| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * FTNode.java |
|---|
| 19 | * Copyright (C) 2007 University of Porto, Porto, Portugal |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.trees.ft; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.functions.SimpleLinearRegression; |
|---|
| 26 | import weka.classifiers.trees.j48.C45ModelSelection; |
|---|
| 27 | import weka.classifiers.trees.j48.C45Split; |
|---|
| 28 | import weka.classifiers.trees.j48.NoSplit; |
|---|
| 29 | import weka.core.Attribute; |
|---|
| 30 | import weka.core.Instance; |
|---|
| 31 | import weka.core.DenseInstance; |
|---|
| 32 | import weka.core.Instances; |
|---|
| 33 | import weka.core.RevisionUtils; |
|---|
| 34 | import weka.core.Utils; |
|---|
| 35 | |
|---|
| 36 | /** |
|---|
| 37 | * Class for Functional tree structure. |
|---|
| 38 | * |
|---|
| 39 | * @author Jo\~{a}o Gama |
|---|
| 40 | * @author Carlos Ferreira |
|---|
| 41 | * |
|---|
| 42 | * @version $Revision: 6088 $ |
|---|
| 43 | */ |
|---|
| 44 | public class FTNode |
|---|
| 45 | extends FTtree { |
|---|
| 46 | |
|---|
| 47 | /** for serialization. */ |
|---|
| 48 | private static final long serialVersionUID = 2317688685139295063L; |
|---|
| 49 | |
|---|
| 50 | /** |
|---|
| 51 | * Constructor for Functional tree node. |
|---|
| 52 | * |
|---|
| 53 | * @param errorOnProbabilities Use error on probabilities for stopping criterion of LogitBoost? |
|---|
| 54 | * @param numBoostingIterations sets the numBoostingIterations parameter |
|---|
| 55 | * @param minNumInstances minimum number of instances at which a node is considered for splitting |
|---|
| 56 | * |
|---|
| 57 | */ |
|---|
| 58 | public FTNode( boolean errorOnProbabilities, int numBoostingIterations, |
|---|
| 59 | int minNumInstances, double weightTrimBeta, boolean useAIC) { |
|---|
| 60 | m_errorOnProbabilities = errorOnProbabilities; |
|---|
| 61 | m_fixedNumIterations = numBoostingIterations; |
|---|
| 62 | m_minNumInstances = minNumInstances; |
|---|
| 63 | m_maxIterations = 200; |
|---|
| 64 | setWeightTrimBeta(weightTrimBeta); |
|---|
| 65 | setUseAIC(useAIC); |
|---|
| 66 | } |
|---|
| 67 | |
|---|
| 68 | /** |
|---|
| 69 | * Method for building a Functional tree (only called for the root node). |
|---|
| 70 | * Grows an initial Functional Tree. |
|---|
| 71 | * |
|---|
| 72 | * @param data the data to train with |
|---|
| 73 | * @throws Exception if something goes wrong |
|---|
| 74 | */ |
|---|
| 75 | public void buildClassifier(Instances data) throws Exception{ |
|---|
| 76 | |
|---|
| 77 | // Insert new attributes |
|---|
| 78 | data= insertNewAttr(data); |
|---|
| 79 | |
|---|
| 80 | //build tree using all the data |
|---|
| 81 | buildTree(data, null, data.numInstances(), 0); |
|---|
| 82 | |
|---|
| 83 | } |
|---|
| 84 | |
|---|
| 85 | /** |
|---|
| 86 | * Method for building the tree structure. |
|---|
| 87 | * Builds a logistic model, splits the node and recursively builds tree for child nodes. |
|---|
| 88 | * @param data the training data passed on to this node |
|---|
| 89 | * @param higherRegressions An array of regression functions produced by LogitBoost at higher |
