format not defined."); |
---|
870 | |
---|
871 | TestList = generateTestList(random, example); |
---|
872 | |
---|
873 | int maxSize = getMaxRuleSize() < TestList.size() ? |
---|
874 | getMaxRuleSize() : TestList.size(); |
---|
875 | int ruleSize = ((int) (random.nextDouble() * |
---|
876 | (double) (maxSize - getMinRuleSize()))) |
---|
877 | + getMinRuleSize(); |
---|
878 | |
---|
879 | RuleList newRule = new RuleList(); |
---|
880 | for (int i=0; i < ruleSize; i++) { |
---|
881 | int testIndex = (int) (random.nextDouble() * (double) TestList.size()); |
---|
882 | Test test = (Test) TestList.elementAt(testIndex); |
---|
883 | |
---|
884 | newRule.addTest(test); |
---|
885 | TestList.removeElementAt(testIndex); |
---|
886 | } |
---|
887 | double newClassValue = 0.0; |
---|
888 | if (m_DecisionList.size() > 0) { |
---|
889 | RuleList r = (RuleList)(m_DecisionList.lastElement()); |
---|
890 | double oldClassValue = (double) |
---|
891 | (r.getClassValue()); |
---|
892 | newClassValue = (double)((int)oldClassValue + 1) |
---|
893 | % getNumClasses(); |
---|
894 | } |
---|
895 | newRule.setClassValue(newClassValue); |
---|
896 | m_DecisionList.addElement(newRule); |
---|
897 | example = (Instance)example.copy(); |
---|
898 | example.setDataset(format); |
---|
899 | example.setClassValue(newClassValue); |
---|
900 | return example; |
---|
901 | } |
---|
902 | |
---|
903 | /** |
---|
904 | * Generates a new rule for the decision list |
---|
905 | * and classifies the new example. |
---|
906 | * |
---|
907 | * @param random random number generator |
---|
908 | * @param example the instance to classify |
---|
909 | * @return a list of tests |
---|
910 | * @throws Exception if dataset format not defined |
---|
911 | */ |
---|
912 | private FastVector generateTestList(Random random, Instance example) |
---|
913 | throws Exception { |
---|
914 | |
---|
915 | Instances format = getDatasetFormat(); |
---|
916 | if (format == null) |
---|
917 | throw new Exception("Dataset format not defined."); |
---|
918 | |
---|
919 | int numTests = getNumAttributes() - getNumIrrelevant(); |
---|
920 | FastVector TestList = new FastVector(numTests); |
---|
921 | boolean[] irrelevant = getAttList_Irr(); |
---|
922 | |
---|
923 | for (int i = 0; i < getNumAttributes(); i++) { |
---|
924 | if (!irrelevant[i]) { |
---|
925 | Test newTest = null; |
---|
926 | Attribute att = example.attribute(i); |
---|
927 | if (att.isNumeric()) { |
---|
928 | double newSplit = random.nextDouble(); |
---|
929 | boolean newNot = newSplit < example.value(i); |
---|
930 | newTest = new Test(i, newSplit, format, newNot); |
---|
931 | } else { |
---|
932 | newTest = new Test(i, example.value(i), format, false); |
---|
933 | } |
---|
934 | TestList.addElement (newTest); |
---|
935 | } |
---|
936 | } |
---|
937 | |
---|
938 | return TestList; |
---|
939 | } |
---|
940 | |
---|
941 | /** |
---|
942 | * Generates an example with its classvalue set to missing |
---|
943 | * and binds it to the datasets. |
---|
944 | * |
---|
945 | * @param random random number generator |
---|
946 | * @param format dataset the example gets bind to |
---|
947 | * @return the generated example |
---|
948 | * @throws Exception if attribute type not supported |
---|
949 | */ |
---|
950 | private Instance generateExample(Random random, Instances format) |
---|
951 | throws Exception { |
---|
952 | double[] attributes; |
---|
953 | Instance example; |
---|
954 | |
---|
955 | attributes = new double[getNumAttributes() + 1]; |
---|
956 | for (int i = 0; i < getNumAttributes(); i++) { |
---|
957 | double value = random.nextDouble(); |
---|
