1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * HillClimber.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes.net.search.global; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.BayesNet; |
---|
26 | import weka.classifiers.bayes.net.ParentSet; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.RevisionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.Utils; |
---|
32 | |
---|
33 | import java.io.Serializable; |
---|
34 | import java.util.Enumeration; |
---|
35 | import java.util.Vector; |
---|
36 | |
---|
37 | /** |
---|
38 | <!-- globalinfo-start --> |
---|
39 | * This Bayes Network learning algorithm uses a hill climbing algorithm adding, deleting and reversing arcs. The search is not restricted by an order on the variables (unlike K2). The difference with B and B2 is that this hill climber also considers arrows part of the naive Bayes structure for deletion. |
---|
40 | * <p/> |
---|
41 | <!-- globalinfo-end --> |
---|
42 | * |
---|
43 | <!-- options-start --> |
---|
44 | * Valid options are: <p/> |
---|
45 | * |
---|
46 | * <pre> -P <nr of parents> |
---|
47 | * Maximum number of parents</pre> |
---|
48 | * |
---|
49 | * <pre> -R |
---|
50 | * Use arc reversal operation. |
---|
51 | * (default false)</pre> |
---|
52 | * |
---|
53 | * <pre> -N |
---|
54 | * Initial structure is empty (instead of Naive Bayes)</pre> |
---|
55 | * |
---|
56 | * <pre> -mbc |
---|
57 | * Applies a Markov Blanket correction to the network structure, |
---|
58 | * after a network structure is learned. This ensures that all |
---|
59 | * nodes in the network are part of the Markov blanket of the |
---|
60 | * classifier node.</pre> |
---|
61 | * |
---|
62 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] |
---|
63 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> |
---|
64 | * |
---|
65 | * <pre> -Q |
---|
66 | * Use probabilistic or 0/1 scoring. |
---|
67 | * (default probabilistic scoring)</pre> |
---|
68 | * |
---|
69 | <!-- options-end --> |
---|
70 | * |
---|
71 | * @author Remco Bouckaert (rrb@xm.co.nz) |
---|
72 | * @version $Revision: 1.9 $ |
---|
73 | */ |
---|
74 | public class HillClimber |
---|
75 | extends GlobalScoreSearchAlgorithm { |
---|
76 | |
---|
77 | /** for serialization */ |
---|
78 | static final long serialVersionUID = -3885042888195820149L; |
---|
79 | |
---|
80 | /** |
---|
81 | * the Operation class contains info on operations performed |
---|
82 | * on the current Bayesian network. |
---|
83 | */ |
---|
84 | class Operation |
---|
85 | implements Serializable, RevisionHandler { |
---|
86 | |
---|
87 | /** for serialization */ |
---|
88 | static final long serialVersionUID = -2934970456587374967L; |
---|
89 | |
---|
90 | // constants indicating the type of an operation |
---|
91 | final static int OPERATION_ADD = 0; |
---|
92 | final static int OPERATION_DEL = 1; |
---|
93 | final static int OPERATION_REVERSE = 2; |
---|
94 | |
---|
95 | /** c'tor **/ |
---|
96 | public Operation() { |
---|
97 | } |
---|
98 | |
---|
99 | /** c'tor + initializers |
---|
100 | * |
---|
101 | * @param nTail |
---|
102 | * @param nHead |
---|
103 | * @param nOperation |
---|
104 | */ |
---|
105 | public Operation(int nTail, int nHead, int nOperation) { |
---|
106 | m_nHead = nHead; |
---|
107 | m_nTail = nTail; |
---|
108 | m_nOperation = nOperation; |
---|
109 | } |
---|
110 | /** compare this operation with another |
---|
111 | * @param other operation to compare with |
---|
112 | * @return true if operation is the same |
---|
113 | */ |
---|
114 | public boolean equals(Operation other) { |
---|
115 | if (other == null) { |
---|
116 | return false; |
---|
117 | } |
---|
118 | return (( m_nOperation == other.m_nOperation) && |
---|
119 | (m_nHead == other.m_nHead) && |
---|
120 | (m_nTail == other.m_nTail)); |
---|
121 | } // equals |
---|
122 | /** number of the tail node **/ |
---|
123 | public int m_nTail; |
---|
124 | /** number of the head node **/ |