|---|
| 90 | * levels in the tree. They represent a logistic regression model that is refined locally |
|---|
| 91 | * at this node. |
|---|
| 92 | * @param totalInstanceWeight the total number of training examples |
|---|
| 93 | * @param higherNumParameters effective number of parameters in the logistic regression model built |
|---|
| 94 | * in parent nodes |
|---|
| 95 | * @throws Exception if something goes wrong |
|---|
| 96 | */ |
|---|
| 97 | public void buildTree(Instances data, SimpleLinearRegression[][] higherRegressions, |
|---|
| 98 | double totalInstanceWeight, double higherNumParameters) throws Exception{ |
|---|
| 99 | |
|---|
| 100 | //save some stuff |
|---|
| 101 | m_totalInstanceWeight = totalInstanceWeight; |
|---|
| 102 | m_train = new Instances(data); |
|---|
| 103 | m_train= removeExtAttributes( m_train); |
|---|
| 104 | |
|---|
| 105 | m_isLeaf = true; |
|---|
| 106 | m_sons = null; |
|---|
| 107 | |
|---|
| 108 | m_numInstances = m_train.numInstances(); |
|---|
| 109 | m_numClasses = m_train.numClasses(); |
|---|
| 110 | |
|---|
| 111 | //init |
|---|
| 112 | m_numericData = getNumericData(m_train); |
|---|
| 113 | m_numericDataHeader = new Instances(m_numericData, 0); |
|---|
| 114 | |
|---|
| 115 | m_regressions = initRegressions(); |
|---|
| 116 | m_numRegressions = 0; |
|---|
| 117 | |
|---|
| 118 | if (higherRegressions != null) m_higherRegressions = higherRegressions; |
|---|
| 119 | else m_higherRegressions = new SimpleLinearRegression[m_numClasses][0]; |
|---|
| 120 | |
|---|
| 121 | m_numHigherRegressions = m_higherRegressions[0].length; |
|---|
| 122 | |
|---|
| 123 | m_numParameters = higherNumParameters; |
|---|
| 124 | |
|---|
| 125 | //build logistic model |
|---|
| 126 | if (m_numInstances >= m_numFoldsBoosting) { |
|---|
| 127 | if (m_fixedNumIterations > 0){ |
|---|
| 128 | performBoosting(m_fixedNumIterations); |
|---|
| 129 | } else if (getUseAIC()) { |
|---|
| 130 | performBoostingInfCriterion(); |
|---|
| 131 | } else { |
|---|
| 132 | performBoostingCV(); |
|---|
| 133 | } |
|---|
| 134 | } |
|---|
| 135 | |
|---|
| 136 | m_numParameters += m_numRegressions; |
|---|
| 137 | |
|---|
| 138 | //only keep the simple regression functions that correspond to the selected number of LogitBoost iterations |
|---|
| 139 | m_regressions = selectRegressions(m_regressions); |
|---|
| 140 | |
|---|
| 141 | boolean grow; |
|---|
| 142 | |
|---|
| 143 | //Compute logistic probs |
|---|
| 144 | double[][] FsConst; |
|---|
| 145 | double[] probsConst; |
|---|
| 146 | int j; |
|---|
| 147 | FsConst = getFs(m_numericData); |
|---|
| 148 | |
|---|
| 149 | for (j = 0; j < data.numInstances(); j++) |
|---|
| 150 | { |
|---|
| 151 | probsConst=probs(FsConst[j]); |
|---|
| 152 | // auxiliary to compute constructor error |
|---|
| 153 | if (data.instance(j).classValue()!=getConstError(probsConst)) m_constError=m_constError +1; |
|---|
| 154 | for (int i = 0; i<data.classAttribute().numValues() ; i++) |
|---|
| 155 | data.instance(j).setValue(i,probsConst[i]); |
|---|
| 156 | } |
|---|
| 157 | |
|---|
| 158 | |
|---|
| 159 | //needed by dynamic data |
|---|
