| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * TreeModel.java |
|---|
| 19 | * Copyright (C) 2009 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.pmml.consumer; |
|---|
| 24 | |
|---|
| 25 | import java.io.Serializable; |
|---|
| 26 | import java.util.ArrayList; |
|---|
| 27 | |
|---|
| 28 | import org.w3c.dom.Element; |
|---|
| 29 | import org.w3c.dom.Node; |
|---|
| 30 | import org.w3c.dom.NodeList; |
|---|
| 31 | |
|---|
| 32 | import weka.core.Attribute; |
|---|
| 33 | import weka.core.Drawable; |
|---|
| 34 | import weka.core.Instance; |
|---|
| 35 | import weka.core.Instances; |
|---|
| 36 | import weka.core.RevisionUtils; |
|---|
| 37 | import weka.core.Utils; |
|---|
| 38 | import weka.core.pmml.*; |
|---|
| 39 | |
|---|
| 40 | /** |
|---|
| 41 | * Class implementing import of PMML TreeModel. Can be used as a Weka |
|---|
| 42 | * classifier for prediction (buildClassifier() raises and Exception). |
|---|
| 43 | * |
|---|
| 44 | * @author Mark Hall (mhall{[at]}pentaho{[dot]}com) |
|---|
| 45 | * @version $Revision: 5987 $; |
|---|
| 46 | */ |
|---|
| 47 | public class TreeModel extends PMMLClassifier implements Drawable { |
|---|
| 48 | |
|---|
| 49 | /** |
|---|
| 50 | * For serialization |
|---|
| 51 | */ |
|---|
| 52 | private static final long serialVersionUID = -2065158088298753129L; |
|---|
| 53 | |
|---|
| 54 | /** |
|---|
| 55 | * Inner class representing the ScoreDistribution element |
|---|
| 56 | */ |
|---|
| 57 | static class ScoreDistribution implements Serializable { |
|---|
| 58 | |
|---|
| 59 | /** |
|---|
| 60 | * For serialization |
|---|
| 61 | */ |
|---|
| 62 | private static final long serialVersionUID = -123506262094299933L; |
|---|
| 63 | |
|---|
| 64 | /** The class label for this distribution element */ |
|---|
| 65 | private String m_classLabel; |
|---|
| 66 | |
|---|
| 67 | /** The index of the class label */ |
|---|
| 68 | private int m_classLabelIndex = -1; |
|---|
| 69 | |
|---|
| 70 | /** The count for this label */ |
|---|
| 71 | private double m_recordCount; |
|---|
| 72 | |
|---|
| 73 | /** The optional confidence value */ |
|---|
| 74 | private double m_confidence = Utils.missingValue(); |
|---|
| 75 | |
|---|
| 76 | /** |
|---|
| 77 | * Construct a ScoreDistribution entry |
|---|
| 78 | * |
|---|
| 79 | * @param scoreE the node containing the distribution |
|---|
| 80 | * @param miningSchema the mining schema |
|---|
| 81 | * @param baseCount the number of records at the node that owns this |
|---|
| 82 | * distribution entry |
|---|
| 83 | * @throws Exception if something goes wrong |
|---|
| 84 | */ |
|---|
| 85 | protected ScoreDistribution(Element scoreE, MiningSchema miningSchema, double baseCount) |
|---|
| 86 | throws Exception { |
|---|
| 87 | // get the label |
|---|
| 88 | m_classLabel = scoreE.getAttribute("value"); |
|---|
| 89 | Attribute classAtt = miningSchema.getFieldsAsInstances().classAttribute(); |
|---|
| 90 | if (classAtt == null || classAtt.indexOfValue(m_classLabel) < 0) { |
|---|
| 91 | throw new Exception("[ScoreDistribution] class attribute not set or class value " + |
|---|
| 92 | m_classLabel + " not found!"); |
|---|
| 93 | } |
|---|
| 94 | |
|---|
| 95 | m_classLabelIndex = classAtt.indexOfValue(m_classLabel); |
|---|
| 96 | |
|---|
| 97 | // get the frequency |
|---|
| 98 | String recordC = scoreE.getAttribute("recordCount"); |
|---|
| 99 | m_recordCount = Double.parseDouble(recordC); |
|---|
| 100 | |
|---|
| 101 | // get the optional confidence |
|---|
| 102 | String confidence = scoreE.getAttribute("confidence"); |
|---|
| 103 | if (confidence != null && confidence.length() > 0) { |
|---|
| 104 | m_confidence = Double.parseDouble(confidence); |
|---|
| 105 | } else if (!Utils.isMissingValue(baseCount) && baseCount > 0) { |
|---|
| 106 | m_confidence = m_recordCount / baseCount; |
|---|
| 107 | } |
|---|
| 108 | } |
|---|
| 109 | |
|---|
| 110 | /** |
|---|
| 111 | * Backfit confidence value (does nothing if the confidence |
|---|
| 112 | * value is already set). |
|---|
| 113 | * |
|---|
| 114 | * @param baseCount the total number of records (supplied either |
|---|
| 115 | * explicitly from the node that owns this distribution entry |
|---|
| 116 | * or most likely computed from summing the recordCounts of all |
|---|
| 117 | * the distribution entries in the distribution that owns this |
|---|
| 118 | * entry). |
|---|
| 119 | */ |
|---|
| 120 | void deriveConfidenceValue(double baseCount) { |
|---|
| 121 | if (Utils.isMissingValue(m_confidence) && |
|---|
| 122 | !Utils.isMissingValue(baseCount) && |
|---|
| 123 | baseCount > 0) { |
|---|
| 124 | m_confidence = m_recordCount / baseCount; |
|---|
| 125 | } |
|---|
| 126 | } |
|---|
| 127 | |
|---|
| 128 | String getClassLabel() { |
|---|
| 129 | return m_classLabel; |
|---|
| 130 | } |
|---|
| 131 | |
|---|
| 132 | int getClassLabelIndex() { |
|---|
| 133 | return m_classLabelIndex; |
|---|
| 134 | } |
|---|
| 135 | |
|---|
| 136 | double getRecordCount() { |
|---|
| 137 | return m_recordCount; |
|---|
| 138 | } |
|---|
| 139 | |
|---|
| 140 | double getConfidence() { |
|---|
| 141 | return m_confidence; |
|---|
| 142 | } |
|---|
| 143 | |
|---|
| 144 | public String toString() { |
|---|
| 145 | return m_classLabel + ": " + m_recordCount |
|---|
| 146 | + " (" + Utils.doubleToString(m_confidence, 2) + ") "; |
|---|
| 147 | } |
|---|
| 148 | } |
|---|
| 149 | |
|---|
| 150 | /** |
|---|
| 151 | * Base class for Predicates |
|---|
| 152 | */ |
|---|
| 153 | static abstract class Predicate implements Serializable { |
|---|
| 154 | |
|---|
| 155 | /** |
|---|
| 156 | * For serialization |
|---|
| 157 | */ |
|---|
| 158 | private static final long serialVersionUID = 1035344165452733887L; |
|---|
| 159 | |
|---|
| 160 | enum Eval { |
|---|
| 161 | TRUE, |
|---|
| 162 | FALSE, |
|---|
| 163 | UNKNOWN; |
|---|
| 164 | } |
|---|
| 165 | |
|---|
| 166 | /** |
|---|
| 167 | * Evaluate this predicate. |
|---|
| 168 | * |
|---|
| 169 | * @param input the input vector of attribute and derived field values. |
|---|
| 170 | * |
|---|
| 171 | * @return the evaluation status of this predicate. |
|---|
| 172 | */ |
|---|
| 173 | abstract Eval evaluate(double[] input); |
|---|
| 174 | |
|---|
| 175 | protected String toString(int level, boolean cr) { |
|---|
| 176 | return toString(level); |
|---|
| 177 | } |
|---|
| 178 | |
|---|
| 179 | protected String toString(int level) { |
|---|
| 180 | StringBuffer text = new StringBuffer(); |
|---|
| 181 | for (int j = 0; j < level; j++) { |
|---|
| 182 | text.append("| "); |
|---|
| 183 | } |
|---|
| 184 | |
|---|
| 185 | return text.append(toString()).toString(); |
|---|
| 186 | } |
|---|
| 187 | |
|---|
| 188 | static Eval booleanToEval(boolean missing, boolean result) { |
|---|
| 189 | if (missing) { |
|---|
| 190 | return Eval.UNKNOWN; |
|---|
| 191 | } else if (result) { |
|---|
| 192 | return Eval.TRUE; |
|---|
| 193 | } else { |
|---|
| 194 | return Eval.FALSE; |
|---|
| 195 | } |
|---|
| 196 | } |
|---|
| 197 | |
|---|
| 198 | /** |
|---|
| 199 | * Factory method to return the appropriate predicate for |
|---|
| 200 | * a given node in the tree. |
|---|
| 201 | * |
|---|
| 202 | * @param nodeE the XML node encapsulating the tree node. |
|---|
| 203 | * @param miningSchema the mining schema in use |
|---|
| 204 | * @return a Predicate |
|---|
| 205 | * @throws Exception of something goes wrong. |
|---|
| 206 | */ |
|---|
| 207 | static Predicate getPredicate(Element nodeE, |
|---|
| 208 | MiningSchema miningSchema) throws Exception { |
|---|
| 209 | |
|---|
| 210 | Predicate result = null; |
|---|
| 211 | NodeList children = nodeE.getChildNodes(); |
|---|
| 212 | for (int i = 0; i < children.getLength(); i++) { |
|---|
| 213 | Node child = children.item(i); |
|---|
| 214 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
|---|
| 215 | String tagName = ((Element)child).getTagName(); |
|---|
| 216 | if (tagName.equals("True")) { |
|---|
| 217 | result = new True(); |
|---|
| 218 | break; |
|---|
| 219 | } else if (tagName.equals("False")) { |
|---|
| 220 | result = new False(); |
|---|
| 221 | break; |
|---|
| 222 | } else if (tagName.equals("SimplePredicate")) { |
|---|
| 223 | result = new SimplePredicate((Element)child, miningSchema); |
|---|
| 224 | break; |
|---|
| 225 | } else if (tagName.equals("CompoundPredicate")) { |
|---|
