source: tags/MetisMQIDemo/src/main/java/weka/classifiers/bayes/net/search/global/TabuSearch.java

Last change on this file was 29, checked in by gnappo, 15 years ago

Taggata versione per la demo e aggiunto branch.

File size: 11.9 KB
Line 
1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License as published by
4 * the Free Software Foundation; either version 2 of the License, or
5 * (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 * TabuSearch.java
19 * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand
20 *
21 */
22 
23package weka.classifiers.bayes.net.search.global;
24
25import weka.classifiers.bayes.BayesNet;
26import weka.core.Instances;
27import weka.core.Option;
28import weka.core.RevisionUtils;
29import weka.core.TechnicalInformation;
30import weka.core.TechnicalInformation.Type;
31import weka.core.TechnicalInformation.Field;
32import weka.core.TechnicalInformationHandler;
33import weka.core.Utils;
34
35import java.util.Enumeration;
36import java.util.Vector;
37
38/**
39 <!-- globalinfo-start -->
40 * This Bayes Network learning algorithm uses tabu search for finding a well scoring Bayes network structure. Tabu search is hill climbing till an optimum is reached. The following step is the least worst possible step. The last X steps are kept in a list and none of the steps in this so called tabu list is considered in taking the next step. The best network found in this traversal is returned.<br/>
41 * <br/>
42 * For more information see:<br/>
43 * <br/>
44 * R.R. Bouckaert (1995). Bayesian Belief Networks: from Construction to Inference. Utrecht, Netherlands.
45 * <p/>
46 <!-- globalinfo-end -->
47 *
48 <!-- technical-bibtex-start -->
49 * BibTeX:
50 * <pre>
51 * &#64;phdthesis{Bouckaert1995,
52 *    address = {Utrecht, Netherlands},
53 *    author = {R.R. Bouckaert},
54 *    institution = {University of Utrecht},
55 *    title = {Bayesian Belief Networks: from Construction to Inference},
56 *    year = {1995}
57 * }
58 * </pre>
59 * <p/>
60 <!-- technical-bibtex-end -->
61 *
62 <!-- options-start -->
63 * Valid options are: <p/>
64 *
65 * <pre> -L &lt;integer&gt;
66 *  Tabu list length</pre>
67 *
68 * <pre> -U &lt;integer&gt;
69 *  Number of runs</pre>
70 *
71 * <pre> -P &lt;nr of parents&gt;
72 *  Maximum number of parents</pre>
73 *
74 * <pre> -R
75 *  Use arc reversal operation.
76 *  (default false)</pre>
77 *
78 * <pre> -P &lt;nr of parents&gt;
79 *  Maximum number of parents</pre>
80 *
81 * <pre> -R
82 *  Use arc reversal operation.
83 *  (default false)</pre>
84 *
85 * <pre> -N
86 *  Initial structure is empty (instead of Naive Bayes)</pre>
87 *
88 * <pre> -mbc
89 *  Applies a Markov Blanket correction to the network structure,
90 *  after a network structure is learned. This ensures that all
91 *  nodes in the network are part of the Markov blanket of the
92 *  classifier node.</pre>
93 *
94 * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV]
95 *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre>
96 *
97 * <pre> -Q
98 *  Use probabilistic or 0/1 scoring.
99 *  (default probabilistic scoring)</pre>
100 *
101 <!-- options-end -->
102 *
103 * @author Remco Bouckaert (rrb@xm.co.nz)
104 * @version $Revision: 1.5 $
105 */
106public class TabuSearch 
107    extends HillClimber
108    implements TechnicalInformationHandler {
109
110    /** for serialization */
111    static final long serialVersionUID = 1176705618756672292L;
112 
113    /** number of runs **/
114    int m_nRuns = 10;
115               
116        /** size of tabu list **/
117        int m_nTabuList = 5;
118
119        /** the actual tabu list **/
120        Operation[] m_oTabuList = null;
121
122        /**
123         * Returns an instance of a TechnicalInformation object, containing
124         * detailed information about the technical background of this class,
125         * e.g., paper reference or book this class is based on.
126         *
127         * @return the technical information about this class
128         */
129        public TechnicalInformation getTechnicalInformation() {
130          TechnicalInformation  result;
131         
132          result = new TechnicalInformation(Type.PHDTHESIS);
133          result.setValue(Field.AUTHOR, "R.R. Bouckaert");
134          result.setValue(Field.YEAR, "1995");
135          result.setValue(Field.TITLE, "Bayesian Belief Networks: from Construction to Inference");
136          result.setValue(Field.INSTITUTION, "University of Utrecht");
137          result.setValue(Field.ADDRESS, "Utrecht, Netherlands");
138         
139          return result;
140        }
141
142        /**
143         * search determines the network structure/graph of the network
144         * with the Tabu search algorithm.