| 160 | m_modelSelection=new C45ModelSelection(m_minNumInstances, data, true); |
|---|
| 161 | |
|---|
| 162 | m_localModel = m_modelSelection.selectModel(data); |
|---|
| 163 | |
|---|
| 164 | //split node if more than minNumInstances... |
|---|
| 165 | if (m_numInstances > m_minNumInstances) { |
|---|
| 166 | grow = (m_localModel.numSubsets() > 1); |
|---|
| 167 | } else { |
|---|
| 168 | grow = false; |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | // logitboost uses distribution for instance |
|---|
| 172 | m_hasConstr=false; |
|---|
| 173 | m_train=data; |
|---|
| 174 | if (grow) { |
|---|
| 175 | //create and build children of node |
|---|
| 176 | m_isLeaf = false; |
|---|
| 177 | Instances[] localInstances = m_localModel.split(data); |
|---|
| 178 | // deletes extended attributes |
|---|
| 179 | if (((C45Split)m_localModel).attIndex() >=0 && ((C45Split)m_localModel).attIndex()< data.classAttribute().numValues()) |
|---|
| 180 | m_hasConstr=true; |
|---|
| 181 | |
|---|
| 182 | m_sons = new FTNode[m_localModel.numSubsets()]; |
|---|
| 183 | for (int i = 0; i < m_sons.length; i++) { |
|---|
| 184 | m_sons[i] = new FTNode(m_errorOnProbabilities,m_fixedNumIterations, |
|---|
| 185 | m_minNumInstances,getWeightTrimBeta(), getUseAIC()); |
|---|
| 186 | m_sons[i].buildTree(localInstances[i], |
|---|
| 187 | mergeArrays(m_regressions, m_higherRegressions), m_totalInstanceWeight, m_numParameters); |
|---|
| 188 | localInstances[i] = null; |
|---|
| 189 | } |
|---|
| 190 | } |
|---|
| 191 | else{ |
|---|
| 192 | m_leafclass=m_localModel.distribution().maxClass(); |
|---|
| 193 | } |
|---|
| 194 | } |
|---|
| 195 | |
|---|
| 196 | /** |
|---|
| 197 | * Method for prunning a tree using C4.5 pruning procedure. |
|---|
| 198 | * |
|---|
| 199 | * @exception Exception if something goes wrong |
|---|
| 200 | */ |
|---|
| 201 | public double prune() throws Exception { |
|---|
| 202 | |
|---|
| 203 | double errorsLeaf; |
|---|
| 204 | double errorsTree; |
|---|
| 205 | double errorsConstModel; |
|---|
| 206 | double treeError=0; |
|---|
| 207 | int i; |
|---|
| 208 | double probBranch; |
|---|
| 209 | |
|---|
| 210 | // Compute error if this Tree would be leaf without contructor |
|---|
| 211 | errorsLeaf = getEstimatedErrorsForDistribution(m_localModel.distribution()); |
|---|
| 212 | if (m_isLeaf ) { |
|---|
| 213 | return errorsLeaf; |
|---|
| 214 | } else { |
|---|
| 215 | //Computes da error of the constructor model |
|---|
| 216 | errorsConstModel = getEtimateConstModel(m_localModel.distribution()); |
|---|
| 217 | errorsTree=0; |
|---|
| 218 | for (i = 0; i < m_sons.length; i++) { |
|---|
| 219 | probBranch = m_localModel.distribution().perBag(i) / |
|---|
| 220 | m_localModel.distribution().total(); |
|---|
| 221 | errorsTree += probBranch* m_sons[i].prune(); |
|---|
| 222 | } |
|---|
| 223 | // Decide if leaf is best choice. |
|---|
| 224 | |
|---|
| 225 | if (Utils.smOrEq(errorsLeaf, errorsTree) && Utils.smOrEq(errorsLeaf, errorsConstModel)) { |
|---|
| 226 | // Free son Trees |
|---|
| 227 | m_sons = null; |
|---|
| 228 | m_isLeaf = true; |
|---|
| 229 | m_hasConstr=false; |
|---|
| 230 | m_leafclass=m_localModel.distribution().maxClass(); |
