| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * RepeatedHillClimber.java |
|---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.bayes.net.search.global; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.bayes.BayesNet; |
|---|
| 26 | import weka.classifiers.bayes.net.ParentSet; |
|---|
| 27 | import weka.core.Instances; |
|---|
| 28 | import weka.core.Option; |
|---|
| 29 | import weka.core.RevisionUtils; |
|---|
| 30 | import weka.core.Utils; |
|---|
| 31 | |
|---|
| 32 | import java.util.Enumeration; |
|---|
| 33 | import java.util.Random; |
|---|
| 34 | import java.util.Vector; |
|---|
| 35 | |
|---|
| 36 | /** |
|---|
| 37 | <!-- globalinfo-start --> |
|---|
| 38 | * This Bayes Network learning algorithm repeatedly uses hill climbing starting with a randomly generated network structure and return the best structure of the various runs. |
|---|
| 39 | * <p/> |
|---|
| 40 | <!-- globalinfo-end --> |
|---|
| 41 | * |
|---|
| 42 | <!-- options-start --> |
|---|
| 43 | * Valid options are: <p/> |
|---|
| 44 | * |
|---|
| 45 | * <pre> -U <integer> |
|---|
| 46 | * Number of runs</pre> |
|---|
| 47 | * |
|---|
| 48 | * <pre> -A <seed> |
|---|
| 49 | * Random number seed</pre> |
|---|
| 50 | * |
|---|
| 51 | * <pre> -P <nr of parents> |
|---|
| 52 | * Maximum number of parents</pre> |
|---|
| 53 | * |
|---|
| 54 | * <pre> -R |
|---|
| 55 | * Use arc reversal operation. |
|---|
| 56 | * (default false)</pre> |
|---|
| 57 | * |
|---|
| 58 | * <pre> -N |
|---|
| 59 | * Initial structure is empty (instead of Naive Bayes)</pre> |
|---|
| 60 | * |
|---|
| 61 | * <pre> -mbc |
|---|
| 62 | * Applies a Markov Blanket correction to the network structure, |
|---|
| 63 | * after a network structure is learned. This ensures that all |
|---|
| 64 | * nodes in the network are part of the Markov blanket of the |
|---|
| 65 | * classifier node.</pre> |
|---|
| 66 | * |
|---|
| 67 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] |
|---|
| 68 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> |
|---|
| 69 | * |
|---|
| 70 | * <pre> -Q |
|---|
| 71 | * Use probabilistic or 0/1 scoring. |
|---|
| 72 | * (default probabilistic scoring)</pre> |
|---|
| 73 | * |
|---|
| 74 | <!-- options-end --> |
|---|
| 75 | * |
|---|
| 76 | * @author Remco Bouckaert (rrb@xm.co.nz) |
|---|
| 77 | * @version $Revision: 1.6 $ |
|---|
| 78 | */ |
|---|
| 79 | public class RepeatedHillClimber |
|---|
| 80 | extends HillClimber { |
|---|
| 81 | |
|---|
| 82 | /** for serialization */ |
|---|
| 83 | static final long serialVersionUID = -7359197180460703069L; |
|---|
| 84 | |
|---|
| 85 | /** number of runs **/ |
|---|
| 86 | int m_nRuns = 10; |
|---|
| 87 | /** random number seed **/ |
|---|
| 88 | int m_nSeed = 1; |
|---|
| 89 | /** random number generator **/ |
|---|
| 90 | Random m_random; |
|---|
| 91 | |
|---|
| 92 | /** |
|---|
| 93 | * search determines the network structure/graph of the network |
|---|
| 94 | * with the repeated hill climbing. |
|---|
| 95 | * |
|---|
| 96 | * @param bayesNet the network to use |
|---|
| 97 | * @param instances the data to use |
|---|
| 98 | * @throws Exception if something goes wrong |
|---|
| 99 | **/ |
|---|
| 100 | protected void search(BayesNet bayesNet, Instances instances) throws Exception { |
|---|
| 101 | m_random = new Random(getSeed()); |
|---|
| 102 | // keeps track of score pf best structure found so far |
|---|
| 103 | double fBestScore; |