---|
125 | public int m_nHead; |
---|
126 | /** type of operation (ADD, DEL, REVERSE) **/ |
---|
127 | public int m_nOperation; |
---|
128 | /** change of score due to this operation **/ |
---|
129 | public double m_fScore = -1E100; |
---|
130 | |
---|
131 | /** |
---|
132 | * Returns the revision string. |
---|
133 | * |
---|
134 | * @return the revision |
---|
135 | */ |
---|
136 | public String getRevision() { |
---|
137 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
138 | } |
---|
139 | } // class Operation |
---|
140 | |
---|
141 | /** use the arc reversal operator **/ |
---|
142 | boolean m_bUseArcReversal = false; |
---|
143 | |
---|
144 | /** |
---|
145 | * search determines the network structure/graph of the network |
---|
146 | * with the Taby algorithm. |
---|
147 | * |
---|
148 | * @param bayesNet the network to search |
---|
149 | * @param instances the instances to work with |
---|
150 | * @throws Exception if something goes wrong |
---|
151 | */ |
---|
152 | protected void search(BayesNet bayesNet, Instances instances) throws Exception { |
---|
153 | m_BayesNet = bayesNet; |
---|
154 | double fScore = calcScore(bayesNet); |
---|
155 | // go do the search |
---|
156 | Operation oOperation = getOptimalOperation(bayesNet, instances); |
---|
157 | while ((oOperation != null) && (oOperation.m_fScore > fScore)) { |
---|
158 | performOperation(bayesNet, instances, oOperation); |
---|
159 | fScore = oOperation.m_fScore; |
---|
160 | oOperation = getOptimalOperation(bayesNet, instances); |
---|
161 | } |
---|
162 | } // search |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | /** check whether the operation is not in the forbidden. |
---|
167 | * For base hill climber, there are no restrictions on operations, |
---|
168 | * so we always return true. |
---|
169 | * @param oOperation operation to be checked |
---|
170 | * @return true if operation is not in the tabu list |
---|
171 | */ |
---|
172 | boolean isNotTabu(Operation oOperation) { |
---|
173 | return true; |
---|
174 | } // isNotTabu |
---|
175 | |
---|
176 | /** |
---|
177 | * getOptimalOperation finds the optimal operation that can be performed |
---|
178 | * on the Bayes network that is not in the tabu list. |
---|
179 | * |
---|
180 | * @param bayesNet Bayes network to apply operation on |
---|
181 | * @param instances data set to learn from |
---|
182 | * @return optimal operation found |
---|
183 | * @throws Exception if something goes wrong |
---|
184 | */ |
---|
185 | Operation getOptimalOperation(BayesNet bayesNet, Instances instances) throws Exception { |
---|
186 | Operation oBestOperation = new Operation(); |
---|
187 | |
---|
188 | // Add??? |
---|
189 | oBestOperation = findBestArcToAdd(bayesNet, instances, oBestOperation); |
---|
190 | // Delete??? |
---|
191 | oBestOperation = findBestArcToDelete(bayesNet, instances, oBestOperation); |
---|
192 | // Reverse??? |
---|
193 | if (getUseArcReversal()) { |
---|
194 | oBestOperation = findBestArcToReverse(bayesNet, instances, oBestOperation); |
---|
195 | } |
---|
196 | |
---|
197 | // did we find something? |
---|
198 | if (oBestOperation.m_fScore == -1E100) { |
---|
199 | return null; |
---|
200 | } |
---|
201 | |
---|
202 | return oBestOperation; |
---|
203 | } // getOptimalOperation |
---|
204 | |
---|
205 | /** performOperation applies an operation |
---|
206 | * on the Bayes network and update the cache. |
---|
207 | * |
---|
208 | * @param bayesNet Bayes network to apply operation on |
---|
209 | * @param instances data set to learn from |
---|
210 | * @param oOperation operation to perform |
---|
211 | * @throws Exception if something goes wrong |
---|
212 | */ |
---|
213 | void performOperation(BayesNet bayesNet, Instances instances, Operation oOperation) throws Exception { |
---|
214 | // perform operation |
---|
215 | switch (oOperation.m_nOperation) { |
---|
216 | case Operation.OPERATION_ADD: |
---|