958 | if (format.attribute(i).isNumeric()) { |
---|
959 | attributes[i] = value; |
---|
960 | } else { |
---|
961 | if (format.attribute(i).isNominal()) |
---|
962 | attributes[i] = (value > 0.5) ? 1.0 : 0.0; |
---|
963 | else |
---|
964 | throw new Exception ("Attribute type is not supported."); |
---|
965 | } |
---|
966 | } |
---|
967 | example = new DenseInstance(1.0, attributes); |
---|
968 | example.setDataset(format); |
---|
969 | example.setClassMissing(); |
---|
970 | |
---|
971 | return example; |
---|
972 | } |
---|
973 | |
---|
974 | /** |
---|
975 | * Tries to classify an example. |
---|
976 | * |
---|
977 | * @param example the example to classify |
---|
978 | * @return true if it could be classified |
---|
979 | * @throws Exception if something goes wrong |
---|
980 | */ |
---|
981 | private boolean classifyExample(Instance example) throws Exception { |
---|
982 | double classValue = -1.0; |
---|
983 | |
---|
984 | for (Enumeration e = m_DecisionList.elements(); |
---|
985 | e.hasMoreElements() && classValue < 0.0;) { |
---|
986 | RuleList rl = (RuleList) e.nextElement(); |
---|
987 | classValue = rl.classifyInstance(example); |
---|
988 | } |
---|
989 | if (classValue >= 0.0) { |
---|
990 | example.setClassValue(classValue); |
---|
991 | return true; |
---|
992 | } |
---|
993 | else { |
---|
994 | return false; |
---|
995 | } |
---|
996 | } |
---|
997 | |
---|
998 | /** |
---|
999 | * Classify example with maximum vote the following way. |
---|
1000 | * With every rule in the decisionlist, it is evaluated if |
---|
1001 | * the given instance could be the class of the rule. |
---|
1002 | * Finally the class value that receives the highest number of votes |
---|
1003 | * is assigned to the example. |
---|
1004 | * |
---|
1005 | * @param example example to be reclassified |
---|
1006 | * @return instance with new class value |
---|
1007 | * @throws Exception if classification fails |
---|
1008 | */ |
---|
1009 | private Instance votedReclassifyExample(Instance example) throws Exception { |
---|
1010 | int classVotes[] = new int [getNumClasses()]; |
---|
1011 | for (int i = 0; i < classVotes.length; i++) classVotes[i] = 0; |
---|
1012 | |
---|
1013 | for (Enumeration e = m_DecisionList.elements(); |
---|
1014 | e.hasMoreElements();) { |
---|
1015 | RuleList rl = (RuleList) e.nextElement(); |
---|
1016 | int classValue = (int) rl.classifyInstance(example); |
---|
1017 | if (classValue >= 0) classVotes[classValue]++; |
---|
1018 | } |
---|
1019 | int maxVote = 0; |
---|
1020 | int vote = -1; |
---|
1021 | for (int i = 0; i < classVotes.length; i++) { |
---|
1022 | if (classVotes[i] > maxVote) { |
---|
1023 | maxVote = classVotes[i]; |
---|
1024 | vote = i; |
---|
1025 | } |
---|
1026 | } |
---|
1027 | if (vote >= 0) |
---|
1028 | example.setClassValue((double) vote); |
---|
1029 | else |
---|
1030 | throw new Exception ("Error in instance classification."); |
---|
1031 | |
---|
1032 | return example; |
---|
1033 | } |
---|
1034 | |
---|
1035 | /** |
---|
1036 | * Returns a dataset header. |
---|
1037 | * @param random random number generator |
---|
1038 | * @return dataset header |
---|
1039 | * @throws Exception if something goes wrong |
---|
1040 | */ |
---|
1041 | private Instances defineDataset(Random random) throws Exception { |
---|
1042 | |
---|
1043 | boolean[] attList_Irr; |
---|
1044 | int[] attList_Num; |
---|
1045 | FastVector attributes = new FastVector(); |
---|
1046 | Attribute attribute; |
---|
1047 | FastVector nominalValues = new FastVector (2); |
---|
1048 | nominalValues.addElement("false"); |
---|
1049 | nominalValues.addElement("true"); |
---|