| 226 | result = new CompoundPredicate((Element)child, miningSchema); |
|---|
| 227 | break; |
|---|
| 228 | } else if (tagName.equals("SimpleSetPredicate")) { |
|---|
| 229 | result = new SimpleSetPredicate((Element)child, miningSchema); |
|---|
| 230 | break; |
|---|
| 231 | } |
|---|
| 232 | } |
|---|
| 233 | } |
|---|
| 234 | |
|---|
| 235 | if (result == null) { |
|---|
| 236 | throw new Exception("[Predicate] unknown or missing predicate type in node"); |
|---|
| 237 | } |
|---|
| 238 | |
|---|
| 239 | return result; |
|---|
| 240 | } |
|---|
| 241 | } |
|---|
| 242 | |
|---|
| 243 | /** |
|---|
| 244 | * Simple True Predicate |
|---|
| 245 | */ |
|---|
| 246 | static class True extends Predicate { |
|---|
| 247 | |
|---|
| 248 | /** |
|---|
| 249 | * For serialization |
|---|
| 250 | */ |
|---|
| 251 | private static final long serialVersionUID = 1817942234610531627L; |
|---|
| 252 | |
|---|
| 253 | public Predicate.Eval evaluate(double[] input) { |
|---|
| 254 | return Predicate.Eval.TRUE; |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | public String toString() { |
|---|
| 258 | return "True: "; |
|---|
| 259 | } |
|---|
| 260 | } |
|---|
| 261 | |
|---|
| 262 | /** |
|---|
| 263 | * Simple False Predicate |
|---|
| 264 | */ |
|---|
| 265 | static class False extends Predicate { |
|---|
| 266 | |
|---|
| 267 | /** |
|---|
| 268 | * For serialization |
|---|
| 269 | */ |
|---|
| 270 | private static final long serialVersionUID = -3647261386442860365L; |
|---|
| 271 | |
|---|
| 272 | public Predicate.Eval evaluate(double[] input) { |
|---|
| 273 | return Predicate.Eval.FALSE; |
|---|
| 274 | } |
|---|
| 275 | |
|---|
| 276 | public String toString() { |
|---|
| 277 | return "False: "; |
|---|
| 278 | } |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | /** |
|---|
| 282 | * Class representing the SimplePredicate |
|---|
| 283 | */ |
|---|
| 284 | static class SimplePredicate extends Predicate { |
|---|
| 285 | |
|---|
| 286 | /** |
|---|
| 287 | * For serialization |
|---|
| 288 | */ |
|---|
| 289 | private static final long serialVersionUID = -6156684285069327400L; |
|---|
| 290 | |
|---|
| 291 | enum Operator { |
|---|
| 292 | EQUAL("equal") { |
|---|
| 293 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 294 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 295 | weka.core.Utils.eq(input[fieldIndex], value)); |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | String shortName() { |
|---|
| 299 | return "=="; |
|---|
| 300 | } |
|---|
| 301 | }, |
|---|
| 302 | NOTEQUAL("notEqual") |
|---|
| 303 | { |
|---|
| 304 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 305 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 306 | (input[fieldIndex] != value)); |
|---|
| 307 | } |
|---|
| 308 | |
|---|
| 309 | String shortName() { |
|---|
| 310 | return "!="; |
|---|
| 311 | } |
|---|
| 312 | }, |
|---|
| 313 | LESSTHAN("lessThan") { |
|---|
| 314 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 315 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 316 | (input[fieldIndex] < value)); |
|---|
| 317 | } |
|---|
| 318 | |
|---|
| 319 | String shortName() { |
|---|
| 320 | return "<"; |
|---|
| 321 | } |
|---|
| 322 | }, |
|---|
| 323 | LESSOREQUAL("lessOrEqual") { |
|---|
| 324 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 325 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 326 | (input[fieldIndex] <= value)); |
|---|
| 327 | } |
|---|
| 328 | |
|---|
| 329 | String shortName() { |
|---|
| 330 | return "<="; |
|---|
| 331 | } |
|---|
| 332 | }, |
|---|
| 333 | GREATERTHAN("greaterThan") { |
|---|
| 334 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 335 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 336 | (input[fieldIndex] > value)); |
|---|
| 337 | } |
|---|
| 338 | |
|---|
| 339 | String shortName() { |
|---|
| 340 | return ">"; |
|---|
| 341 | } |
|---|
| 342 | }, |
|---|
| 343 | GREATEROREQUAL("greaterOrEqual") { |
|---|
| 344 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 345 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 346 | (input[fieldIndex] >= value)); |
|---|
| 347 | } |
|---|
| 348 | |
|---|
| 349 | String shortName() { |
|---|
| 350 | return ">="; |
|---|
| 351 | } |
|---|
| 352 | }, |
|---|
| 353 | ISMISSING("isMissing") { |
|---|
| 354 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 355 | return Predicate.booleanToEval(false, |
|---|
| 356 | Utils.isMissingValue(input[fieldIndex])); |
|---|
| 357 | } |
|---|
| 358 | |
|---|
| 359 | String shortName() { |
|---|
| 360 | return toString(); |
|---|
| 361 | } |
|---|
| 362 | }, |
|---|
| 363 | ISNOTMISSING("isNotMissing") { |
|---|
| 364 | Predicate.Eval evaluate(double[] input, double value, int fieldIndex) { |
|---|
| 365 | return Predicate.booleanToEval(false, !Utils.isMissingValue(input[fieldIndex])); |
|---|
| 366 | } |
|---|
| 367 | |
|---|
| 368 | String shortName() { |
|---|
| 369 | return toString(); |
|---|
| 370 | } |
|---|
| 371 | }; |
|---|
| 372 | |
|---|
| 373 | abstract Predicate.Eval evaluate(double[] input, double value, int fieldIndex); |
|---|
| 374 | abstract String shortName(); |
|---|
| 375 | |
|---|
| 376 | private final String m_stringVal; |
|---|
| 377 | |
|---|
| 378 | Operator(String name) { |
|---|
| 379 | m_stringVal = name; |
|---|
| 380 | } |
|---|
| 381 | |
|---|
| 382 | public String toString() { |
|---|
| 383 | return m_stringVal; |
|---|
| 384 | } |
|---|
| 385 | } |
|---|
| 386 | |
|---|
| 387 | /** the field that we are comparing against */ |
|---|
| 388 | int m_fieldIndex = -1; |
|---|
| 389 | |
|---|
| 390 | /** the name of the field */ |
|---|
| 391 | String m_fieldName; |
|---|
| 392 | |
|---|
| 393 | /** true if the field is nominal */ |
|---|
| 394 | boolean m_isNominal; |
|---|
| 395 | |
|---|
| 396 | /** the value as a string (if nominal) */ |
|---|
| 397 | String m_nominalValue; |
|---|
| 398 | |
|---|
| 399 | /** the value to compare against (if nominal it holds the index of the value) */ |
|---|
| 400 | double m_value; |
|---|
| 401 | |
|---|
| 402 | /** the operator to use */ |
|---|
| 403 | Operator m_operator; |
|---|
| 404 | |
|---|
| 405 | public SimplePredicate(Element simpleP, |
|---|
| 406 | MiningSchema miningSchema) throws Exception { |
|---|
| 407 | Instances totalStructure = miningSchema.getFieldsAsInstances(); |
|---|
| 408 | |
|---|
| 409 | // get the field name and set up the index |
|---|
| 410 | String fieldS = simpleP.getAttribute("field"); |
|---|
| 411 | Attribute att = totalStructure.attribute(fieldS); |
|---|
| 412 | if (att == null) { |
|---|
| 413 | throw new Exception("[SimplePredicate] unable to find field " + fieldS |
|---|
| 414 | + " in the incoming instance structure!"); |
|---|
| 415 | } |
|---|
| 416 | |
|---|
| 417 | // find the index |
|---|
| 418 | int index = -1; |
|---|
| 419 | for (int i = 0; i < totalStructure.numAttributes(); i++) { |
|---|
| 420 | if (totalStructure.attribute(i).name().equals(fieldS)) { |
|---|
| 421 | index = i; |
|---|
| 422 | m_fieldName = totalStructure.attribute(i).name(); |
|---|
| 423 | break; |
|---|
| 424 | } |
|---|
| 425 | } |
|---|
| 426 | m_fieldIndex = index; |
|---|
| 427 | if (att.isNominal()) { |
|---|
| 428 | m_isNominal = true; |
|---|
| 429 | } |
|---|
| 430 | |
|---|
| 431 | // get the operator |
|---|
| 432 | String oppS = simpleP.getAttribute("operator"); |
|---|
| 433 | for (Operator o : Operator.values()) { |
|---|
| 434 | if (o.toString().equals(oppS)) { |
|---|
| 435 | m_operator = o; |
|---|
| 436 | break; |
|---|
| 437 | } |
|---|
| 438 | } |
|---|
| 439 | |
|---|
| 440 | if (m_operator != Operator.ISMISSING && m_operator != Operator.ISNOTMISSING) { |
|---|
| 441 | String valueS = simpleP.getAttribute("value"); |
|---|
| 442 | if (att.isNumeric()) { |
|---|
| 443 | m_value = Double.parseDouble(valueS); |
|---|
| 444 | } else { |
|---|
| 445 | m_nominalValue = valueS; |
|---|
| 446 | m_value = att.indexOfValue(valueS); |
|---|
| 447 | if (m_value < 0) { |
|---|
| 448 | throw new Exception("[SimplePredicate] can't find value " + valueS + " in nominal " + |
|---|
| 449 | "attribute " + att.name()); |
|---|
| 450 | } |
|---|
| 451 | } |
|---|
| 452 | } |
|---|
| 453 | } |
|---|
| 454 | |
|---|
| 455 | public Predicate.Eval evaluate(double[] input) { |
|---|
| 456 | return m_operator.evaluate(input, m_value, m_fieldIndex); |
|---|
| 457 | } |
|---|
| 458 | |
