1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * HillClimber.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes.net.search.local; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.BayesNet; |
---|
26 | import weka.classifiers.bayes.net.ParentSet; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.RevisionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.Utils; |
---|
32 | |
---|
33 | import java.io.Serializable; |
---|
34 | import java.util.Enumeration; |
---|
35 | import java.util.Vector; |
---|
36 | |
---|
37 | /** |
---|
38 | <!-- globalinfo-start --> |
---|
39 | * This Bayes Network learning algorithm uses a hill climbing algorithm adding, deleting and reversing arcs. The search is not restricted by an order on the variables (unlike K2). The difference with B and B2 is that this hill climber also considers arrows part of the naive Bayes structure for deletion. |
---|
40 | * <p/> |
---|
41 | <!-- globalinfo-end --> |
---|
42 | * |
---|
43 | <!-- options-start --> |
---|
44 | * Valid options are: <p/> |
---|
45 | * |
---|
46 | * <pre> -P <nr of parents> |
---|
47 | * Maximum number of parents</pre> |
---|
48 | * |
---|
49 | * <pre> -R |
---|
50 | * Use arc reversal operation. |
---|
51 | * (default false)</pre> |
---|
52 | * |
---|
53 | * <pre> -N |
---|
54 | * Initial structure is empty (instead of Naive Bayes)</pre> |
---|
55 | * |
---|
56 | * <pre> -mbc |
---|
57 | * Applies a Markov Blanket correction to the network structure, |
---|
58 | * after a network structure is learned. This ensures that all |
---|
59 | * nodes in the network are part of the Markov blanket of the |
---|
60 | * classifier node.</pre> |
---|
61 | * |
---|
62 | * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] |
---|
63 | * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> |
---|
64 | * |
---|
65 | <!-- options-end --> |
---|
66 | * |
---|
67 | * @author Remco Bouckaert (rrb@xm.co.nz) |
---|
68 | * @version $Revision: 1.9 $ |
---|
69 | */ |
---|
70 | public class HillClimber |
---|
71 | extends LocalScoreSearchAlgorithm { |
---|
72 | |
---|
73 | /** for serialization */ |
---|
74 | static final long serialVersionUID = 4322783593818122403L; |
---|
75 | |
---|
76 | /** the Operation class contains info on operations performed |
---|
77 | * on the current Bayesian network. |
---|
78 | */ |
---|
79 | class Operation |
---|
80 | implements Serializable, RevisionHandler { |
---|
81 | |
---|
82 | /** for serialization */ |
---|
83 | static final long serialVersionUID = -4880888790432547895L; |
---|
84 | |
---|
85 | // constants indicating the type of an operation |
---|
86 | final static int OPERATION_ADD = 0; |
---|
87 | final static int OPERATION_DEL = 1; |
---|
88 | final static int OPERATION_REVERSE = 2; |
---|
89 | |
---|
90 | /** |
---|
91 | * c'tor |
---|
92 | */ |
---|
93 | public Operation() { |
---|
94 | } |
---|
95 | |
---|
96 | /** c'tor + initializers |
---|
97 | * |
---|
98 | * @param nTail |
---|
99 | * @param nHead |
---|
100 | * @param nOperation |
---|
101 | */ |
---|
102 | public Operation(int nTail, int nHead, int nOperation) { |
---|
103 | m_nHead = nHead; |
---|
104 | m_nTail = nTail; |
---|
105 | m_nOperation = nOperation; |
---|
106 | } |
---|
107 | /** compare this operation with another |
---|
108 | * @param other operation to compare with |
---|
109 | * @return true if operation is the same |
---|
110 | */ |
---|
111 | public boolean equals(Operation other) { |
---|
112 | if (other == null) { |
---|
113 | return false; |
---|
114 | } |
---|
115 | return (( m_nOperation == other.m_nOperation) && |
---|
116 | (m_nHead == other.m_nHead) && |
---|
117 | (m_nTail == other.m_nTail)); |
---|
118 | } // equals |
---|
119 | |
---|
120 | /** number of the tail node **/ |