1050 | FastVector classValues = new FastVector (getNumClasses()); |
---|
1051 | Instances dataset; |
---|
1052 | |
---|
1053 | // set randomly those attributes that are irrelevant |
---|
1054 | attList_Irr = defineIrrelevant(random); |
---|
1055 | setAttList_Irr(attList_Irr); |
---|
1056 | |
---|
1057 | // set randomly those attributes that are numeric |
---|
1058 | attList_Num = defineNumeric(random); |
---|
1059 | |
---|
1060 | // define dataset |
---|
1061 | for (int i = 0; i < getNumAttributes(); i++) { |
---|
1062 | if (attList_Num[i] == Attribute.NUMERIC) |
---|
1063 | attribute = new Attribute("a" + i); |
---|
1064 | else |
---|
1065 | attribute = new Attribute("a" + i, nominalValues); |
---|
1066 | attributes.addElement(attribute); |
---|
1067 | } |
---|
1068 | for (int i = 0; i < getNumClasses(); i++) |
---|
1069 | classValues.addElement("c" + i); |
---|
1070 | attribute = new Attribute ("class", classValues); |
---|
1071 | attributes.addElement(attribute); |
---|
1072 | |
---|
1073 | dataset = new Instances(getRelationNameToUse(), attributes, |
---|
1074 | getNumExamplesAct()); |
---|
1075 | dataset.setClassIndex(getNumAttributes()); |
---|
1076 | |
---|
1077 | // set dataset format of this class |
---|
1078 | Instances format = new Instances(dataset, 0); |
---|
1079 | setDatasetFormat(format); |
---|
1080 | |
---|
1081 | return dataset; |
---|
1082 | } |
---|
1083 | |
---|
1084 | /** |
---|
1085 | * Defines randomly the attributes as irrelevant. |
---|
1086 | * Number of attributes to be set as irrelevant is either set |
---|
1087 | * with a preceeding call of setNumIrrelevant() or is per default 0. |
---|
1088 | * |
---|
1089 | * @param random the random number generator to use |
---|
1090 | * @return list of boolean values with one value for each attribute, |
---|
1091 | * and each value set true or false according to if the corresponding |
---|
1092 | * attribute was defined irrelevant or not |
---|
1093 | */ |
---|
1094 | private boolean[] defineIrrelevant(Random random) { |
---|
1095 | |
---|
1096 | boolean[] irr = new boolean [getNumAttributes()]; |
---|
1097 | |
---|
1098 | // initialize |
---|
1099 | for (int i = 0; i < irr.length; i++) |
---|
1100 | irr[i] = false; |
---|
1101 | |
---|
1102 | // set randomly |
---|
1103 | int numIrr = 0; |
---|
1104 | for (int i = 0; |
---|
1105 | (numIrr < getNumIrrelevant()) && (i < getNumAttributes() * 5); |
---|
1106 | i++) { |
---|
1107 | int maybeNext = (int) (random.nextDouble() * (double) irr.length); |
---|
1108 | if (irr[maybeNext] == false) { |
---|
1109 | irr [maybeNext] = true; |
---|
1110 | numIrr++; |
---|
1111 | } |
---|
1112 | } |
---|
1113 | |
---|
1114 | return irr; |
---|
1115 | } |
---|
1116 | |
---|
1117 | /** |
---|
1118 | * Chooses randomly the attributes that get datatyp numeric. |
---|
1119 | * @param random the random number generator to use |
---|
1120 | * @return list of integer values, with one value for each attribute, |
---|
1121 | * and each value set to Attribut.NOMINAL or Attribut.NUMERIC |
---|
1122 | */ |
---|
1123 | private int[] defineNumeric(Random random) { |
---|
1124 | |
---|
1125 | int[] num = new int [getNumAttributes()]; |
---|
1126 | |
---|
1127 | // initialize |
---|
1128 | for (int i = 0; i < num.length; i++) |
---|
1129 | num[i] = Attribute.NOMINAL; |
---|
1130 | |
---|
1131 | int numNum = 0; |
---|
1132 | for (int i = 0; |
---|
1133 | (numNum < getNumNumeric()) && (i < getNumAttributes() * 5); i++) { |
---|
1134 | int maybeNext = (int) (random.nextDouble() * (double) num.length); |
---|
1135 | if (num[maybeNext] != Attribute.NUMERIC) { |
---|
1136 | num[maybeNext] = Attribute.NUMERIC; |