|---|
| 459 | public String toString() { |
|---|
| 460 | StringBuffer temp = new StringBuffer(); |
|---|
| 461 | |
|---|
| 462 | temp.append(m_fieldName + " " + m_operator.shortName()); |
|---|
| 463 | if (m_operator != Operator.ISMISSING && m_operator != Operator.ISNOTMISSING) { |
|---|
| 464 | temp.append(" " + ((m_isNominal) ? m_nominalValue : "" + m_value)); |
|---|
| 465 | } |
|---|
| 466 | |
|---|
| 467 | return temp.toString(); |
|---|
| 468 | } |
|---|
| 469 | } |
|---|
| 470 | |
|---|
| 471 | /** |
|---|
| 472 | * Class representing the CompoundPredicate |
|---|
| 473 | */ |
|---|
| 474 | static class CompoundPredicate extends Predicate { |
|---|
| 475 | |
|---|
| 476 | /** |
|---|
| 477 | * For serialization |
|---|
| 478 | */ |
|---|
| 479 | private static final long serialVersionUID = -3332091529764559077L; |
|---|
| 480 | |
|---|
| 481 | enum BooleanOperator { |
|---|
| 482 | OR("or") { |
|---|
| 483 | Predicate.Eval evaluate(ArrayList<Predicate> constituents, double[] input) { |
|---|
| 484 | Predicate.Eval currentStatus = Predicate.Eval.FALSE; |
|---|
| 485 | for (Predicate p : constituents) { |
|---|
| 486 | Predicate.Eval temp = p.evaluate(input); |
|---|
| 487 | if (temp == Predicate.Eval.TRUE) { |
|---|
| 488 | currentStatus = temp; |
|---|
| 489 | break; |
|---|
| 490 | } else if (temp == Predicate.Eval.UNKNOWN) { |
|---|
| 491 | currentStatus = temp; |
|---|
| 492 | } |
|---|
| 493 | } |
|---|
| 494 | return currentStatus; |
|---|
| 495 | } |
|---|
| 496 | }, |
|---|
| 497 | AND("and") { |
|---|
| 498 | Predicate.Eval evaluate(ArrayList<Predicate> constituents, double[] input) { |
|---|
| 499 | Predicate.Eval currentStatus = Predicate.Eval.TRUE; |
|---|
| 500 | for (Predicate p : constituents) { |
|---|
| 501 | Predicate.Eval temp = p.evaluate(input); |
|---|
| 502 | if (temp == Predicate.Eval.FALSE) { |
|---|
| 503 | currentStatus = temp; |
|---|
| 504 | break; |
|---|
| 505 | } else if (temp == Predicate.Eval.UNKNOWN) { |
|---|
| 506 | currentStatus = temp; |
|---|
| 507 | } |
|---|
| 508 | } |
|---|
| 509 | return currentStatus; |
|---|
| 510 | } |
|---|
| 511 | }, |
|---|
| 512 | XOR("xor") { |
|---|
| 513 | Predicate.Eval evaluate(ArrayList<Predicate> constituents, double[] input) { |
|---|
| 514 | Predicate.Eval currentStatus = constituents.get(0).evaluate(input); |
|---|
| 515 | if (currentStatus != Predicate.Eval.UNKNOWN) { |
|---|
| 516 | for (int i = 1; i < constituents.size(); i++) { |
|---|
| 517 | Predicate.Eval temp = constituents.get(i).evaluate(input); |
|---|
| 518 | if (temp == Predicate.Eval.UNKNOWN) { |
|---|
| 519 | currentStatus = temp; |
|---|
| 520 | break; |
|---|
| 521 | } else { |
|---|
| 522 | if (currentStatus != temp) { |
|---|
| 523 | currentStatus = Predicate.Eval.TRUE; |
|---|
| 524 | } else { |
|---|
| 525 | currentStatus = Predicate.Eval.FALSE; |
|---|
| 526 | } |
|---|
| 527 | } |
|---|
| 528 | } |
|---|
| 529 | } |
|---|
| 530 | return currentStatus; |
|---|
| 531 | } |
|---|
| 532 | }, |
|---|
| 533 | SURROGATE("surrogate") { |
|---|
| 534 | Predicate.Eval evaluate(ArrayList<Predicate> constituents, double[] input) { |
|---|
| 535 | Predicate.Eval currentStatus = constituents.get(0).evaluate(input); |
|---|
| 536 | |
|---|
| 537 | int i = 1; |
|---|
| 538 | while (currentStatus == Predicate.Eval.UNKNOWN) { |
|---|
| 539 | currentStatus = constituents.get(i).evaluate(input); |
|---|
| 540 | } |
|---|
| 541 | |
|---|
| 542 | // return false if all our surrogates evaluate to unknown. |
|---|
| 543 | if (currentStatus == Predicate.Eval.UNKNOWN) { |
|---|
| 544 | currentStatus = Predicate.Eval.FALSE; |
|---|
| 545 | } |
|---|
| 546 | |
|---|
| 547 | return currentStatus; |
|---|
| 548 | } |
|---|
| 549 | }; |
|---|
| 550 | |
|---|
| 551 | abstract Predicate.Eval evaluate(ArrayList<Predicate> constituents, double[] input); |
|---|
| 552 | |
|---|
| 553 | private final String m_stringVal; |
|---|
| 554 | |
|---|
| 555 | BooleanOperator(String name) { |
|---|
| 556 | m_stringVal = name; |
|---|
| 557 | } |
|---|
| 558 | |
|---|
| 559 | public String toString() { |
|---|
| 560 | return m_stringVal; |
|---|
| 561 | } |
|---|
| 562 | } |
|---|
| 563 | |
|---|
| 564 | /** the constituent Predicates */ |
|---|
| 565 | ArrayList<Predicate> m_components = new ArrayList<Predicate>(); |
|---|
| 566 | |
|---|
| 567 | /** the boolean operator */ |
|---|
| 568 | BooleanOperator m_booleanOperator; |
|---|
| 569 | |
|---|
| 570 | public CompoundPredicate(Element compoundP, |
|---|
| 571 | MiningSchema miningSchema) throws Exception { |
|---|
| 572 | // Instances totalStructure = miningSchema.getFieldsAsInstances(); |
|---|
| 573 | |
|---|
| 574 | String booleanOpp = compoundP.getAttribute("booleanOperator"); |
|---|
| 575 | for (BooleanOperator b : BooleanOperator.values()) { |
|---|
| 576 | if (b.toString().equals(booleanOpp)) { |
|---|
| 577 | m_booleanOperator = b; |
|---|
| 578 | } |
|---|
| 579 | } |
|---|
| 580 | |
|---|
| 581 | // now get all the encapsulated operators |
|---|
| 582 | NodeList children = compoundP.getChildNodes(); |
|---|
| 583 | for (int i = 0; i < children.getLength(); i++) { |
|---|
| 584 | Node child = children.item(i); |
|---|
| 585 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
|---|
| 586 | String tagName = ((Element)child).getTagName(); |
|---|
| 587 | if (tagName.equals("True")) { |
|---|
| 588 | m_components.add(new True()); |
|---|
| 589 | } else if (tagName.equals("False")) { |
|---|
| 590 | m_components.add(new False()); |
|---|
| 591 | } else if (tagName.equals("SimplePredicate")) { |
|---|
| 592 | m_components.add(new SimplePredicate((Element)child, miningSchema)); |
|---|
| 593 | } else if (tagName.equals("CompoundPredicate")) { |
|---|
| 594 | m_components.add(new CompoundPredicate((Element)child, miningSchema)); |
|---|
| 595 | } else { |
|---|
| 596 | m_components.add(new SimpleSetPredicate((Element)child, miningSchema)); |
|---|
| 597 | } |
|---|
| 598 | } |
|---|
| 599 | } |
|---|
| 600 | } |
|---|
| 601 | |
|---|
| 602 | public Predicate.Eval evaluate(double[] input) { |
|---|
| 603 | return m_booleanOperator.evaluate(m_components, input); |
|---|
| 604 | } |
|---|
| 605 | |
|---|
| 606 | public String toString() { |
|---|
| 607 | return toString(0, false); |
|---|
| 608 | } |
|---|
| 609 | |
|---|
| 610 | public String toString(int level, boolean cr) { |
|---|
| 611 | StringBuffer text = new StringBuffer(); |
|---|
| 612 | for (int j = 0; j < level; j++) { |
|---|
| 613 | text.append("| "); |
|---|
| 614 | } |
|---|
| 615 | |
|---|
| 616 | text.append("Compound [" + m_booleanOperator.toString() + "]"); |
|---|
| 617 | if (cr) { |
|---|
| 618 | text.append("\\n"); |
|---|
| 619 | } else { |
|---|
| 620 | text.append("\n"); |
|---|
| 621 | } |
|---|
| 622 | for (int i = 0; i < m_components.size(); i++) { |
|---|
| 623 | text.append(m_components.get(i).toString(level, cr).replace(":", "")); |
|---|
| 624 | if (i != m_components.size()-1) { |
|---|
| 625 | if (cr) { |
|---|
| 626 | text.append("\\n"); |
|---|
| 627 | } else { |
|---|
| 628 | text.append("\n"); |
|---|
| 629 | } |
|---|
| 630 | } |
|---|
| 631 | } |
|---|
| 632 | |
|---|
| 633 | return text.toString(); |
|---|
| 634 | } |
|---|
| 635 | } |
|---|
| 636 | |
|---|
| 637 | /** |
|---|
| 638 | * Class representing the SimpleSetPredicate |
|---|
| 639 | */ |
|---|
| 640 | static class SimpleSetPredicate extends Predicate { |
|---|
| 641 | |
|---|
| 642 | /** |
|---|
| 643 | * For serialization |
|---|
| 644 | */ |
|---|
| 645 | private static final long serialVersionUID = -2711995401345708486L; |
|---|
| 646 | |
|---|
| 647 | enum BooleanOperator { |
|---|
| 648 | IS_IN("isIn") { |
|---|
| 649 | Predicate.Eval evaluate(double[] input, int fieldIndex, |
|---|
| 650 | Array set, Attribute nominalLookup) { |
|---|
| 651 | if (set.getType() == Array.ArrayType.STRING) { |
|---|
| 652 | String value = ""; |
|---|
| 653 | if (!Utils.isMissingValue(input[fieldIndex])) { |
|---|
| 654 | value = nominalLookup.value((int)input[fieldIndex]); |
|---|
| 655 | } |
|---|
| 656 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 657 | set.contains(value)); |
|---|
| 658 | } else if (set.getType() == Array.ArrayType.NUM || |
|---|
| 659 | set.getType() == Array.ArrayType.REAL) { |
|---|
| 660 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 661 | set.contains(input[fieldIndex])); |
|---|