---|
121 | public int m_nTail; |
---|
122 | |
---|
123 | /** number of the head node **/ |
---|
124 | public int m_nHead; |
---|
125 | |
---|
126 | /** type of operation (ADD, DEL, REVERSE) **/ |
---|
127 | public int m_nOperation; |
---|
128 | |
---|
129 | /** change of score due to this operation **/ |
---|
130 | public double m_fDeltaScore = -1E100; |
---|
131 | |
---|
132 | /** |
---|
133 | * Returns the revision string. |
---|
134 | * |
---|
135 | * @return the revision |
---|
136 | */ |
---|
137 | public String getRevision() { |
---|
138 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
139 | } |
---|
140 | } // class Operation |
---|
141 | |
---|
142 | /** cache for remembering the change in score for steps in the search space |
---|
143 | */ |
---|
144 | class Cache implements RevisionHandler { |
---|
145 | |
---|
146 | /** change in score due to adding an arc **/ |
---|
147 | double [] [] m_fDeltaScoreAdd; |
---|
148 | /** change in score due to deleting an arc **/ |
---|
149 | double [] [] m_fDeltaScoreDel; |
---|
150 | /** c'tor |
---|
151 | * @param nNrOfNodes number of nodes in network, used to determine memory size to reserve |
---|
152 | */ |
---|
153 | Cache(int nNrOfNodes) { |
---|
154 | m_fDeltaScoreAdd = new double [nNrOfNodes][nNrOfNodes]; |
---|
155 | m_fDeltaScoreDel = new double [nNrOfNodes][nNrOfNodes]; |
---|
156 | } |
---|
157 | |
---|
158 | /** set cache entry |
---|
159 | * @param oOperation operation to perform |
---|
160 | * @param fValue value to put in cache |
---|
161 | */ |
---|
162 | public void put(Operation oOperation, double fValue) { |
---|
163 | if (oOperation.m_nOperation == Operation.OPERATION_ADD) { |
---|
164 | m_fDeltaScoreAdd[oOperation.m_nTail][oOperation.m_nHead] = fValue; |
---|
165 | } else { |
---|
166 | m_fDeltaScoreDel[oOperation.m_nTail][oOperation.m_nHead] = fValue; |
---|
167 | } |
---|
168 | } // put |
---|
169 | |
---|
170 | /** get cache entry |
---|
171 | * @param oOperation operation to perform |
---|
172 | * @return cache value |
---|
173 | */ |
---|
174 | public double get(Operation oOperation) { |
---|
175 | switch(oOperation.m_nOperation) { |
---|
176 | case Operation.OPERATION_ADD: |
---|
177 | return m_fDeltaScoreAdd[oOperation.m_nTail][oOperation.m_nHead]; |
---|
178 | case Operation.OPERATION_DEL: |
---|
179 | return m_fDeltaScoreDel[oOperation.m_nTail][oOperation.m_nHead]; |
---|
180 | case Operation.OPERATION_REVERSE: |
---|
181 | return m_fDeltaScoreDel[oOperation.m_nTail][oOperation.m_nHead] + |
---|
182 | m_fDeltaScoreAdd[oOperation.m_nHead][oOperation.m_nTail]; |
---|
183 | } |
---|
184 | // should never get here |
---|
185 | return 0; |
---|
186 | } // get |
---|
187 | |
---|
188 | /** |
---|
189 | * Returns the revision string. |
---|
190 | * |
---|
191 | * @return the revision |
---|
192 | */ |
---|
193 | public String getRevision() { |
---|
194 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
195 | } |
---|
196 | } // class Cache |
---|
197 | |
---|
198 | /** cache for storing score differences **/ |
---|
199 | Cache m_Cache = null; |
---|
200 | |
---|
201 | /** use the arc reversal operator **/ |
---|
202 | boolean m_bUseArcReversal = false; |
---|
203 | |
---|
204 | |
---|
205 | /** |
---|
206 | * search determines the network structure/graph of the network |
---|
207 | * with the Taby algorithm. |
---|
208 | * |
---|
209 | * @param bayesNet the network to use |
---|
210 | * @param instances the data to use |
---|
211 | * @throws Exception if something goes wrong |
---|
212 | */ |
---|
213 | protected void search(BayesNet bayesNet, Instances instances) throws Exception { |
---|
214 | initCache(bayesNet, instances); |
---|
215 | |
---|
216 | // go do the search |
---|