217 | applyArcAddition(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
---|
218 | if (bayesNet.getDebug()) { |
---|
219 | System.out.print("Add " + oOperation.m_nHead + " -> " + oOperation.m_nTail); |
---|
220 | } |
---|
221 | break; |
---|
222 | case Operation.OPERATION_DEL: |
---|
223 | applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
---|
224 | if (bayesNet.getDebug()) { |
---|
225 | System.out.print("Del " + oOperation.m_nHead + " -> " + oOperation.m_nTail); |
---|
226 | } |
---|
227 | break; |
---|
228 | case Operation.OPERATION_REVERSE: |
---|
229 | applyArcDeletion(bayesNet, oOperation.m_nHead, oOperation.m_nTail, instances); |
---|
230 | applyArcAddition(bayesNet, oOperation.m_nTail, oOperation.m_nHead, instances); |
---|
231 | if (bayesNet.getDebug()) { |
---|
232 | System.out.print("Rev " + oOperation.m_nHead+ " -> " + oOperation.m_nTail); |
---|
233 | } |
---|
234 | break; |
---|
235 | } |
---|
236 | } // performOperation |
---|
237 | |
---|
238 | /** |
---|
239 | * |
---|
240 | * @param bayesNet |
---|
241 | * @param iHead |
---|
242 | * @param iTail |
---|
243 | * @param instances |
---|
244 | */ |
---|
245 | void applyArcAddition(BayesNet bayesNet, int iHead, int iTail, Instances instances) { |
---|
246 | ParentSet bestParentSet = bayesNet.getParentSet(iHead); |
---|
247 | bestParentSet.addParent(iTail, instances); |
---|
248 | } // applyArcAddition |
---|
249 | |
---|
250 | /** |
---|
251 | * |
---|
252 | * @param bayesNet |
---|
253 | * @param iHead |
---|
254 | * @param iTail |
---|
255 | * @param instances |
---|
256 | */ |
---|
257 | void applyArcDeletion(BayesNet bayesNet, int iHead, int iTail, Instances instances) { |
---|
258 | ParentSet bestParentSet = bayesNet.getParentSet(iHead); |
---|
259 | bestParentSet.deleteParent(iTail, instances); |
---|
260 | } // applyArcAddition |
---|
261 | |
---|
262 | |
---|
263 | /** |
---|
264 | * find best (or least bad) arc addition operation |
---|
265 | * |
---|
266 | * @param bayesNet Bayes network to add arc to |
---|
267 | * @param instances data set |
---|
268 | * @param oBestOperation |
---|
269 | * @return Operation containing best arc to add, or null if no arc addition is allowed |
---|
270 | * (this can happen if any arc addition introduces a cycle, or all parent sets are filled |
---|
271 | * up to the maximum nr of parents). |
---|
272 | * @throws Exception if something goes wrong |
---|
273 | */ |
---|
274 | Operation findBestArcToAdd(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { |
---|
275 | int nNrOfAtts = instances.numAttributes(); |
---|
276 | // find best arc to add |
---|
277 | for (int iAttributeHead = 0; iAttributeHead < nNrOfAtts; iAttributeHead++) { |
---|
278 | if (bayesNet.getParentSet(iAttributeHead).getNrOfParents() < m_nMaxNrOfParents) { |
---|
279 | for (int iAttributeTail = 0; iAttributeTail < nNrOfAtts; iAttributeTail++) { |
---|
280 | if (addArcMakesSense(bayesNet, instances, iAttributeHead, iAttributeTail)) { |
---|
281 | Operation oOperation = new Operation(iAttributeTail, iAttributeHead, Operation.OPERATION_ADD); |
---|
282 | double fScore = calcScoreWithExtraParent(oOperation.m_nHead, oOperation.m_nTail); |
---|
283 | if (fScore > oBestOperation.m_fScore) { |
---|
284 | if (isNotTabu(oOperation)) { |
---|
285 | oBestOperation = oOperation; |
---|
286 | oBestOperation.m_fScore = fScore; |
---|
287 | } |
---|
288 | } |
---|
289 | } |
---|
290 | } |
---|
291 | } |
---|
292 | } |
---|
293 | return oBestOperation; |
---|
294 | } // findBestArcToAdd |
---|
295 | |
---|
296 | /** |
---|
297 | * find best (or least bad) arc deletion operation |
---|
298 | * |
---|
299 | * @param bayesNet Bayes network to delete arc from |
---|
300 | * @param instances data set |
---|
301 | * @param oBestOperation |
---|
302 | * @return Operation containing best arc to delete, or null if no deletion can be made |
---|
303 | * (happens when there is no arc in the network yet). |
---|