| 662 | } |
|---|
| 663 | return Predicate.booleanToEval(Utils.isMissingValue(input[fieldIndex]), |
|---|
| 664 | set.contains((int)input[fieldIndex])); |
|---|
| 665 | } |
|---|
| 666 | }, |
|---|
| 667 | IS_NOT_IN("isNotIn") { |
|---|
| 668 | Predicate.Eval evaluate(double[] input, int fieldIndex, |
|---|
| 669 | Array set, Attribute nominalLookup) { |
|---|
| 670 | Predicate.Eval result = IS_IN.evaluate(input, fieldIndex, set, nominalLookup); |
|---|
| 671 | if (result == Predicate.Eval.FALSE) { |
|---|
| 672 | result = Predicate.Eval.TRUE; |
|---|
| 673 | } else if (result == Predicate.Eval.TRUE) { |
|---|
| 674 | result = Predicate.Eval.FALSE; |
|---|
| 675 | } |
|---|
| 676 | |
|---|
| 677 | return result; |
|---|
| 678 | } |
|---|
| 679 | }; |
|---|
| 680 | |
|---|
| 681 | abstract Predicate.Eval evaluate(double[] input, int fieldIndex, |
|---|
| 682 | Array set, Attribute nominalLookup); |
|---|
| 683 | |
|---|
| 684 | private final String m_stringVal; |
|---|
| 685 | |
|---|
| 686 | BooleanOperator(String name) { |
|---|
| 687 | m_stringVal = name; |
|---|
| 688 | } |
|---|
| 689 | |
|---|
| 690 | public String toString() { |
|---|
| 691 | return m_stringVal; |
|---|
| 692 | } |
|---|
| 693 | } |
|---|
| 694 | |
|---|
| 695 | /** the field to reference */ |
|---|
| 696 | int m_fieldIndex = -1; |
|---|
| 697 | |
|---|
| 698 | /** the name of the field */ |
|---|
| 699 | String m_fieldName; |
|---|
| 700 | |
|---|
| 701 | /** is the referenced field nominal? */ |
|---|
| 702 | boolean m_isNominal = false; |
|---|
| 703 | |
|---|
| 704 | /** the attribute to lookup nominal values from */ |
|---|
| 705 | Attribute m_nominalLookup; |
|---|
| 706 | |
|---|
| 707 | /** the boolean operator */ |
|---|
| 708 | BooleanOperator m_operator = BooleanOperator.IS_IN; |
|---|
| 709 | |
|---|
| 710 | /** the array holding the set of values */ |
|---|
| 711 | Array m_set; |
|---|
| 712 | |
|---|
| 713 | public SimpleSetPredicate(Element setP, |
|---|
| 714 | MiningSchema miningSchema) throws Exception { |
|---|
| 715 | Instances totalStructure = miningSchema.getFieldsAsInstances(); |
|---|
| 716 | |
|---|
| 717 | // get the field name and set up the index |
|---|
| 718 | String fieldS = setP.getAttribute("field"); |
|---|
| 719 | Attribute att = totalStructure.attribute(fieldS); |
|---|
| 720 | if (att == null) { |
|---|
| 721 | throw new Exception("[SimplePredicate] unable to find field " + fieldS |
|---|
| 722 | + " in the incoming instance structure!"); |
|---|
| 723 | } |
|---|
| 724 | |
|---|
| 725 | // find the index |
|---|
| 726 | int index = -1; |
|---|
| 727 | for (int i = 0; i < totalStructure.numAttributes(); i++) { |
|---|
| 728 | if (totalStructure.attribute(i).name().equals(fieldS)) { |
|---|
| 729 | index = i; |
|---|
| 730 | m_fieldName = totalStructure.attribute(i).name(); |
|---|
| 731 | break; |
|---|
| 732 | } |
|---|
| 733 | } |
|---|
| 734 | m_fieldIndex = index; |
|---|
| 735 | if (att.isNominal()) { |
|---|
| 736 | m_isNominal = true; |
|---|
| 737 | m_nominalLookup = att; |
|---|
| 738 | } |
|---|
| 739 | |
|---|
| 740 | // need to scan the children looking for an array type |
|---|
| 741 | NodeList children = setP.getChildNodes(); |
|---|
| 742 | for (int i = 0; i < children.getLength(); i++) { |
|---|
| 743 | Node child = children.item(i); |
|---|
| 744 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
|---|
| 745 | if (Array.isArray((Element)child)) { |
|---|
| 746 | // found the array |
|---|
| 747 | m_set = Array.create((Element)child); |
|---|
| 748 | break; |
|---|
| 749 | } |
|---|
| 750 | } |
|---|
| 751 | } |
|---|
| 752 | |
|---|
| 753 | if (m_set == null) { |
|---|
| 754 | throw new Exception("[SimpleSetPredictate] couldn't find an " + |
|---|
| 755 | "array containing the set values!"); |
|---|
| 756 | } |
|---|
| 757 | |
|---|
| 758 | // check array type against field type |
|---|
| 759 | if (m_set.getType() == Array.ArrayType.STRING && |
|---|
| 760 | !m_isNominal) { |
|---|
| 761 | throw new Exception("[SimpleSetPredicate] referenced field " + |
|---|
| 762 | totalStructure.attribute(m_fieldIndex).name() + |
|---|
| 763 | " is numeric but array type is string!"); |
|---|
| 764 | } else if (m_set.getType() != Array.ArrayType.STRING && |
|---|
| 765 | m_isNominal) { |
|---|
| 766 | throw new Exception("[SimpleSetPredicate] referenced field " + |
|---|
| 767 | totalStructure.attribute(m_fieldIndex).name() + |
|---|
| 768 | " is nominal but array type is numeric!"); |
|---|
| 769 | } |
|---|
| 770 | } |
|---|
| 771 | |
|---|
| 772 | public Predicate.Eval evaluate(double[] input) { |
|---|
| 773 | return m_operator.evaluate(input, m_fieldIndex, m_set, m_nominalLookup); |
|---|
| 774 | } |
|---|
| 775 | |
|---|
| 776 | public String toString() { |
|---|
| 777 | StringBuffer temp = new StringBuffer(); |
|---|
| 778 | |
|---|
| 779 | temp.append(m_fieldName + " " + m_operator.toString() + " "); |
|---|
| 780 | temp.append(m_set.toString()); |
|---|
| 781 | |
|---|
| 782 | return temp.toString(); |
|---|
| 783 | } |
|---|
| 784 | } |
|---|
| 785 | |
|---|
| 786 | /** |
|---|
| 787 | * Class for handling a Node in the tree |
|---|
| 788 | */ |
|---|
| 789 | class TreeNode implements Serializable { |
|---|
| 790 | // TODO: perhaps implement a class called Statistics that contains Partitions? |
|---|
| 791 | |
|---|
| 792 | /** |
|---|
| 793 | * For serialization |
|---|
| 794 | */ |
|---|
| 795 | private static final long serialVersionUID = 3011062274167063699L; |
|---|
| 796 | |
|---|
| 797 | /** ID for this node */ |
|---|
| 798 | private String m_ID = "" + this.hashCode(); |
|---|
| 799 | |
|---|
| 800 | /** The score as a string */ |
|---|
| 801 | private String m_scoreString; |
|---|
| 802 | |
|---|
| 803 | /** The index of this predicted value (if class is nominal) */ |
|---|
| 804 | private int m_scoreIndex = -1; |
|---|
| 805 | |
|---|
| 806 | /** The score as a number (if target is numeric) */ |
|---|
| 807 | private double m_scoreNumeric = Utils.missingValue(); |
|---|
| 808 | |
|---|
| 809 | /** The record count at this node (if defined) */ |
|---|
| 810 | private double m_recordCount = Utils.missingValue(); |
|---|
| 811 | |
|---|
| 812 | /** The ID of the default child (if applicable) */ |
|---|
| 813 | private String m_defaultChildID; |
|---|
| 814 | |
|---|
| 815 | /** Holds the node of the default child (if defined) */ |
|---|
| 816 | private TreeNode m_defaultChild; |
|---|
| 817 | |
|---|
| 818 | /** The distribution for labels (classification) */ |
|---|
| 819 | private ArrayList<ScoreDistribution> m_scoreDistributions = |
|---|
| 820 | new ArrayList<ScoreDistribution>(); |
|---|
| 821 | |
|---|
| 822 | /** The predicate for this node */ |
|---|
| 823 | private Predicate m_predicate; |
|---|
| 824 | |
|---|
| 825 | /** The children of this node */ |
|---|
| 826 | private ArrayList<TreeNode> m_childNodes = new ArrayList<TreeNode>(); |
|---|
| 827 | |
|---|
| 828 | |
|---|
| 829 | protected TreeNode(Element nodeE, MiningSchema miningSchema) throws Exception { |
|---|
| 830 | Attribute classAtt = miningSchema.getFieldsAsInstances().classAttribute(); |
|---|
| 831 | |
|---|
| 832 | // get the ID |
|---|
| 833 | String id = nodeE.getAttribute("id"); |
|---|
| 834 | if (id != null && id.length() > 0) { |
|---|
| 835 | m_ID = id; |
|---|
| 836 | } |
|---|
| 837 | |
|---|
| 838 | // get the score for this node |
|---|
| 839 | String scoreS = nodeE.getAttribute("score"); |
|---|
| 840 | if (scoreS != null && scoreS.length() > 0) { |
|---|
| 841 | m_scoreString = scoreS; |
|---|
| 842 | |
|---|
| 843 | // try to parse as a number in case we |
|---|
| 844 | // are part of a regression tree |
|---|
| 845 | if (classAtt.isNumeric()) { |
|---|
| 846 | try { |
|---|
| 847 | m_scoreNumeric = Double.parseDouble(scoreS); |
|---|
| 848 | } catch (NumberFormatException ex) { |
|---|
| 849 | throw new Exception("[TreeNode] class is numeric but unable to parse score " |
|---|
| 850 | + m_scoreString + " as a number!"); |
|---|
| 851 | } |
|---|
| 852 | } else { |
|---|
| 853 | // store the index of this class value |
|---|
| 854 | m_scoreIndex = classAtt.indexOfValue(m_scoreString); |
|---|
| 855 | |
|---|
| 856 | if (m_scoreIndex < 0) { |
|---|
| 857 | throw new Exception("[TreeNode] can't find match for predicted value " |
|---|
| 858 | + m_scoreString + " in class attribute!"); |
|---|
| 859 | } |