217 | Operation oOperation = getOptimalOperation(bayesNet, instances); |
---|
218 | while ((oOperation != null) && (oOperation.m_fDeltaScore > 0)) { |
---|
219 | performOperation(bayesNet, instances, oOperation); |
---|
220 | oOperation = getOptimalOperation(bayesNet, instances); |
---|
221 | } |
---|
222 | |
---|
223 | // free up memory |
---|
224 | m_Cache = null; |
---|
225 | } // search |
---|
226 | |
---|
227 | |
---|
228 | /** |
---|
229 | * initCache initializes the cache |
---|
230 | * |
---|
231 | * @param bayesNet Bayes network to be learned |
---|
232 | * @param instances data set to learn from |
---|
233 | * @throws Exception if something goes wrong |
---|
234 | */ |
---|
235 | void initCache(BayesNet bayesNet, Instances instances) throws Exception { |
---|
236 | |
---|
237 | // determine base scores |
---|
238 | double[] fBaseScores = new double[instances.numAttributes()]; |
---|
239 | int nNrOfAtts = instances.numAttributes(); |
---|
240 | |
---|
241 | m_Cache = new Cache (nNrOfAtts); |
---|
242 | |
---|
243 | for (int iAttribute = 0; iAttribute < nNrOfAtts; iAttribute++) { |
---|
244 | updateCache(iAttribute, nNrOfAtts, bayesNet.getParentSet(iAttribute)); |
---|
245 | } |
---|
246 | |
---|
247 | |
---|
248 | for (int iAttribute = 0; iAttribute < nNrOfAtts; iAttribute++) { |
---|
249 | fBaseScores[iAttribute] = calcNodeScore(iAttribute); |
---|
250 | } |
---|
251 | |
---|
252 | for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { |
---|
253 | for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { |
---|
254 | if (iAttributeHead != iAttributeTail) { |
---|
255 | Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); |
---|
256 | m_Cache.put(oOperation, calcScoreWithExtraParent(iAttributeHead, iAttributeTail) - fBaseScores[iAttributeHead]); |
---|
257 | } |
---|
258 | } |
---|
259 | } |
---|
260 | |
---|
261 | } // initCache |
---|
262 | |
---|
263 | /** check whether the operation is not in the forbidden. |
---|
264 | * For base hill climber, there are no restrictions on operations, |
---|
265 | * so we always return true. |
---|
266 | * @param oOperation operation to be checked |
---|
267 | * @return true if operation is not in the tabu list |
---|
268 | */ |
---|
269 | boolean isNotTabu(Operation oOperation) { |
---|
270 | return true; |
---|
271 | } // isNotTabu |
---|
272 | |
---|
273 | /** |
---|
274 | * getOptimalOperation finds the optimal operation that can be performed |
---|
275 | * on the Bayes network that is not in the tabu list. |
---|
276 | * |
---|
277 | * @param bayesNet Bayes network to apply operation on |
---|
278 | * @param instances data set to learn from |
---|
279 | * @return optimal operation found |
---|
280 | * @throws Exception if something goes wrong |
---|
281 | */ |
---|
282 | Operation getOptimalOperation(BayesNet bayesNet, Instances instances) throws Exception { |
---|
283 | Operation oBestOperation = new Operation(); |
---|
284 | |
---|
285 | // Add??? |
---|
286 | oBestOperation = findBestArcToAdd(bayesNet, instances, oBestOperation); |
---|
287 | // Delete??? |
---|
288 | oBestOperation = findBestArcToDelete(bayesNet, instances, oBestOperation); |
---|
289 | // Reverse??? |
---|
290 | if (getUseArcReversal()) { |
---|
291 | oBestOperation = findBestArcToReverse(bayesNet, instances, oBestOperation); |
---|
292 | } |
---|
293 | |
---|
294 | // did we find something? |
---|
295 | if (oBestOperation.m_fDeltaScore == -1E100) { |
---|
296 | return null; |
---|
297 | } |
---|
298 | |
---|
299 | return oBestOperation; |
---|
300 | } // getOptimalOperation |
---|
301 | |
---|
302 | /** |
---|
303 | * performOperation applies an operation |
---|
304 | * on the Bayes network and update the cache. |
---|
305 | * |
---|
306 | * @param bayesNet Bayes network to apply operation on |