|---|
| 104 | double fCurrentScore = calcScore(bayesNet); |
|---|
| 105 | |
|---|
| 106 | // keeps track of best structure found so far |
|---|
| 107 | BayesNet bestBayesNet; |
|---|
| 108 | |
|---|
| 109 | // initialize bestBayesNet |
|---|
| 110 | fBestScore = fCurrentScore; |
|---|
| 111 | bestBayesNet = new BayesNet(); |
|---|
| 112 | bestBayesNet.m_Instances = instances; |
|---|
| 113 | bestBayesNet.initStructure(); |
|---|
| 114 | copyParentSets(bestBayesNet, bayesNet); |
|---|
| 115 | |
|---|
| 116 | |
|---|
| 117 | // go do the search |
|---|
| 118 | for (int iRun = 0; iRun < m_nRuns; iRun++) { |
|---|
| 119 | // generate random nework |
|---|
| 120 | generateRandomNet(bayesNet, instances); |
|---|
| 121 | |
|---|
| 122 | // search |
|---|
| 123 | super.search(bayesNet, instances); |
|---|
| 124 | |
|---|
| 125 | // calculate score |
|---|
| 126 | fCurrentScore = calcScore(bayesNet); |
|---|
| 127 | |
|---|
| 128 | // keep track of best network seen so far |
|---|
| 129 | if (fCurrentScore > fBestScore) { |
|---|
| 130 | fBestScore = fCurrentScore; |
|---|
| 131 | copyParentSets(bestBayesNet, bayesNet); |
|---|
| 132 | } |
|---|
| 133 | } |
|---|
| 134 | |
|---|
| 135 | // restore current network to best network |
|---|
| 136 | copyParentSets(bayesNet, bestBayesNet); |
|---|
| 137 | |
|---|
| 138 | // free up memory |
|---|
| 139 | bestBayesNet = null; |
|---|
| 140 | } // search |
|---|
| 141 | |
|---|
| 142 | /** |
|---|
| 143 | * |
|---|
| 144 | * @param bayesNet |
|---|
| 145 | * @param instances |
|---|
| 146 | */ |
|---|
| 147 | void generateRandomNet(BayesNet bayesNet, Instances instances) { |
|---|
| 148 | int nNodes = instances.numAttributes(); |
|---|
| 149 | // clear network |
|---|
| 150 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 151 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
|---|
| 152 | while (parentSet.getNrOfParents() > 0) { |
|---|
| 153 | parentSet.deleteLastParent(instances); |
|---|
| 154 | } |
|---|
| 155 | } |
|---|
| 156 | |
|---|
| 157 | // initialize as naive Bayes? |
|---|
| 158 | if (getInitAsNaiveBayes()) { |
|---|
| 159 | int iClass = instances.classIndex(); |
|---|
| 160 | // initialize parent sets to have arrow from classifier node to |
|---|
| 161 | // each of the other nodes |
|---|
| 162 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 163 | if (iNode != iClass) { |
|---|
| 164 | bayesNet.getParentSet(iNode).addParent(iClass, instances); |
|---|
| 165 | } |
|---|
| 166 | } |
|---|
| 167 | } |
|---|
| 168 | |
|---|
| 169 | // insert random arcs |
|---|
| 170 | int nNrOfAttempts = m_random.nextInt(nNodes * nNodes); |
|---|
| 171 | for (int iAttempt = 0; iAttempt < nNrOfAttempts; iAttempt++) { |
|---|
| 172 | int iTail = m_random.nextInt(nNodes); |
|---|
| 173 | int iHead = m_random.nextInt(nNodes); |
|---|
| 174 | if (bayesNet.getParentSet(iHead).getNrOfParents() < getMaxNrOfParents() && |
|---|
| 175 | addArcMakesSense(bayesNet, instances, iHead, iTail)) { |
|---|
| 176 | bayesNet.getParentSet(iHead).addParent(iTail, instances); |
|---|
| 177 | } |
|---|
| 178 | } |
|---|
| 179 | } // generateRandomNet |
|---|
| 180 | |
|---|
| 181 | /** |
|---|
| 182 | * copyParentSets copies parent sets of source to dest BayesNet |
|---|
| 183 | * |
|---|
| 184 | * @param dest destination network |
|---|
| 185 | * @param source source network |
|---|
| 186 | */ |
|---|
| 187 | void copyParentSets(BayesNet dest, BayesNet source) { |