145         *
146         * @param bayesNet the network to use
147         * @param instances the instances to use
148         * @throws Exception if something goes wrong
149         */
150        protected void search(BayesNet bayesNet, Instances instances) throws Exception {
151        m_oTabuList = new Operation[m_nTabuList];
152        int iCurrentTabuList = 0;
153
154                // keeps track of score pf best structure found so far
155                double fBestScore;     
156                double fCurrentScore = calcScore(bayesNet);
157
158                // keeps track of best structure found so far
159                BayesNet bestBayesNet;
160
161                // initialize bestBayesNet
162                fBestScore = fCurrentScore;
163                bestBayesNet = new BayesNet();
164                bestBayesNet.m_Instances = instances;
165                bestBayesNet.initStructure();
166                copyParentSets(bestBayesNet, bayesNet);
167               
168               
169        // go do the search       
170        for (int iRun = 0; iRun < m_nRuns; iRun++) {
171            Operation oOperation = getOptimalOperation(bayesNet, instances);
172                        performOperation(bayesNet, instances, oOperation);
173            // sanity check
174            if (oOperation  == null) {
175                                throw new Exception("Panic: could not find any step to make. Tabu list too long?");
176            }
177            // update tabu list
178            m_oTabuList[iCurrentTabuList] = oOperation;
179            iCurrentTabuList = (iCurrentTabuList + 1) % m_nTabuList;
180
181                        fCurrentScore += oOperation.m_fScore;
182                        // keep track of best network seen so far
183                        if (fCurrentScore > fBestScore) {
184                                fBestScore = fCurrentScore;
185                                copyParentSets(bestBayesNet, bayesNet);
186                        }
187
188                        if (bayesNet.getDebug()) {
189                                printTabuList();
190                        }
191        }
192       
193        // restore current network to best network
194                copyParentSets(bayesNet, bestBayesNet);
195               
196                // free up memory
197                bestBayesNet = null;
198    } // search
199
200
201        /** copyParentSets copies parent sets of source to dest BayesNet
202         * @param dest destination network
203         * @param source source network
204         */
205        void copyParentSets(BayesNet dest, BayesNet source) {
206                int nNodes = source.getNrOfNodes();
207                // clear parent set first
208                for (int iNode = 0; iNode < nNodes; iNode++) {
209                        dest.getParentSet(iNode).copy(source.getParentSet(iNode));
210                }               
211        } // CopyParentSets
212
213        /** check whether the operation is not in the tabu list
214         * @param oOperation operation to be checked
215         * @return true if operation is not in the tabu list
216         */
217        boolean isNotTabu(Operation oOperation) {
218                for (int iTabu = 0; iTabu < m_nTabuList; iTabu++) {
219                        if (oOperation.equals(m_oTabuList[iTabu])) {
220                                        return false;
221                                }
222                }
223                return true;
224        } // isNotTabu
225
226        /** print tabu list for debugging purposes.
227         */
228        void printTabuList() {
229                for (int i = 0; i < m_nTabuList; i++) {
230                        Operation o = m_oTabuList[i];
231                        if (o != null) {
232                                if (o.m_nOperation == 0) {System.out.print(" +(");} else {System.out.print(" -(");}
233                                System.out.print(o.m_nTail + "->" + o.m_nHead + ")");
234                        }
235                }
236                System.out.println();
237        } // printTabuList
238
239    /**
240    * @return number of runs
241    */
242    public int getRuns() {
243        return m_nRuns;
244    } // getRuns
245
246    /**
247     * Sets the number of runs
248     * @param nRuns The number of runs to set
249     */
250    public void setRuns(int nRuns) {
251        m_nRuns = nRuns;
252    } // setRuns
253
254    /**
255     * @return the Tabu List length
256     */
257    public int getTabuList() {
258        return m_nTabuList;
259    } // getTabuList
260
261    /**
262     * Sets the Tabu List length.
263     * @param nTabuList The nTabuList to set
264     */
265    public void setTabuList(int nTabuList) {
266        m_nTabuList = nTabuList;
267    } // setTabuList
268
269        /**
270         * Returns an enumeration describing the available options.