|---|
| 860 | } |
|---|
| 861 | } |
|---|
| 862 | |
|---|
| 863 | // get the record count if defined |
|---|
| 864 | String recordC = nodeE.getAttribute("recordCount"); |
|---|
| 865 | if (recordC != null && recordC.length() > 0) { |
|---|
| 866 | m_recordCount = Double.parseDouble(recordC); |
|---|
| 867 | } |
|---|
| 868 | |
|---|
| 869 | // get the default child (if applicable) |
|---|
| 870 | String defaultC = nodeE.getAttribute("defaultChild"); |
|---|
| 871 | if (defaultC != null && defaultC.length() > 0) { |
|---|
| 872 | m_defaultChildID = defaultC; |
|---|
| 873 | } |
|---|
| 874 | |
|---|
| 875 | //TODO: Embedded model (once we support model composition) |
|---|
| 876 | |
|---|
| 877 | // Now get the ScoreDistributions (if any and mining function |
|---|
| 878 | // is classification) at this level |
|---|
| 879 | if (m_functionType == MiningFunction.CLASSIFICATION) { |
|---|
| 880 | getScoreDistributions(nodeE, miningSchema); |
|---|
| 881 | } |
|---|
| 882 | |
|---|
| 883 | // Now get the Predicate |
|---|
| 884 | m_predicate = Predicate.getPredicate(nodeE, miningSchema); |
|---|
| 885 | |
|---|
| 886 | // Now get the child Node(s) |
|---|
| 887 | getChildNodes(nodeE, miningSchema); |
|---|
| 888 | |
|---|
| 889 | // If we have a default child specified, find it now |
|---|
| 890 | if (m_defaultChildID != null) { |
|---|
| 891 | for (TreeNode t : m_childNodes) { |
|---|
| 892 | if (t.getID().equals(m_defaultChildID)) { |
|---|
| 893 | m_defaultChild = t; |
|---|
| 894 | break; |
|---|
| 895 | } |
|---|
| 896 | } |
|---|
| 897 | } |
|---|
| 898 | } |
|---|
| 899 | |
|---|
| 900 | private void getChildNodes(Element nodeE, MiningSchema miningSchema) throws Exception { |
|---|
| 901 | NodeList children = nodeE.getChildNodes(); |
|---|
| 902 | |
|---|
| 903 | for (int i = 0; i < children.getLength(); i++) { |
|---|
| 904 | Node child = children.item(i); |
|---|
| 905 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
|---|
| 906 | String tagName = ((Element)child).getTagName(); |
|---|
| 907 | if (tagName.equals("Node")) { |
|---|
| 908 | TreeNode tempN = new TreeNode((Element)child, miningSchema); |
|---|
| 909 | m_childNodes.add(tempN); |
|---|
| 910 | } |
|---|
| 911 | } |
|---|
| 912 | } |
|---|
| 913 | } |
|---|
| 914 | |
|---|
| 915 | private void getScoreDistributions(Element nodeE, |
|---|
| 916 | MiningSchema miningSchema) throws Exception { |
|---|
| 917 | |
|---|
| 918 | NodeList scoreChildren = nodeE.getChildNodes(); |
|---|
| 919 | for (int i = 0; i < scoreChildren.getLength(); i++) { |
|---|
| 920 | Node child = scoreChildren.item(i); |
|---|
| 921 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
|---|
| 922 | String tagName = ((Element)child).getTagName(); |
|---|
| 923 | if (tagName.equals("ScoreDistribution")) { |
|---|
| 924 | ScoreDistribution newDist = new ScoreDistribution((Element)child, |
|---|
| 925 | miningSchema, m_recordCount); |
|---|
| 926 | m_scoreDistributions.add(newDist); |
|---|
| 927 | } |
|---|
| 928 | } |
|---|
| 929 | } |
|---|
| 930 | |
|---|
| 931 | // backfit the confidence values |
|---|
| 932 | if (Utils.isMissingValue(m_recordCount)) { |
|---|
| 933 | double baseCount = 0; |
|---|
| 934 | for (ScoreDistribution s : m_scoreDistributions) { |
|---|
| 935 | baseCount += s.getRecordCount(); |
|---|
| 936 | } |
|---|
| 937 | |
|---|
| 938 | for (ScoreDistribution s : m_scoreDistributions) { |
|---|
| 939 | s.deriveConfidenceValue(baseCount); |
|---|
| 940 | } |
|---|
| 941 | } |
|---|
| 942 | } |
|---|
| 943 | |
|---|
| 944 | /** |
|---|
| 945 | * Get the score value as a string. |
|---|
| 946 | * |
|---|
| 947 | * @return the score value as a String. |
|---|
| 948 | */ |
|---|
| 949 | protected String getScore() { |
|---|
| 950 | return m_scoreString; |
|---|
| 951 | } |
|---|
| 952 | |
|---|
| 953 | /** |
|---|
| 954 | * Get the score value as a number (regression trees only). |
|---|
| 955 | * |
|---|
| 956 | * @return the score as a number |
|---|
| 957 | */ |
|---|
| 958 | protected double getScoreNumeric() { |
|---|
| 959 | return m_scoreNumeric; |
|---|
| 960 | } |
|---|
| 961 | |
|---|
| 962 | /** |
|---|
| 963 | * Get the ID of this node. |
|---|
| 964 | * |
|---|
| 965 | * @return the ID of this node. |
|---|
| 966 | */ |
|---|
| 967 | protected String getID() { |
|---|
| 968 | return m_ID; |
|---|
| 969 | } |
|---|
| 970 | |
|---|
| 971 | /** |
|---|
| 972 | * Get the Predicate at this node. |
|---|
| 973 | * |
|---|
| 974 | * @return the predicate at this node. |
|---|
| 975 | */ |
|---|
| 976 | protected Predicate getPredicate() { |
|---|
| 977 | return m_predicate; |
|---|
| 978 | } |
|---|
| 979 | |
|---|
| 980 | /** |
|---|
| 981 | * Get the record count at this node. |
|---|
| 982 | * |
|---|
| 983 | * @return the record count at this node. |
|---|
| 984 | */ |
|---|
| 985 | protected double getRecordCount() { |
|---|
| 986 | return m_recordCount; |
|---|
| 987 | } |
|---|
| 988 | |
|---|
| 989 | protected void dumpGraph(StringBuffer text) throws Exception { |
|---|
| 990 | text.append("N" + m_ID + " "); |
|---|
| 991 | if (m_scoreString != null) { |
|---|
| 992 | text.append("[label=\"score=" + m_scoreString); |
|---|
| 993 | } |
|---|
| 994 | |
|---|
| 995 | if (m_scoreDistributions.size() > 0 && m_childNodes.size() == 0) { |
|---|
| 996 | text.append("\\n"); |
|---|
| 997 | for (ScoreDistribution s : m_scoreDistributions) { |
|---|
| 998 | text.append(s + "\\n"); |
|---|
| 999 | } |
|---|
| 1000 | } |
|---|
| 1001 | |
|---|
| 1002 | text.append("\""); |
|---|
| 1003 | |
|---|
| 1004 | if (m_childNodes.size() == 0) { |
|---|
| 1005 | text.append(" shape=box style=filled"); |
|---|
| 1006 | |
|---|
| 1007 | } |
|---|
| 1008 | |
|---|
| 1009 | text.append("]\n"); |
|---|
| 1010 | |
|---|
| 1011 | for (TreeNode c : m_childNodes) { |
|---|
| 1012 | text.append("N" + m_ID +"->" + "N" + c.getID()); |
|---|
| 1013 | text.append(" [label=\"" + c.getPredicate().toString(0, true)); |
|---|
| 1014 | text.append("\"]\n"); |
|---|
| 1015 | c.dumpGraph(text); |
|---|
| 1016 | } |
|---|
| 1017 | } |
|---|
| 1018 | |
|---|
| 1019 | public String toString() { |
|---|
| 1020 | StringBuffer text = new StringBuffer(); |
|---|
| 1021 | |
|---|
| 1022 | // print out the root |
|---|
| 1023 | dumpTree(0, text); |
|---|
| 1024 | |
|---|
| 1025 | return text.toString(); |
|---|
| 1026 | } |
|---|
| 1027 | |
|---|
| 1028 | protected void dumpTree(int level, StringBuffer text) { |
|---|
| 1029 | if (m_childNodes.size() > 0) { |
|---|
| 1030 | |
|---|
| 1031 | for (int i = 0; i < m_childNodes.size(); i++) { |
|---|
| 1032 | text.append("\n"); |
|---|
| 1033 | |
|---|
| 1034 | /* for (int j = 0; j < level; j++) { |
|---|
| 1035 | text.append("| "); |
|---|
| 1036 | } */ |
|---|
| 1037 | |
|---|
| 1038 | // output the predicate for this child node |
|---|
| 1039 | TreeNode child = m_childNodes.get(i); |
|---|
| 1040 | text.append(child.getPredicate().toString(level, false)); |
|---|
| 1041 | |
|---|
| 1042 | // process recursively |
|---|
| 1043 | child.dumpTree(level + 1 , text); |
|---|
| 1044 | } |
|---|
| 1045 | } else { |
|---|
| 1046 | // leaf |
|---|
| 1047 | text.append(": "); |
|---|
| 1048 | if (!Utils.isMissingValue(m_scoreNumeric)) { |
|---|
| 1049 | text.append(m_scoreNumeric); |
|---|
| 1050 | } else { |
|---|
| 1051 | text.append(m_scoreString + " "); |
|---|
| 1052 | if (m_scoreDistributions.size() > 0) { |
|---|
| 1053 | text.append("["); |
|---|
| 1054 | for (ScoreDistribution s : m_scoreDistributions) { |
|---|
| 1055 | text.append(s); |
|---|
| 1056 | } |
|---|
| 1057 | text.append("]"); |
|---|
| 1058 | } else { |
|---|
| 1059 | text.append(m_scoreString); |
|---|
| 1060 | } |
|---|
| 1061 | } |
|---|
| 1062 | } |
|---|
| 1063 | } |
|---|
| 1064 | |
|---|
| 1065 | /** |
|---|
| 1066 | * Score an incoming instance. Invokes a missing value handling strategy. |
|---|
| 1067 | * |
|---|
| 1068 | * @param instance a vector of incoming attribute and derived field values. |
|---|
| 1069 | * @param classAtt the class attribute |
|---|
| 1070 | * @return a predicted probability distribution. |
|---|
| 1071 | * @throws Exception if something goes wrong. |
|---|
| 1072 | */ |
|---|
| 1073 | protected double[] score(double[] instance, Attribute classAtt) throws Exception { |
|---|
| 1074 | double[] preds = null; |
|---|
| 1075 | |
|---|
| 1076 | if (classAtt.isNumeric()) { |