|---|
| 188 | int nNodes = source.getNrOfNodes(); |
|---|
| 189 | // clear parent set first |
|---|
| 190 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 191 | dest.getParentSet(iNode).copy(source.getParentSet(iNode)); |
|---|
| 192 | } |
|---|
| 193 | } // CopyParentSets |
|---|
| 194 | |
|---|
| 195 | |
|---|
| 196 | /** |
|---|
| 197 | * Returns the number of runs |
|---|
| 198 | * |
|---|
| 199 | * @return number of runs |
|---|
| 200 | */ |
|---|
| 201 | public int getRuns() { |
|---|
| 202 | return m_nRuns; |
|---|
| 203 | } // getRuns |
|---|
| 204 | |
|---|
| 205 | /** |
|---|
| 206 | * Sets the number of runs |
|---|
| 207 | * |
|---|
| 208 | * @param nRuns The number of runs to set |
|---|
| 209 | */ |
|---|
| 210 | public void setRuns(int nRuns) { |
|---|
| 211 | m_nRuns = nRuns; |
|---|
| 212 | } // setRuns |
|---|
| 213 | |
|---|
| 214 | /** |
|---|
| 215 | * Returns the random seed |
|---|
| 216 | * |
|---|
| 217 | * @return random number seed |
|---|
| 218 | */ |
|---|
| 219 | public int getSeed() { |
|---|
| 220 | return m_nSeed; |
|---|
| 221 | } // getSeed |
|---|
| 222 | |
|---|
| 223 | /** |
|---|
| 224 | * Sets the random number seed |
|---|
| 225 | * |
|---|
| 226 | * @param nSeed The number of the seed to set |
|---|
| 227 | */ |
|---|
| 228 | public void setSeed(int nSeed) { |
|---|
| 229 | m_nSeed = nSeed; |
|---|
| 230 | } // setSeed |
|---|
| 231 | |
|---|
| 232 | /** |
|---|
| 233 | * Returns an enumeration describing the available options. |
|---|
| 234 | * |
|---|
| 235 | * @return an enumeration of all the available options. |
|---|
| 236 | */ |
|---|
| 237 | public Enumeration listOptions() { |
|---|
| 238 | Vector newVector = new Vector(4); |
|---|
| 239 | |
|---|
| 240 | newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); |
|---|
| 241 | newVector.addElement(new Option("\tRandom number seed", "A", 1, "-A <seed>")); |
|---|
| 242 | |
|---|
| 243 | Enumeration enu = super.listOptions(); |
|---|
| 244 | while (enu.hasMoreElements()) { |
|---|
| 245 | newVector.addElement(enu.nextElement()); |
|---|
| 246 | } |
|---|
| 247 | return newVector.elements(); |
|---|
| 248 | } // listOptions |
|---|
| 249 | |
|---|
| 250 | /** |
|---|
| 251 | * Parses a given list of options. <p/> |
|---|
| 252 | * |
|---|
| 253 | <!-- options-start --> |
|---|
| 254 | * Valid options are: <p/> |
|---|
| 255 | * |
|---|
| 256 | * <pre> -U <integer> |
|---|
| 257 | * Number of runs</pre> |
|---|
| 258 | * |
|---|
| 259 | * <pre> -A <seed> |
|---|
| 260 | * Random number seed</pre> |
|---|
| 261 | * |
|---|
| 262 | * <pre> -P <nr of parents> |
|---|
| 263 | * Maximum number of parents</pre> |
|---|
| 264 | * |
|---|
| 265 | * <pre> -R |
|---|
| 266 | * Use arc reversal operation. |
|---|
| 267 | * (default false)</pre> |
|---|
| 268 | * |
|---|
| 269 | * <pre> -N |
|---|
| 270 | * Initial structure is empty (instead of Naive Bayes)</pre> |
|---|
| 271 | * |
|---|
| 272 | * <pre> -mbc |
|---|
| 273 | * Applies a Markov Blanket correction to the network structure, |
|---|
| 274 | * after a network structure is learned. This ensures that all |
|---|
| 275 | * nodes in the network are part of the Markov blanket of the |
|---|
| 276 | * classifier node.</pre> |
|---|
| 277 | * |
|---|
| 278 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] |
|---|
| 279 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> |
|---|
| 280 | * |
|---|
| 281 | * <pre> -Q |