271         *
272         * @return an enumeration of all the available options.
273         */
274        public Enumeration listOptions() {
275                Vector newVector = new Vector(4);
276
277                newVector.addElement(new Option("\tTabu list length", "L", 1, "-L <integer>"));
278                newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>"));
279                newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>"));
280                newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R"));
281
282                Enumeration enu = super.listOptions();
283                while (enu.hasMoreElements()) {
284                        newVector.addElement(enu.nextElement());
285                }
286                return newVector.elements();
287        } // listOptions
288
289        /**
290         * Parses a given list of options. <p/>
291         *
292         <!-- options-start -->
293         * Valid options are: <p/>
294         *
295         * <pre> -L &lt;integer&gt;
296         *  Tabu list length</pre>
297         *
298         * <pre> -U &lt;integer&gt;
299         *  Number of runs</pre>
300         *
301         * <pre> -P &lt;nr of parents&gt;
302         *  Maximum number of parents</pre>
303         *
304         * <pre> -R
305         *  Use arc reversal operation.
306         *  (default false)</pre>
307         *
308         * <pre> -P &lt;nr of parents&gt;
309         *  Maximum number of parents</pre>
310         *
311         * <pre> -R
312         *  Use arc reversal operation.
313         *  (default false)</pre>
314         *
315         * <pre> -N
316         *  Initial structure is empty (instead of Naive Bayes)</pre>
317         *
318         * <pre> -mbc
319         *  Applies a Markov Blanket correction to the network structure,
320         *  after a network structure is learned. This ensures that all
321         *  nodes in the network are part of the Markov blanket of the
322         *  classifier node.</pre>
323         *
324         * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV]
325         *  Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre>
326         *
327         * <pre> -Q
328         *  Use probabilistic or 0/1 scoring.
329         *  (default probabilistic scoring)</pre>
330         *
331         <!-- options-end -->
332         *
333         * @param options the list of options as an array of strings
334         * @throws Exception if an option is not supported
335         */
336        public void setOptions(String[] options) throws Exception {
337                String sTabuList = Utils.getOption('L', options);
338                if (sTabuList.length() != 0) {
339                        setTabuList(Integer.parseInt(sTabuList));
340                }
341                String sRuns = Utils.getOption('U', options);
342                if (sRuns.length() != 0) {
343                        setRuns(Integer.parseInt(sRuns));
344                }
345               
346                super.setOptions(options);
347        } // setOptions
348
349        /**
350         * Gets the current settings of the search algorithm.
351         *
352         * @return an array of strings suitable for passing to setOptions
353         */
354        public String[] getOptions() {
355                String[] superOptions = super.getOptions();
356                String[] options = new String[7 + superOptions.length];
357                int current = 0;
358               
359                options[current++] = "-L";
360                options[current++] = "" + getTabuList();
361
362                options[current++] = "-U";
363                options[current++] = "" + getRuns();
364
365                // insert options from parent class
366                for (int iOption = 0; iOption < superOptions.length; iOption++) {
367                        options[current++] = superOptions[iOption];
368                }
369
370                // Fill up rest with empty strings, not nulls!
371                while (current < options.length) {
372                        options[current++] = "";
373                }
374                return options;
375        } // getOptions
376
377        /**
378         * This will return a string describing the classifier.
379         * @return The string.
380         */
381        public String globalInfo() {
382                return "This Bayes Network learning algorithm uses tabu search for finding a well scoring " +
383                "Bayes network structure. Tabu search is hill climbing till an optimum is reached. The " +
384                "following step is the least worst possible step. The last X steps are kept in a list and " +
385                "none of the steps in this so called tabu list is considered in taking the next step. " +
386                "The best network found in this traversal is returned.\n\n"
387                + "For more information see:\n\n"
388                + getTechnicalInformation().toString();
389        } // globalInfo
390       
391        /**
392         * @return a string to describe the Runs option.
393         */
394        public String runsTipText() {
395          return "Sets the number of steps to be performed.";
396        } // runsTipText
397
398        /**
399         * @return a string to describe the TabuList option.
400         */
401        public String tabuListTipText() {
402          return "Sets the length of the tabu list.";
403        } // tabuListTipText
404
405        /**
406         * Returns the revision string.
407         *
408         * @return              the revision
409         */
410        public String getRevision() {
411          return RevisionUtils.extract("$Revision: 1.5 $");
412        }
413
414} // TabuSearch
Note: See TracBrowser for help on using the repository browser.