304 | * @throws Exception of something goes wrong |
---|
305 | */ |
---|
306 | Operation findBestArcToDelete(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { |
---|
307 | int nNrOfAtts = instances.numAttributes(); |
---|
308 | // find best arc to delete |
---|
309 | for (int iNode = 0; iNode < nNrOfAtts; iNode++) { |
---|
310 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
---|
311 | for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { |
---|
312 | Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_DEL); |
---|
313 | double fScore = calcScoreWithMissingParent(oOperation.m_nHead, oOperation.m_nTail); |
---|
314 | if (fScore > oBestOperation.m_fScore) { |
---|
315 | if (isNotTabu(oOperation)) { |
---|
316 | oBestOperation = oOperation; |
---|
317 | oBestOperation.m_fScore = fScore; |
---|
318 | } |
---|
319 | } |
---|
320 | } |
---|
321 | } |
---|
322 | return oBestOperation; |
---|
323 | } // findBestArcToDelete |
---|
324 | |
---|
325 | /** |
---|
326 | * find best (or least bad) arc reversal operation |
---|
327 | * |
---|
328 | * @param bayesNet Bayes network to reverse arc in |
---|
329 | * @param instances data set |
---|
330 | * @param oBestOperation |
---|
331 | * @return Operation containing best arc to reverse, or null if no reversal is allowed |
---|
332 | * (happens if there is no arc in the network yet, or when any such reversal introduces |
---|
333 | * a cycle). |
---|
334 | * @throws Exception if something goes wrong |
---|
335 | */ |
---|
336 | Operation findBestArcToReverse(BayesNet bayesNet, Instances instances, Operation oBestOperation) throws Exception { |
---|
337 | int nNrOfAtts = instances.numAttributes(); |
---|
338 | // find best arc to reverse |
---|
339 | for (int iNode = 0; iNode < nNrOfAtts; iNode++) { |
---|
340 | ParentSet parentSet = bayesNet.getParentSet(iNode); |
---|
341 | for (int iParent = 0; iParent < parentSet.getNrOfParents(); iParent++) { |
---|
342 | int iTail = parentSet.getParent(iParent); |
---|
343 | // is reversal allowed? |
---|
344 | if (reverseArcMakesSense(bayesNet, instances, iNode, iTail) && |
---|
345 | bayesNet.getParentSet(iTail).getNrOfParents() < m_nMaxNrOfParents) { |
---|
346 | // go check if reversal results in the best step forward |
---|
347 | Operation oOperation = new Operation(parentSet.getParent(iParent), iNode, Operation.OPERATION_REVERSE); |
---|
348 | double fScore = calcScoreWithReversedParent(oOperation.m_nHead, oOperation.m_nTail); |
---|
349 | if (fScore > oBestOperation.m_fScore) { |
---|
350 | if (isNotTabu(oOperation)) { |
---|
351 | oBestOperation = oOperation; |
---|
352 | oBestOperation.m_fScore = fScore; |
---|
353 | } |
---|
354 | } |
---|
355 | } |
---|
356 | } |
---|
357 | } |
---|
358 | return oBestOperation; |
---|
359 | } // findBestArcToReverse |
---|
360 | |
---|
361 | |
---|
362 | /** |
---|
363 | * Sets the max number of parents |
---|
364 | * |
---|
365 | * @param nMaxNrOfParents the max number of parents |
---|
366 | */ |
---|
367 | public void setMaxNrOfParents(int nMaxNrOfParents) { |
---|
368 | m_nMaxNrOfParents = nMaxNrOfParents; |
---|
369 | } |
---|
370 | |
---|
371 | /** |
---|
372 | * Gets the max number of parents. |
---|
373 | * |
---|
374 | * @return the max number of parents |
---|
375 | */ |
---|
376 | public int getMaxNrOfParents() { |
---|
377 | return m_nMaxNrOfParents; |
---|
378 | } |
---|
379 | |
---|
380 | /** |
---|
381 | * Returns an enumeration describing the available options. |
---|
382 | * |
---|
383 | * @return an enumeration of all the available options. |
---|
384 | */ |
---|
385 | public Enumeration listOptions() { |
---|
386 | Vector newVector = new Vector(2); |
---|
387 | |
---|
388 | newVector.addElement(new Option("\tMaximum number of parents", "P", 1, "-P <nr of parents>")); |
---|
389 | newVector.addElement(new Option("\tUse arc reversal operation.\n\t(default false)", "R", 0, "-R")); |
---|