---|
307 | * @param instances data set to learn from |
---|
308 | * @param oOperation operation to perform |
---|
309 | * @throws Exception if something goes wrong |
---|
310 | */ |
---|
311 | void performOperation(BayesNet bayesNet, Instances instances, Operation oOperation) throws Exception { |
---|
312 | // perform operation |
---|
313 | switch (oOperation.m_nOperation) { |
---|
314 | case Operation.OPERATION_ADD: |
---|
315 | applyArcAddition(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
---|
316 | if (bayesNet.getDebug()) { |
---|
317 | System.out.print("Add " + oOperation.m_nHead + " -> " + oOperation.m_nTail); |
---|
318 | } |
---|
319 | break; |
---|
320 | case Operation.OPERATION_DEL: |
---|
321 | applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
---|
322 | if (bayesNet.getDebug()) { |
---|
323 | System.out.print("Del " + oOperation.m_nHead + " -> " + oOperation.m_nTail); |
---|
324 | } |
---|
325 | break; |
---|
326 | case Operation.OPERATION_REVERSE: |
---|
327 | applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
---|
328 | applyArcAddition(bayesNet, oOperation.m_nTail, oOperation.m_nHead, instances); |
---|
329 | if (bayesNet.getDebug()) { |
---|
330 | System.out.print("Rev " + oOperation.m_nHead+ " -> " + oOperation.m_nTail); |
---|
331 | } |
---|
332 | break; |
---|
333 | } |
---|
334 | } // performOperation |
---|
335 | |
---|
336 | |
---|
337 | /** |
---|
338 | * |
---|
339 | * @param bayesNet |
---|
340 | * @param iHead |
---|
341 | * @param iTail |
---|
342 | * @param instances |
---|
343 | */ |
---|
344 | void applyArcAddition(BayesNet bayesNet, int iHead, int iTail, Instances instances) { |
---|
345 | ParentSet bestParentSet = bayesNet.getParentSet(iHead); |
---|
346 | bestParentSet.addParent(iTail, instances); |
---|
347 | updateCache(iHead, instances.numAttributes(), bestParentSet); |
---|
348 | } // applyArcAddition |
---|
349 | |
---|
350 | /** |
---|
351 | * |
---|
352 | * @param bayesNet |
---|
353 | * @param iHead |
---|
354 | * @param iTail |
---|
355 | * @param instances |
---|
356 | */ |
---|
357 | void applyArcDeletion(BayesNet bayesNet, int iHead, int iTail, Instances instances) { |
---|
358 | ParentSet bestParentSet = bayesNet.getParentSet(iHead); |
---|
359 | bestParentSet.deleteParent(iTail, instances); |
---|
360 | updateCache(iHead, instances.numAttributes(), bestParentSet); |
---|
361 | } // applyArcAddition |
---|
362 | |
---|
363 | |
---|
364 | /** |
---|
365 | * find best (or least bad) arc addition operation |
---|
366 | * |
---|
367 | * @param bayesNet Bayes network to add arc to |
---|
368 | * @param instances data set |
---|
369 | * @param oBestOperation |
---|
370 | * @return Operation containing best arc to add, or null if no arc addition is allowed |
---|
371 | * (this can happen if any arc addition introduces a cycle, or all parent sets are filled |
---|
372 | * up to the maximum nr of parents). |
---|
373 | */ |
---|
374 | Operation findBestArcToAdd(BayesNet bayesNet, Instances instances, Operation oBestOperation) { |
---|
375 | int nNrOfAtts = instances.numAttributes(); |
---|
376 | // find best arc to add |
---|
377 | for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { |
---|
378 | if (bayesNet.getParentSet(iAttributeHead).getNrOfParents() < m_nMaxNrOfParents) { |
---|
379 | for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { |
---|
380 | if (addArcMakesSense(bayesNet, instances, iAttributeHead, iAttributeTail)) { |
---|
381 | Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); |
---|
382 | if (m_Cache.get(oOperation) > oBestOperation.m_fDeltaScore) { |
---|
383 | if (isNotTabu(oOperation)) { |
---|
384 | oBestOperation = oOperation; |
---|
385 | oBestOperation.m_fDeltaScore = m_Cache.get(oOperation); |