|---|
| 282 | * Use probabilistic or 0/1 scoring. |
|---|
| 283 | * (default probabilistic scoring)</pre> |
|---|
| 284 | * |
|---|
| 285 | <!-- options-end --> |
|---|
| 286 | * |
|---|
| 287 | * @param options the list of options as an array of strings |
|---|
| 288 | * @throws Exception if an option is not supported |
|---|
| 289 | */ |
|---|
| 290 | public void setOptions(String[] options) throws Exception { |
|---|
| 291 | String sRuns = Utils.getOption('U', options); |
|---|
| 292 | if (sRuns.length() != 0) { |
|---|
| 293 | setRuns(Integer.parseInt(sRuns)); |
|---|
| 294 | } |
|---|
| 295 | |
|---|
| 296 | String sSeed = Utils.getOption('A', options); |
|---|
| 297 | if (sSeed.length() != 0) { |
|---|
| 298 | setSeed(Integer.parseInt(sSeed)); |
|---|
| 299 | } |
|---|
| 300 | |
|---|
| 301 | super.setOptions(options); |
|---|
| 302 | } // setOptions |
|---|
| 303 | |
|---|
| 304 | /** |
|---|
| 305 | * Gets the current settings of the search algorithm. |
|---|
| 306 | * |
|---|
| 307 | * @return an array of strings suitable for passing to setOptions |
|---|
| 308 | */ |
|---|
| 309 | public String[] getOptions() { |
|---|
| 310 | String[] superOptions = super.getOptions(); |
|---|
| 311 | String[] options = new String[7 + superOptions.length]; |
|---|
| 312 | int current = 0; |
|---|
| 313 | |
|---|
| 314 | options[current++] = "-U"; |
|---|
| 315 | options[current++] = "" + getRuns(); |
|---|
| 316 | |
|---|
| 317 | options[current++] = "-A"; |
|---|
| 318 | options[current++] = "" + getSeed(); |
|---|
| 319 | |
|---|
| 320 | // insert options from parent class |
|---|
| 321 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
|---|
| 322 | options[current++] = superOptions[iOption]; |
|---|
| 323 | } |
|---|
| 324 | |
|---|
| 325 | // Fill up rest with empty strings, not nulls! |
|---|
| 326 | while (current < options.length) { |
|---|
| 327 | options[current++] = ""; |
|---|
| 328 | } |
|---|
| 329 | return options; |
|---|
| 330 | } // getOptions |
|---|
| 331 | |
|---|
| 332 | /** |
|---|
| 333 | * This will return a string describing the classifier. |
|---|
| 334 | * |
|---|
| 335 | * @return The string. |
|---|
| 336 | */ |
|---|
| 337 | public String globalInfo() { |
|---|
| 338 | return "This Bayes Network learning algorithm repeatedly uses hill climbing starting " + |
|---|
| 339 | "with a randomly generated network structure and return the best structure of the " + |
|---|
| 340 | "various runs."; |
|---|
| 341 | } // globalInfo |
|---|
| 342 | |
|---|
| 343 | /** |
|---|
| 344 | * @return a string to describe the Runs option. |
|---|
| 345 | */ |
|---|
| 346 | public String runsTipText() { |
|---|
| 347 | return "Sets the number of times hill climbing is performed."; |
|---|
| 348 | } // runsTipText |
|---|
| 349 | |
|---|
| 350 | /** |
|---|
| 351 | * @return a string to describe the Seed option. |
|---|
| 352 | */ |
|---|
| 353 | public String seedTipText() { |
|---|
| 354 | return "Initialization value for random number generator." + |
|---|
| 355 | " Setting the seed allows replicability of experiments."; |
|---|
| 356 | } // seedTipText |
|---|
| 357 | |
|---|
| 358 | /** |
|---|
| 359 | * Returns the revision string. |
|---|
| 360 | * |
|---|
| 361 | * @return the revision |
|---|
| 362 | */ |
|---|
| 363 | public String getRevision() { |
|---|
| 364 | return RevisionUtils.extract("$Revision: 1.6 $"); |
|---|
| 365 | } |
|---|
| 366 | } |
|---|