|---|
| 1077 | preds = new double[1]; |
|---|
| 1078 | } else { |
|---|
| 1079 | preds = new double[classAtt.numValues()]; |
|---|
| 1080 | } |
|---|
| 1081 | |
|---|
| 1082 | // leaf? |
|---|
| 1083 | if (m_childNodes.size() == 0) { |
|---|
| 1084 | doLeaf(classAtt, preds); |
|---|
| 1085 | } else { |
|---|
| 1086 | // process the children |
|---|
| 1087 | switch (TreeModel.this.m_missingValueStrategy) { |
|---|
| 1088 | case NONE: |
|---|
| 1089 | preds = missingValueStrategyNone(instance, classAtt); |
|---|
| 1090 | break; |
|---|
| 1091 | case LASTPREDICTION: |
|---|
| 1092 | preds = missingValueStrategyLastPrediction(instance, classAtt); |
|---|
| 1093 | break; |
|---|
| 1094 | case DEFAULTCHILD: |
|---|
| 1095 | preds = missingValueStrategyDefaultChild(instance, classAtt); |
|---|
| 1096 | break; |
|---|
| 1097 | default: |
|---|
| 1098 | throw new Exception("[TreeModel] not implemented!"); |
|---|
| 1099 | } |
|---|
| 1100 | } |
|---|
| 1101 | |
|---|
| 1102 | return preds; |
|---|
| 1103 | } |
|---|
| 1104 | |
|---|
| 1105 | /** |
|---|
| 1106 | * Compute the predictions for a leaf. |
|---|
| 1107 | * |
|---|
| 1108 | * @param classAtt the class attribute |
|---|
| 1109 | * @param preds an array to hold the predicted probabilities. |
|---|
| 1110 | * @throws Exception if something goes wrong. |
|---|
| 1111 | */ |
|---|
| 1112 | protected void doLeaf(Attribute classAtt, double[] preds) throws Exception { |
|---|
| 1113 | if (classAtt.isNumeric()) { |
|---|
| 1114 | preds[0] = m_scoreNumeric; |
|---|
| 1115 | } else { |
|---|
| 1116 | if (m_scoreDistributions.size() == 0) { |
|---|
| 1117 | preds[m_scoreIndex] = 1.0; |
|---|
| 1118 | } else { |
|---|
| 1119 | // collect confidences from the score distributions |
|---|
| 1120 | for (ScoreDistribution s : m_scoreDistributions) { |
|---|
| 1121 | preds[s.getClassLabelIndex()] = s.getConfidence(); |
|---|
| 1122 | } |
|---|
| 1123 | } |
|---|
| 1124 | } |
|---|
| 1125 | } |
|---|
| 1126 | |
|---|
| 1127 | /** |
|---|
| 1128 | * Evaluate on the basis of the no true child strategy. |
|---|
| 1129 | * |
|---|
| 1130 | * @param classAtt the class attribute. |
|---|
| 1131 | * @param preds an array to hold the predicted probabilities. |
|---|
| 1132 | * @throws Exception if something goes wrong. |
|---|
| 1133 | */ |
|---|
| 1134 | protected void doNoTrueChild(Attribute classAtt, double[] preds) |
|---|
| 1135 | throws Exception { |
|---|
| 1136 | if (TreeModel.this.m_noTrueChildStrategy == |
|---|
| 1137 | NoTrueChildStrategy.RETURNNULLPREDICTION) { |
|---|
| 1138 | for (int i = 0; i < classAtt.numValues(); i++) { |
|---|
| 1139 | preds[i] = Utils.missingValue(); |
|---|
| 1140 | } |
|---|
| 1141 | } else { |
|---|
| 1142 | // return the predictions at this node |
|---|
| 1143 | doLeaf(classAtt, preds); |
|---|
| 1144 | } |
|---|
| 1145 | } |
|---|
| 1146 | |
|---|
| 1147 | /** |
|---|
| 1148 | * Compute predictions and optionally invoke the weighted confidence |
|---|
| 1149 | * missing value handling strategy. |
|---|
| 1150 | * |
|---|
| 1151 | * @param instance the incoming vector of attribute and derived field values. |
|---|
| 1152 | * @param classAtt the class attribute. |
|---|
| 1153 | * @return the predicted probability distribution. |
|---|
| 1154 | * @throws Exception if something goes wrong. |
|---|
| 1155 | */ |
|---|
| 1156 | protected double[] missingValueStrategyWeightedConfidence(double[] instance, |
|---|
| 1157 | Attribute classAtt) throws Exception { |
|---|
| 1158 | |
|---|
| 1159 | if (classAtt.isNumeric()) { |
|---|
| 1160 | throw new Exception("[TreeNode] missing value strategy weighted confidence, " |
|---|
| 1161 | + "but class is numeric!"); |
|---|
| 1162 | } |
|---|
| 1163 | |
|---|
| 1164 | double[] preds = null; |
|---|
| 1165 | TreeNode trueNode = null; |
|---|
| 1166 | boolean strategyInvoked = false; |
|---|
| 1167 | int nodeCount = 0; |
|---|
| 1168 | |
|---|
| 1169 | // look at the evaluation of the child predicates |
|---|
| 1170 | for (TreeNode c : m_childNodes) { |
|---|
| 1171 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE) { |
|---|
| 1172 | // note the first child to evaluate to true |
|---|
| 1173 | if (trueNode == null) { |
|---|
| 1174 | trueNode = c; |
|---|
| 1175 | } |
|---|
| 1176 | nodeCount++; |
|---|
| 1177 | } else if (c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1178 | strategyInvoked = true; |
|---|
| 1179 | nodeCount++; |
|---|
| 1180 | } |
|---|
| 1181 | } |
|---|
| 1182 | |
|---|
| 1183 | if (strategyInvoked) { |
|---|
| 1184 | // we expect to combine nodeCount distributions |
|---|
| 1185 | double[][] dists = new double[nodeCount][]; |
|---|
| 1186 | double[] weights = new double[nodeCount]; |
|---|
| 1187 | |
|---|
| 1188 | // collect the distributions and weights |
|---|
| 1189 | int count = 0; |
|---|
| 1190 | for (TreeNode c : m_childNodes) { |
|---|
| 1191 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE || |
|---|
| 1192 | c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1193 | |
|---|
| 1194 | weights[count] = c.getRecordCount(); |
|---|
| 1195 | if (Utils.isMissingValue(weights[count])) { |
|---|
| 1196 | throw new Exception("[TreeNode] weighted confidence missing value " + |
|---|
| 1197 | "strategy invoked, but no record count defined for node " + |
|---|
| 1198 | c.getID()); |
|---|
| 1199 | } |
|---|
| 1200 | dists[count++] = c.score(instance, classAtt); |
|---|
| 1201 | } |
|---|
| 1202 | } |
|---|
| 1203 | |
|---|
| 1204 | // do the combination |
|---|
| 1205 | preds = new double[classAtt.numValues()]; |
|---|
| 1206 | for (int i = 0; i < classAtt.numValues(); i++) { |
|---|
| 1207 | for (int j = 0; j < nodeCount; j++) { |
|---|
| 1208 | preds[i] += ((weights[j] / m_recordCount) * dists[j][i]); |
|---|
| 1209 | } |
|---|
| 1210 | } |
|---|
| 1211 | } else { |
|---|
| 1212 | if (trueNode != null) { |
|---|
| 1213 | preds = trueNode.score(instance, classAtt); |
|---|
| 1214 | } else { |
|---|
| 1215 | doNoTrueChild(classAtt, preds); |
|---|
| 1216 | } |
|---|
| 1217 | } |
|---|
| 1218 | |
|---|
| 1219 | return preds; |
|---|
| 1220 | } |
|---|
| 1221 | |
|---|
| 1222 | protected double[] freqCountsForAggNodesStrategy(double[] instance, |
|---|
| 1223 | Attribute classAtt) throws Exception { |
|---|
| 1224 | |
|---|
| 1225 | double[] counts = new double[classAtt.numValues()]; |
|---|
| 1226 | |
|---|
| 1227 | if (m_childNodes.size() > 0) { |
|---|
| 1228 | // collect the counts |
|---|
| 1229 | for (TreeNode c : m_childNodes) { |
|---|
| 1230 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE || |
|---|
| 1231 | c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1232 | |
|---|
| 1233 | double[] temp = c.freqCountsForAggNodesStrategy(instance, classAtt); |
|---|
| 1234 | for (int i = 0; i < classAtt.numValues(); i++) { |
|---|
| 1235 | counts[i] += temp[i]; |
|---|
| 1236 | } |
|---|
| 1237 | } |
|---|
| 1238 | } |
|---|
| 1239 | } else { |
|---|
| 1240 | // process the score distributions |
|---|
| 1241 | if (m_scoreDistributions.size() == 0) { |
|---|
| 1242 | throw new Exception("[TreeModel] missing value strategy aggregate nodes:" + |
|---|
| 1243 | " no score distributions at leaf " + m_ID); |
|---|
| 1244 | } |
|---|
| 1245 | for (ScoreDistribution s : m_scoreDistributions) { |
|---|
| 1246 | counts[s.getClassLabelIndex()] = s.getRecordCount(); |
|---|
| 1247 | } |
|---|
| 1248 | } |
|---|
| 1249 | |
|---|
| 1250 | return counts; |
|---|
| 1251 | } |
|---|
| 1252 | |
|---|
| 1253 | /** |
|---|
| 1254 | * Compute predictions and optionally invoke the aggregate nodes |
|---|
| 1255 | * missing value handling strategy. |
|---|
| 1256 | * |
|---|
| 1257 | * @param instance the incoming vector of attribute and derived field values. |
|---|
| 1258 | * @param classAtt the class attribute. |
|---|
| 1259 | * @return the predicted probability distribution. |
|---|
| 1260 | * @throws Exception if something goes wrong. |
|---|
| 1261 | */ |
|---|
| 1262 | protected double[] missingValueStrategyAggregateNodes(double[] instance, |
|---|
| 1263 | Attribute classAtt) throws Exception { |
|---|
| 1264 | |
|---|
| 1265 | if (classAtt.isNumeric()) { |
|---|
| 1266 | throw new Exception("[TreeNode] missing value strategy aggregate nodes, " |
|---|
| 1267 | + "but class is numeric!"); |
|---|
| 1268 | } |
|---|
| 1269 | |
|---|
| 1270 | double[] preds = null; |
|---|