---|
386 | } |
---|
387 | } |
---|
388 | } |
---|
389 | } |
---|
390 | } |
---|
391 | } |
---|
392 | return oBestOperation; |
---|
393 | } // findBestArcToAdd |
---|
394 | |
---|
395 | /** |
---|
396 | * find best (or least bad) arc deletion operation |
---|
397 | * |
---|
398 | * @param bayesNet Bayes network to delete arc from |
---|
399 | * @param instances data set |
---|
400 | * @param oBestOperation |
---|
401 | * @return Operation containing best arc to delete, or null if no deletion can be made |
---|
402 | * (happens when there is no arc in the network yet). |
---|
403 | */ |
---|
404 | Operation findBestArcToDelete(BayesNet bayesNet, Instances instances, Operation oBestOperation) { |
---|
405 | int nNrOfAtts = instances.numAttributes(); |
---|
406 | // find best arc to delete |
---|
407 | for (int iNode = 0; iNode < nNrOfAtts; iNode++) { |
---|
408 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
---|
409 | for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { |
---|
410 | Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_DEL); |
---|
411 | if (m_Cache.get(oOperation) > oBestOperation.m_fDeltaScore) { |
---|
412 | if (isNotTabu(oOperation)) { |
---|
413 | oBestOperation = oOperation; |
---|
414 | oBestOperation.m_fDeltaScore = m_Cache.get(oOperation); |
---|
415 | } |
---|
416 | } |
---|
417 | } |
---|
418 | } |
---|
419 | return oBestOperation; |
---|
420 | } // findBestArcToDelete |
---|
421 | |
---|
422 | /** |
---|
423 | * find best (or least bad) arc reversal operation |
---|
424 | * |
---|
425 | * @param bayesNet Bayes network to reverse arc in |
---|
426 | * @param instances data set |
---|
427 | * @param oBestOperation |
---|
428 | * @return Operation containing best arc to reverse, or null if no reversal is allowed |
---|
429 | * (happens if there is no arc in the network yet, or when any such reversal introduces |
---|
430 | * a cycle). |
---|
431 | */ |
---|
432 | Operation findBestArcToReverse(BayesNet bayesNet, Instances instances, Operation oBestOperation) { |
---|
433 | int nNrOfAtts = instances.numAttributes(); |
---|
434 | // find best arc to reverse |
---|
435 | for (int iNode = 0; iNode < nNrOfAtts; iNode++) { |
---|
436 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
---|
437 | for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { |
---|
438 | int iTail = parentSet.getParent(iParent); |
---|
439 | // is reversal allowed? |
---|
440 | if (reverseArcMakesSense(bayesNet, instances, iNode, iTail) && |
---|
441 | bayesNet.getParentSet(iTail).getNrOfParents() < m_nMaxNrOfParents) { |
---|
442 | // go check if reversal results in the best step forward |
---|
443 | Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_REVERSE); |
---|
444 | if (m_Cache.get(oOperation) > oBestOperation.m_fDeltaScore) { |
---|
445 | if (isNotTabu(oOperation)) { |
---|
446 | oBestOperation = oOperation; |
---|
447 | oBestOperation.m_fDeltaScore = m_Cache.get(oOperation); |
---|
448 | } |
---|
449 | } |
---|
450 | } |
---|
451 | } |
---|
452 | } |
---|
453 | return oBestOperation; |
---|
454 | } // findBestArcToReverse |
---|
455 | |
---|
456 | /** |
---|
457 | * update the cache due to change of parent set of a node |
---|
458 | * |
---|
459 | * @param iAttributeHead node that has its parent set changed |
---|
460 | * @param nNrOfAtts number of nodes/attributes in data set |
---|
461 | * @param parentSet new parents set of node iAttributeHead |
---|
462 | */ |
---|
463 | void updateCache(int iAttributeHead, int nNrOfAtts, ParentSet parentSet) { |
---|
464 | // update cache entries for arrows heading towards iAttributeHead |
---|
465 | double fBaseScore = calcNodeScore(iAttributeHead); |
---|
466 | int nNrOfParents = parentSet.getNrOfParents(); |
---|