|---|
| 231 | // Get NoSplit Model for node. |
|---|
| 232 | m_localModel = new NoSplit(m_localModel.distribution()); |
|---|
| 233 | treeError=errorsLeaf; |
|---|
| 234 | |
|---|
| 235 | }else{ |
|---|
| 236 | // Decide if Constructor is best choice. |
|---|
| 237 | if (Utils.smOrEq(errorsConstModel, errorsTree)) { |
|---|
| 238 | // Free son Trees |
|---|
| 239 | m_sons = null; |
|---|
| 240 | m_isLeaf = true; |
|---|
| 241 | m_hasConstr =true; |
|---|
| 242 | // Get NoSplit Model for node. |
|---|
| 243 | m_localModel = new NoSplit(m_localModel.distribution()); |
|---|
| 244 | treeError=errorsConstModel; |
|---|
| 245 | } else |
|---|
| 246 | treeError=errorsTree; |
|---|
| 247 | } |
|---|
| 248 | } |
|---|
| 249 | return treeError; |
|---|
| 250 | } |
|---|
| 251 | |
|---|
| 252 | /** |
|---|
| 253 | * Returns the class probabilities for an instance given by the Functional Tree. |
|---|
| 254 | * @param instance the instance |
|---|
| 255 | * @return the array of probabilities |
|---|
| 256 | */ |
|---|
| 257 | public double[] distributionForInstance(Instance instance) throws Exception { |
|---|
| 258 | double[] probs; |
|---|
| 259 | |
|---|
| 260 | if (m_isLeaf && m_hasConstr) { //leaf |
|---|
| 261 | //leaf: use majoraty class or constructor model |
|---|
| 262 | probs = modelDistributionForInstance(instance); |
|---|
| 263 | } else { |
|---|
| 264 | if (m_isLeaf && !m_hasConstr) |
|---|
| 265 | { |
|---|
| 266 | probs=new double[instance.numClasses()]; |
|---|
| 267 | probs[m_leafclass]=(double)1; |
|---|
| 268 | }else{ |
|---|
| 269 | |
|---|
| 270 | probs = modelDistributionForInstance(instance); |
|---|
| 271 | //Built auxiliary split instance |
|---|
| 272 | Instance instanceSplit=new DenseInstance(instance.numAttributes()+instance.numClasses()); |
|---|
| 273 | instanceSplit.setDataset(instance.dataset()); |
|---|
| 274 | |
|---|
| 275 | // Inserts attribute and their value |
|---|
| 276 | for(int i=0; i< instance.numClasses();i++) |
|---|
| 277 | { |
|---|
| 278 | instanceSplit.dataset().insertAttributeAt( new Attribute("N"+ (instance.numClasses()-i)), 0); |
|---|
| 279 | instanceSplit.setValue(i,probs[i]); |
|---|
| 280 | } |
|---|
| 281 | for(int i=0; i< instance.numAttributes();i++) |
|---|
| 282 | instanceSplit.setValue(i+instance.numClasses(),instance.value(i)); |
|---|
| 283 | |
|---|
| 284 | //chooses best branch |
|---|
| 285 | int branch = m_localModel.whichSubset(instanceSplit); //split |
|---|
| 286 | |
|---|
| 287 | //delete added attributes |
|---|
| 288 | for(int i=0; i< instance.numClasses();i++) |
|---|
| 289 | instanceSplit.dataset().deleteAttributeAt(0); |
|---|
| 290 | |
|---|
| 291 | probs = m_sons[branch].distributionForInstance(instance); |
|---|
| 292 | } |
|---|
| 293 | } |
|---|
| 294 | return probs; |
|---|
| 295 | |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | /** |
|---|
| 299 | * Returns the revision string. |
|---|
| 300 | * |
|---|
| 301 | * @return the revision |
|---|
| 302 | */ |
|---|
| 303 | public String getRevision() { |
|---|
| 304 | return RevisionUtils.extract("$Revision: 6088 $"); |
|---|
| 305 | } |
|---|
| 306 | } |
|---|