| 1271 | TreeNode trueNode = null; |
|---|
| 1272 | boolean strategyInvoked = false; |
|---|
| 1273 | int nodeCount = 0; |
|---|
| 1274 | |
|---|
| 1275 | // look at the evaluation of the child predicates |
|---|
| 1276 | for (TreeNode c : m_childNodes) { |
|---|
| 1277 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE) { |
|---|
| 1278 | // note the first child to evaluate to true |
|---|
| 1279 | if (trueNode == null) { |
|---|
| 1280 | trueNode = c; |
|---|
| 1281 | } |
|---|
| 1282 | nodeCount++; |
|---|
| 1283 | } else if (c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1284 | strategyInvoked = true; |
|---|
| 1285 | nodeCount++; |
|---|
| 1286 | } |
|---|
| 1287 | } |
|---|
| 1288 | |
|---|
| 1289 | if (strategyInvoked) { |
|---|
| 1290 | double[] aggregatedCounts = |
|---|
| 1291 | freqCountsForAggNodesStrategy(instance, classAtt); |
|---|
| 1292 | |
|---|
| 1293 | // normalize |
|---|
| 1294 | Utils.normalize(aggregatedCounts); |
|---|
| 1295 | preds = aggregatedCounts; |
|---|
| 1296 | } else { |
|---|
| 1297 | if (trueNode != null) { |
|---|
| 1298 | preds = trueNode.score(instance, classAtt); |
|---|
| 1299 | } else { |
|---|
| 1300 | doNoTrueChild(classAtt, preds); |
|---|
| 1301 | } |
|---|
| 1302 | } |
|---|
| 1303 | |
|---|
| 1304 | return preds; |
|---|
| 1305 | } |
|---|
| 1306 | |
|---|
| 1307 | /** |
|---|
| 1308 | * Compute predictions and optionally invoke the default child |
|---|
| 1309 | * missing value handling strategy. |
|---|
| 1310 | * |
|---|
| 1311 | * @param instance the incoming vector of attribute and derived field values. |
|---|
| 1312 | * @param classAtt the class attribute. |
|---|
| 1313 | * @return the predicted probability distribution. |
|---|
| 1314 | * @throws Exception if something goes wrong. |
|---|
| 1315 | */ |
|---|
| 1316 | protected double[] missingValueStrategyDefaultChild(double[] instance, |
|---|
| 1317 | Attribute classAtt) throws Exception { |
|---|
| 1318 | |
|---|
| 1319 | double[] preds = null; |
|---|
| 1320 | boolean strategyInvoked = false; |
|---|
| 1321 | |
|---|
| 1322 | // look for a child whose predicate evaluates to TRUE |
|---|
| 1323 | for (TreeNode c : m_childNodes) { |
|---|
| 1324 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE) { |
|---|
| 1325 | preds = c.score(instance, classAtt); |
|---|
| 1326 | break; |
|---|
| 1327 | } else if (c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1328 | strategyInvoked = true; |
|---|
| 1329 | } |
|---|
| 1330 | } |
|---|
| 1331 | |
|---|
| 1332 | // no true child found |
|---|
| 1333 | if (preds == null) { |
|---|
| 1334 | if (!strategyInvoked) { |
|---|
| 1335 | doNoTrueChild(classAtt, preds); |
|---|
| 1336 | } else { |
|---|
| 1337 | // do the strategy |
|---|
| 1338 | |
|---|
| 1339 | // NOTE: we don't actually implement the missing value penalty since |
|---|
| 1340 | // we always return a full probability distribution. |
|---|
| 1341 | if (m_defaultChild != null) { |
|---|
| 1342 | preds = m_defaultChild.score(instance, classAtt); |
|---|
| 1343 | } else { |
|---|
| 1344 | throw new Exception("[TreeNode] missing value strategy is defaultChild, but " + |
|---|
| 1345 | "no default child has been specified in node " + m_ID); |
|---|
| 1346 | } |
|---|
| 1347 | } |
|---|
| 1348 | } |
|---|
| 1349 | |
|---|
| 1350 | return preds; |
|---|
| 1351 | } |
|---|
| 1352 | |
|---|
| 1353 | /** |
|---|
| 1354 | * Compute predictions and optionally invoke the last prediction |
|---|
| 1355 | * missing value handling strategy. |
|---|
| 1356 | * |
|---|
| 1357 | * @param instance the incoming vector of attribute and derived field values. |
|---|
| 1358 | * @param classAtt the class attribute. |
|---|
| 1359 | * @return the predicted probability distribution. |
|---|
| 1360 | * @throws Exception if something goes wrong. |
|---|
| 1361 | */ |
|---|
| 1362 | protected double[] missingValueStrategyLastPrediction(double[] instance, |
|---|
| 1363 | Attribute classAtt) throws Exception { |
|---|
| 1364 | |
|---|
| 1365 | double[] preds = null; |
|---|
| 1366 | boolean strategyInvoked = false; |
|---|
| 1367 | |
|---|
| 1368 | // look for a child whose predicate evaluates to TRUE |
|---|
| 1369 | for (TreeNode c : m_childNodes) { |
|---|
| 1370 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE) { |
|---|
| 1371 | preds = c.score(instance, classAtt); |
|---|
| 1372 | break; |
|---|
| 1373 | } else if (c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1374 | strategyInvoked = true; |
|---|
| 1375 | } |
|---|
| 1376 | } |
|---|
| 1377 | |
|---|
| 1378 | // no true child found |
|---|
| 1379 | if (preds == null) { |
|---|
| 1380 | preds = new double[classAtt.numValues()]; |
|---|
| 1381 | if (!strategyInvoked) { |
|---|
| 1382 | // no true child |
|---|
| 1383 | doNoTrueChild(classAtt, preds); |
|---|
| 1384 | } else { |
|---|
| 1385 | // do the strategy |
|---|
| 1386 | doLeaf(classAtt, preds); |
|---|
| 1387 | } |
|---|
| 1388 | } |
|---|
| 1389 | |
|---|
| 1390 | return preds; |
|---|
| 1391 | } |
|---|
| 1392 | |
|---|
| 1393 | /** |
|---|
| 1394 | * Compute predictions and optionally invoke the null prediction |
|---|
| 1395 | * missing value handling strategy. |
|---|
| 1396 | * |
|---|
| 1397 | * @param instance the incoming vector of attribute and derived field values. |
|---|
| 1398 | * @param classAtt the class attribute. |
|---|
| 1399 | * @return the predicted probability distribution. |
|---|
| 1400 | * @throws Exception if something goes wrong. |
|---|
| 1401 | */ |
|---|
| 1402 | protected double[] missingValueStrategyNullPrediction(double[] instance, |
|---|
| 1403 | Attribute classAtt) throws Exception { |
|---|
| 1404 | |
|---|
| 1405 | double[] preds = null; |
|---|
| 1406 | boolean strategyInvoked = false; |
|---|
| 1407 | |
|---|
| 1408 | // look for a child whose predicate evaluates to TRUE |
|---|
| 1409 | for (TreeNode c : m_childNodes) { |
|---|
| 1410 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE) { |
|---|
| 1411 | preds = c.score(instance, classAtt); |
|---|
| 1412 | break; |
|---|
| 1413 | } else if (c.getPredicate().evaluate(instance) == Predicate.Eval.UNKNOWN) { |
|---|
| 1414 | strategyInvoked = true; |
|---|
| 1415 | } |
|---|
| 1416 | } |
|---|
| 1417 | |
|---|
| 1418 | // no true child found |
|---|
| 1419 | if (preds == null) { |
|---|
| 1420 | preds = new double[classAtt.numValues()]; |
|---|
| 1421 | if (!strategyInvoked) { |
|---|
| 1422 | doNoTrueChild(classAtt, preds); |
|---|
| 1423 | } else { |
|---|
| 1424 | // do the strategy |
|---|
| 1425 | for (int i = 0; i < classAtt.numValues(); i++) { |
|---|
| 1426 | preds[i] = Utils.missingValue(); |
|---|
| 1427 | } |
|---|
| 1428 | } |
|---|
| 1429 | } |
|---|
| 1430 | |
|---|
| 1431 | return preds; |
|---|
| 1432 | } |
|---|
| 1433 | |
|---|
| 1434 | /** |
|---|
| 1435 | * Compute predictions and optionally invoke the "none" |
|---|
| 1436 | * missing value handling strategy (invokes no true child). |
|---|
| 1437 | * |
|---|
| 1438 | * @param instance the incoming vector of attribute and derived field values. |
|---|
| 1439 | * @param classAtt the class attribute. |
|---|
| 1440 | * @return the predicted probability distribution. |
|---|
| 1441 | * @throws Exception if something goes wrong. |
|---|
| 1442 | */ |
|---|
| 1443 | protected double[] missingValueStrategyNone(double[] instance, Attribute classAtt) |
|---|
| 1444 | throws Exception { |
|---|
| 1445 | |
|---|
| 1446 | double[] preds = null; |
|---|
| 1447 | |
|---|
| 1448 | // look for a child whose predicate evaluates to TRUE |
|---|
| 1449 | for (TreeNode c : m_childNodes) { |
|---|
| 1450 | if (c.getPredicate().evaluate(instance) == Predicate.Eval.TRUE) { |
|---|
| 1451 | preds = c.score(instance, classAtt); |
|---|
| 1452 | break; |
|---|
| 1453 | } |
|---|
| 1454 | } |
|---|
| 1455 | |
|---|
| 1456 | if (preds == null) { |
|---|
| 1457 | preds = new double[classAtt.numValues()]; |
|---|
| 1458 | |
|---|
| 1459 | // no true child strategy |
|---|
| 1460 | doNoTrueChild(classAtt, preds); |
|---|
| 1461 | } |
|---|
| 1462 | |
|---|
| 1463 | return preds; |
|---|
| 1464 | } |
|---|
| 1465 | } |
|---|
| 1466 | |
|---|
| 1467 | /** |
|---|
| 1468 | * Enumerated type for the mining function |
|---|
| 1469 | */ |
|---|
| 1470 | enum MiningFunction { |
|---|
| 1471 | CLASSIFICATION, |
|---|
| 1472 | REGRESSION; |
|---|
| 1473 | } |
|---|
| 1474 | |