467 | for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { |
---|
468 | if (iAttributeTail != iAttributeHead) { |
---|
469 | if (!parentSet.contains(iAttributeTail)) { |
---|
470 | // add entries to cache for adding arcs |
---|
471 | if (nNrOfParents < m_nMaxNrOfParents) { |
---|
472 | Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); |
---|
473 | m_Cache.put(oOperation, calcScoreWithExtraParent(iAttributeHead, iAttributeTail) - fBaseScore); |
---|
474 | } |
---|
475 | } else { |
---|
476 | // add entries to cache for deleting arcs |
---|
477 | Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_DEL); |
---|
478 | m_Cache.put(oOperation, calcScoreWithMissingParent(iAttributeHead, iAttributeTail) - fBaseScore); |
---|
479 | } |
---|
480 | } |
---|
481 | } |
---|
482 | } // updateCache |
---|
483 | |
---|
484 | |
---|
485 | /** |
---|
486 | * Sets the max number of parents |
---|
487 | * |
---|
488 | * @param nMaxNrOfParents the max number of parents |
---|
489 | */ |
---|
490 | public void setMaxNrOfParents(int nMaxNrOfParents) { |
---|
491 | m_nMaxNrOfParents = nMaxNrOfParents; |
---|
492 | } |
---|
493 | |
---|
494 | /** |
---|
495 | * Gets the max number of parents. |
---|
496 | * |
---|
497 | * @return the max number of parents |
---|
498 | */ |
---|
499 | public int getMaxNrOfParents() { |
---|
500 | return m_nMaxNrOfParents; |
---|
501 | } |
---|
502 | |
---|
503 | /** |
---|
504 | * Returns an enumeration describing the available options. |
---|
505 | * |
---|
506 | * @return an enumeration of all the available options. |
---|
507 | */ |
---|
508 | public Enumeration listOptions() { |
---|
509 | Vector newVector = new Vector(2); |
---|
510 | |
---|
511 | newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>")); |
---|
512 | newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); |
---|
513 | newVector.addElement(new Option("\tInitial structure is empty (instead of Naive Bayes)", "N", 0, "-N")); |
---|
514 | |
---|
515 | Enumeration enu = super.listOptions(); |
---|
516 | while (enu.hasMoreElements()) { |
---|
517 | newVector.addElement(enu.nextElement()); |
---|
518 | } |
---|
519 | return newVector.elements(); |
---|
520 | } // listOptions |
---|
521 | |
---|
522 | /** |
---|
523 | * Parses a given list of options. <p/> |
---|
524 | * |
---|
525 | <!-- options-start --> |
---|
526 | * Valid options are: <p/> |
---|
527 | * |
---|
528 | * <pre> -P <nr of parents> |
---|
529 | * Maximum number of parents</pre> |
---|
530 | * |
---|
531 | * <pre> -R |
---|
532 | * Use arc reversal operation. |
---|
533 | * (default false)</pre> |
---|
534 | * |
---|
535 | * <pre> -N |
---|
536 | * Initial structure is empty (instead of Naive Bayes)</pre> |
---|
537 | * |
---|
538 | * <pre> -mbc |
---|
539 | * Applies a Markov Blanket correction to the network structure, |
---|
540 | * after a network structure is learned. This ensures that all |
---|
541 | * nodes in the network are part of the Markov blanket of the |
---|
542 | * classifier node.</pre> |
---|
543 | * |
---|
544 | * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] |
---|
545 | * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> |
---|
546 | * |
---|
547 | <!-- options-end --> |
---|
548 | * |
---|
549 | * @param options the list of options as an array of strings |
---|
550 | * @throws Exception if an option is not supported |
---|
551 | */ |
---|
552 | public void setOptions(String[] options) throws Exception { |
---|
553 | setUseArcReversal(Utils.getFlag('R', options)); |
---|
554 | |
---|
555 | setInitAsNaiveBayes (!(Utils.getFlag('N', options))); |
---|
556 | |
---|
557 | String sMaxNrOfParents = Utils.getOption('P', options); |
---|
558 | if (sMaxNrOfParents.length() != 0) { |
---|
559 | setMaxNrOfParents(Integer.parseInt(sMaxNrOfParents)); |