---|
1137 | numNum++; |
---|
1138 | } |
---|
1139 | } |
---|
1140 | |
---|
1141 | return num; |
---|
1142 | } |
---|
1143 | |
---|
1144 | /** |
---|
1145 | * Generates a comment string that documentates the data generator. |
---|
1146 | * By default this string is added at the beginning of the produced output |
---|
1147 | * as ARFF file type, next after the options. |
---|
1148 | * |
---|
1149 | * @return string contains info about the generated rules |
---|
1150 | */ |
---|
1151 | public String generateStart () { |
---|
1152 | return ""; |
---|
1153 | } |
---|
1154 | |
---|
1155 | /** |
---|
1156 | * Compiles documentation about the data generation. This is the number of |
---|
1157 | * irrelevant attributes and the decisionlist with all rules. |
---|
1158 | * Considering that the decisionlist might get enhanced until |
---|
1159 | * the last instance is generated, this method should be called at the |
---|
1160 | * end of the data generation process. |
---|
1161 | * |
---|
1162 | * @return string with additional information about generated dataset |
---|
1163 | * @throws Exception no input structure has been defined |
---|
1164 | */ |
---|
1165 | public String generateFinished() throws Exception { |
---|
1166 | |
---|
1167 | StringBuffer dLString = new StringBuffer(); |
---|
1168 | |
---|
1169 | // string for output at end of ARFF-File |
---|
1170 | boolean[] attList_Irr = getAttList_Irr(); |
---|
1171 | Instances format = getDatasetFormat(); |
---|
1172 | dLString.append("%\n% Number of attributes chosen as irrelevant = " + |
---|
1173 | getNumIrrelevant() + "\n"); |
---|
1174 | for (int i = 0; i < attList_Irr.length; i++) { |
---|
1175 | if (attList_Irr[i]) |
---|
1176 | dLString.append("% " + format.attribute(i).name() + "\n"); |
---|
1177 | } |
---|
1178 | |
---|
1179 | dLString.append("%\n% DECISIONLIST (number of rules = " + |
---|
1180 | m_DecisionList.size() + "):\n"); |
---|
1181 | |
---|
1182 | for (int i = 0; i < m_DecisionList.size(); i++) { |
---|
1183 | RuleList rl = (RuleList) m_DecisionList.elementAt(i); |
---|
1184 | dLString.append("% RULE " + i + ": " + rl.toString() + "\n"); |
---|
1185 | } |
---|
1186 | |
---|
1187 | return dLString.toString(); |
---|
1188 | } |
---|
1189 | |
---|
1190 | /** |
---|
1191 | * Resets the class values of all instances using voting. |
---|
1192 | * For each instance the class value that satisfies the most rules |
---|
1193 | * is choosen as new class value. |
---|
1194 | * |
---|
1195 | * @param dataset the dataset to work on |
---|
1196 | * @return the changed instances |
---|
1197 | * @throws Exception if something goes wrong |
---|
1198 | */ |
---|
1199 | private Instances voteDataset(Instances dataset) throws Exception { |
---|
1200 | for (int i = 0; i < dataset.numInstances(); i++) { |
---|
1201 | Instance inst = dataset.firstInstance(); |
---|
1202 | inst = votedReclassifyExample(inst); |
---|
1203 | dataset.add(inst); |
---|
1204 | dataset.delete(0); |
---|
1205 | } |
---|
1206 | |
---|
1207 | return dataset; |
---|
1208 | } |
---|
1209 | |
---|
1210 | /** |
---|
1211 | * Returns the revision string. |
---|
1212 | * |
---|
1213 | * @return the revision |
---|
1214 | */ |
---|
1215 | public String getRevision() { |
---|
1216 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
1217 | } |
---|
1218 | |
---|
1219 | /** |
---|
1220 | * Main method for testing this class. |
---|
1221 | * |
---|
1222 | * @param args should contain arguments for the data producer: |
---|
1223 | */ |
---|
1224 | public static void main(String[] args) { |
---|
1225 | runDataGenerator(new RDG1(), args); |
---|
1226 | } |
---|
1227 | } |
---|