|---|
| 1475 | enum MissingValueStrategy { |
|---|
| 1476 | LASTPREDICTION("lastPrediction"), |
|---|
| 1477 | NULLPREDICTION("nullPrediction"), |
|---|
| 1478 | DEFAULTCHILD("defaultChild"), |
|---|
| 1479 | WEIGHTEDCONFIDENCE("weightedConfidence"), |
|---|
| 1480 | AGGREGATENODES("aggregateNodes"), |
|---|
| 1481 | NONE("none"); |
|---|
| 1482 | |
|---|
| 1483 | private final String m_stringVal; |
|---|
| 1484 | |
|---|
| 1485 | MissingValueStrategy(String name) { |
|---|
| 1486 | m_stringVal = name; |
|---|
| 1487 | } |
|---|
| 1488 | |
|---|
| 1489 | public String toString() { |
|---|
| 1490 | return m_stringVal; |
|---|
| 1491 | } |
|---|
| 1492 | } |
|---|
| 1493 | |
|---|
| 1494 | enum NoTrueChildStrategy { |
|---|
| 1495 | RETURNNULLPREDICTION("returnNullPrediction"), |
|---|
| 1496 | RETURNLASTPREDICTION("returnLastPrediction"); |
|---|
| 1497 | |
|---|
| 1498 | private final String m_stringVal; |
|---|
| 1499 | |
|---|
| 1500 | NoTrueChildStrategy(String name) { |
|---|
| 1501 | m_stringVal = name; |
|---|
| 1502 | } |
|---|
| 1503 | |
|---|
| 1504 | public String toString() { |
|---|
| 1505 | return m_stringVal; |
|---|
| 1506 | } |
|---|
| 1507 | } |
|---|
| 1508 | |
|---|
| 1509 | enum SplitCharacteristic { |
|---|
| 1510 | BINARYSPLIT("binarySplit"), |
|---|
| 1511 | MULTISPLIT("multiSplit"); |
|---|
| 1512 | |
|---|
| 1513 | private final String m_stringVal; |
|---|
| 1514 | |
|---|
| 1515 | SplitCharacteristic(String name) { |
|---|
| 1516 | m_stringVal = name; |
|---|
| 1517 | } |
|---|
| 1518 | |
|---|
| 1519 | public String toString() { |
|---|
| 1520 | return m_stringVal; |
|---|
| 1521 | } |
|---|
| 1522 | } |
|---|
| 1523 | |
|---|
| 1524 | /** The mining function */ |
|---|
| 1525 | protected MiningFunction m_functionType = MiningFunction.CLASSIFICATION; |
|---|
| 1526 | |
|---|
| 1527 | /** The missing value strategy */ |
|---|
| 1528 | protected MissingValueStrategy m_missingValueStrategy = MissingValueStrategy.NONE; |
|---|
| 1529 | |
|---|
| 1530 | /** |
|---|
| 1531 | * The missing value penalty (if defined). |
|---|
| 1532 | * We don't actually make use of this since we always return |
|---|
| 1533 | * full probability distributions. |
|---|
| 1534 | */ |
|---|
| 1535 | protected double m_missingValuePenalty = Utils.missingValue(); |
|---|
| 1536 | |
|---|
| 1537 | /** The no true child strategy to use */ |
|---|
| 1538 | protected NoTrueChildStrategy m_noTrueChildStrategy = NoTrueChildStrategy.RETURNNULLPREDICTION; |
|---|
| 1539 | |
|---|
| 1540 | /** The splitting type */ |
|---|
| 1541 | protected SplitCharacteristic m_splitCharacteristic = SplitCharacteristic.MULTISPLIT; |
|---|
| 1542 | |
|---|
| 1543 | /** The root of the tree */ |
|---|
| 1544 | protected TreeNode m_root; |
|---|
| 1545 | |
|---|
| 1546 | public TreeModel(Element model, Instances dataDictionary, |
|---|
| 1547 | MiningSchema miningSchema) throws Exception { |
|---|
| 1548 | |
|---|
| 1549 | super(dataDictionary, miningSchema); |
|---|
| 1550 | |
|---|
| 1551 | if (!getPMMLVersion().equals("3.2")) { |
|---|
| 1552 | // TODO: might have to throw an exception and only support 3.2 |
|---|
| 1553 | } |
|---|
| 1554 | |
|---|
| 1555 | String fn = model.getAttribute("functionName"); |
|---|
| 1556 | if (fn.equals("regression")) { |
|---|
| 1557 | m_functionType = MiningFunction.REGRESSION; |
|---|
| 1558 | } |
|---|
| 1559 | |
|---|
| 1560 | // get the missing value strategy (if any) |
|---|
| 1561 | String missingVS = model.getAttribute("missingValueStrategy"); |
|---|
| 1562 | if (missingVS != null && missingVS.length() > 0) { |
|---|
| 1563 | for (MissingValueStrategy m : MissingValueStrategy.values()) { |
|---|
| 1564 | if (m.toString().equals(missingVS)) { |
|---|
| 1565 | m_missingValueStrategy = m; |
|---|
| 1566 | break; |
|---|
| 1567 | } |
|---|
| 1568 | } |
|---|
| 1569 | } |
|---|
| 1570 | |
|---|
| 1571 | // get the missing value penalty (if any) |
|---|
| 1572 | String missingP = model.getAttribute("missingValuePenalty"); |
|---|
| 1573 | if (missingP != null && missingP.length() > 0) { |
|---|
| 1574 | // try to parse as a number |
|---|
| 1575 | try { |
|---|
| 1576 | m_missingValuePenalty = Double.parseDouble(missingP); |
|---|
| 1577 | } catch (NumberFormatException ex) { |
|---|
| 1578 | System.err.println("[TreeModel] WARNING: " + |
|---|
| 1579 | "couldn't parse supplied missingValuePenalty as a number"); |
|---|
| 1580 | } |
|---|
| 1581 | } |
|---|
| 1582 | |
|---|
| 1583 | String splitC = model.getAttribute("splitCharacteristic"); |
|---|
| 1584 | |
|---|
| 1585 | if (splitC != null && splitC.length() > 0) { |
|---|
| 1586 | for (SplitCharacteristic s : SplitCharacteristic.values()) { |
|---|
| 1587 | if (s.toString().equals(splitC)) { |
|---|
| 1588 | m_splitCharacteristic = s; |
|---|
| 1589 | break; |
|---|
| 1590 | } |
|---|
| 1591 | } |
|---|
| 1592 | } |
|---|
| 1593 | |
|---|
| 1594 | // find the root node of the tree |
|---|
| 1595 | NodeList children = model.getChildNodes(); |
|---|
| 1596 | for (int i = 0; i < children.getLength(); i++) { |
|---|
| 1597 | Node child = children.item(i); |
|---|
| 1598 | if (child.getNodeType() == Node.ELEMENT_NODE) { |
|---|
| 1599 | String tagName = ((Element)child).getTagName(); |
|---|
| 1600 | if (tagName.equals("Node")) { |
|---|
| 1601 | m_root = new TreeNode((Element)child, miningSchema); |
|---|
| 1602 | break; |
|---|
| 1603 | } |
|---|
| 1604 | } |
|---|
| 1605 | } |
|---|
| 1606 | } |
|---|
| 1607 | |
|---|
| 1608 | /** |
|---|
| 1609 | * Classifies the given test instance. The instance has to belong to a |
|---|
| 1610 | * dataset when it's being classified. |
|---|
| 1611 | * |
|---|
| 1612 | * @param inst the instance to be classified |
|---|
| 1613 | * @return the predicted most likely class for the instance or |
|---|
| 1614 | * Utils.missingValue() if no prediction is made |
|---|
| 1615 | * @exception Exception if an error occurred during the prediction |
|---|
| 1616 | */ |
|---|
| 1617 | public double[] distributionForInstance(Instance inst) throws Exception { |
|---|
| 1618 | if (!m_initialized) { |
|---|
| 1619 | mapToMiningSchema(inst.dataset()); |
|---|
| 1620 | } |
|---|
| 1621 | double[] preds = null; |
|---|
| 1622 | |
|---|
| 1623 | if (m_miningSchema.getFieldsAsInstances().classAttribute().isNumeric()) { |
|---|
| 1624 | preds = new double[1]; |
|---|
| 1625 | } else { |
|---|
| 1626 | preds = new double[m_miningSchema.getFieldsAsInstances().classAttribute().numValues()]; |
|---|
| 1627 | } |
|---|
| 1628 | |
|---|
| 1629 | double[] incoming = m_fieldsMap.instanceToSchema(inst, m_miningSchema); |
|---|
| 1630 | |
|---|
| 1631 | preds = m_root.score(incoming, m_miningSchema.getFieldsAsInstances().classAttribute()); |
|---|
| 1632 | |
|---|
| 1633 | return preds; |
|---|
| 1634 | } |
|---|
| 1635 | |
|---|
| 1636 | public String toString() { |
|---|
| 1637 | StringBuffer temp = new StringBuffer(); |
|---|
| 1638 | |
|---|
| 1639 | temp.append("PMML version " + getPMMLVersion()); |
|---|
| 1640 | if (!getCreatorApplication().equals("?")) { |
|---|
| 1641 | temp.append("\nApplication: " + getCreatorApplication()); |
|---|
| 1642 | } |
|---|
| 1643 | temp.append("\nPMML Model: TreeModel"); |
|---|
| 1644 | temp.append("\n\n"); |
|---|
| 1645 | temp.append(m_miningSchema); |
|---|
| 1646 | |
|---|
| 1647 | temp.append("Split-type: " + m_splitCharacteristic + "\n"); |
|---|
| 1648 | temp.append("No true child strategy: " + m_noTrueChildStrategy + "\n"); |
|---|
| 1649 | temp.append("Missing value strategy: " + m_missingValueStrategy + "\n"); |
|---|
| 1650 | |
|---|
| 1651 | temp.append(m_root.toString()); |
|---|
| 1652 | |
|---|
| 1653 | return temp.toString(); |
|---|
| 1654 | } |
|---|
| 1655 | |
|---|
| 1656 | public String graph() throws Exception { |
|---|
| 1657 | StringBuffer text = new StringBuffer(); |
|---|
| 1658 | text.append("digraph PMMTree {\n"); |
|---|
| 1659 | |
|---|
| 1660 | m_root.dumpGraph(text); |
|---|
| 1661 | |
|---|
| 1662 | text.append("}\n"); |
|---|
| 1663 | |
|---|
| 1664 | return text.toString(); |
|---|
| 1665 | } |
|---|
| 1666 | |
|---|
| 1667 | public String getRevision() { |
|---|
| 1668 | return RevisionUtils.extract("$Revision: 5987 $"); |
|---|
| 1669 | } |
|---|
| 1670 | |
|---|
| 1671 | public int graphType() { |
|---|
| 1672 | return Drawable.TREE; |
|---|
| 1673 | } |
|---|
| 1674 | } |
|---|