---|
560 | } else { |
---|
561 | setMaxNrOfParents(100000); |
---|
562 | } |
---|
563 | |
---|
564 | super.setOptions(options); |
---|
565 | } // setOptions |
---|
566 | |
---|
567 | /** |
---|
568 | * Gets the current settings of the search algorithm. |
---|
569 | * |
---|
570 | * @return an array of strings suitable for passing to setOptions |
---|
571 | */ |
---|
572 | public String[] getOptions() { |
---|
573 | String[] superOptions = super.getOptions(); |
---|
574 | String[] options = new String[7 + superOptions.length]; |
---|
575 | int current = 0; |
---|
576 | if (getUseArcReversal()) { |
---|
577 | options[current++] = "-R"; |
---|
578 | } |
---|
579 | |
---|
580 | if (!getInitAsNaiveBayes()) { |
---|
581 | options[current++] = "-N"; |
---|
582 | } |
---|
583 | |
---|
584 | options[current++] = "-P"; |
---|
585 | options[current++] = "" + m_nMaxNrOfParents; |
---|
586 | |
---|
587 | // insert options from parent class |
---|
588 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
---|
589 | options[current++] = superOptions[iOption]; |
---|
590 | } |
---|
591 | |
---|
592 | // Fill up rest with empty strings, not nulls! |
---|
593 | while (current < options.length) { |
---|
594 | options[current++] = ""; |
---|
595 | } |
---|
596 | return options; |
---|
597 | } // getOptions |
---|
598 | |
---|
599 | /** |
---|
600 | * Sets whether to init as naive bayes |
---|
601 | * |
---|
602 | * @param bInitAsNaiveBayes whether to init as naive bayes |
---|
603 | */ |
---|
604 | public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) { |
---|
605 | m_bInitAsNaiveBayes = bInitAsNaiveBayes; |
---|
606 | } |
---|
607 | |
---|
608 | /** |
---|
609 | * Gets whether to init as naive bayes |
---|
610 | * |
---|
611 | * @return whether to init as naive bayes |
---|
612 | */ |
---|
613 | public boolean getInitAsNaiveBayes() { |
---|
614 | return m_bInitAsNaiveBayes; |
---|
615 | } |
---|
616 | |
---|
617 | /** get use the arc reversal operation |
---|
618 | * @return whether the arc reversal operation should be used |
---|
619 | */ |
---|
620 | public boolean getUseArcReversal() { |
---|
621 | return m_bUseArcReversal; |
---|
622 | } // getUseArcReversal |
---|
623 | |
---|
624 | /** set use the arc reversal operation |
---|
625 | * @param bUseArcReversal whether the arc reversal operation should be used |
---|
626 | */ |
---|
627 | public void setUseArcReversal(boolean bUseArcReversal) { |
---|
628 | m_bUseArcReversal = bUseArcReversal; |
---|
629 | } // setUseArcReversal |
---|
630 | |
---|
631 | /** |
---|
632 | * This will return a string describing the search algorithm. |
---|
633 | * @return The string. |
---|
634 | */ |
---|
635 | public String globalInfo() { |
---|
636 | return "This Bayes Network learning algorithm uses a hill climbing algorithm " + |
---|
637 | "adding, deleting and reversing arcs. The search is not restricted by an order " + |
---|
638 | "on the variables (unlike K2). The difference with B and B2 is that this hill " + |
---|
639 | "climber also considers arrows part of the naive Bayes structure for deletion."; |
---|
640 | } // globalInfo |
---|
641 | |
---|
642 | /** |
---|
643 | * @return a string to describe the Use Arc Reversal option. |
---|
644 | */ |
---|
645 | public String useArcReversalTipText() { |
---|
646 | return "When set to true, the arc reversal operation is used in the search."; |
---|
647 | } // useArcReversalTipText |
---|
648 | |
---|
649 | /** |
---|
650 | * Returns the revision string. |
---|
651 | * |
---|
652 | * @return the revision |
---|
653 | */ |
---|
654 | public String getRevision() { |
---|
655 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
656 | } |
---|
657 | |
---|
658 | } // HillClimber |
---|