390 | newVector.addElement(new Option("\tInitial structure is empty (instead of Naive Bayes)", "N", 0, "-N")); |
---|
391 | |
---|
392 | Enumeration enu = super.listOptions(); |
---|
393 | while (enu.hasMoreElements()) { |
---|
394 | newVector.addElement(enu.nextElement()); |
---|
395 | } |
---|
396 | return newVector.elements(); |
---|
397 | } // listOptions |
---|
398 | |
---|
399 | /** |
---|
400 | * Parses a given list of options. <p/> |
---|
401 | * |
---|
402 | <!-- options-start --> |
---|
403 | * Valid options are: <p/> |
---|
404 | * |
---|
405 | * <pre> -P <nr of parents> |
---|
406 | * Maximum number of parents</pre> |
---|
407 | * |
---|
408 | * <pre> -R |
---|
409 | * Use arc reversal operation. |
---|
410 | * (default false)</pre> |
---|
411 | * |
---|
412 | * <pre> -N |
---|
413 | * Initial structure is empty (instead of Naive Bayes)</pre> |
---|
414 | * |
---|
415 | * <pre> -mbc |
---|
416 | * Applies a Markov Blanket correction to the network structure, |
---|
417 | * after a network structure is learned. This ensures that all |
---|
418 | * nodes in the network are part of the Markov blanket of the |
---|
419 | * classifier node.</pre> |
---|
420 | * |
---|
421 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] |
---|
422 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> |
---|
423 | * |
---|
424 | * <pre> -Q |
---|
425 | * Use probabilistic or 0/1 scoring. |
---|
426 | * (default probabilistic scoring)</pre> |
---|
427 | * |
---|
428 | <!-- options-end --> |
---|
429 | * |
---|
430 | * @param options the list of options as an array of strings |
---|
431 | * @throws Exception if an option is not supported |
---|
432 | */ |
---|
433 | public void setOptions(String[] options) throws Exception { |
---|
434 | setUseArcReversal(Utils.getFlag('R', options)); |
---|
435 | |
---|
436 | setInitAsNaiveBayes (!(Utils.getFlag('N', options))); |
---|
437 | |
---|
438 | String sMaxNrOfParents = Utils.getOption('P', options); |
---|
439 | if (sMaxNrOfParents.length() != 0) { |
---|
440 | setMaxNrOfParents(Integer.parseInt(sMaxNrOfParents)); |
---|
441 | } else { |
---|
442 | setMaxNrOfParents(100000); |
---|
443 | } |
---|
444 | |
---|
445 | super.setOptions(options); |
---|
446 | } // setOptions |
---|
447 | |
---|
448 | /** |
---|
449 | * Gets the current settings of the search algorithm. |
---|
450 | * |
---|
451 | * @return an array of strings suitable for passing to setOptions |
---|
452 | */ |
---|
453 | public String[] getOptions() { |
---|
454 | String[] superOptions = super.getOptions(); |
---|
455 | String[] options = new String[7 + superOptions.length]; |
---|
456 | int current = 0; |
---|
457 | if (getUseArcReversal()) { |
---|
458 | options[current++] = "-R"; |
---|
459 | } |
---|
460 | |
---|
461 | if (!getInitAsNaiveBayes()) { |
---|
462 | options[current++] = "-N"; |
---|
463 | } |
---|
464 | |
---|
465 | options[current++] = "-P"; |
---|
466 | options[current++] = "" + m_nMaxNrOfParents; |
---|
467 | |
---|
468 | // insert options from parent class |
---|
469 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
---|
470 | options[current++] = superOptions[iOption]; |
---|
471 | } |
---|
472 | |
---|
473 | // Fill up rest with empty strings, not nulls! |
---|
474 | while (current < options.length) { |
---|
475 | options[current++] = ""; |
---|
476 | } |
---|
477 | return options; |
---|
478 | } // getOptions |
---|
479 | |
---|
480 | /** |
---|
481 | * Sets whether to init as naive bayes |
---|
482 | * |
---|
483 | * @param bInitAsNaiveBayes whether to init as naive bayes |
---|
484 | */ |
---|
485 | public void setInitAsNaiveBayes(boolean bInitAsNaiveBayes) { |
---|
486 | m_bInitAsNaiveBayes = bInitAsNaiveBayes; |
---|
487 | } |
---|
488 | |
---|
489 | /** |
---|
490 | * Gets whether to init as naive bayes |
---|
491 | * |
---|
492 | * @return whether to init as naive bayes |
---|
493 | */ |
---|
494 | public boolean getInitAsNaiveBayes() { |
---|
495 | return m_bInitAsNaiveBayes; |
---|
496 | } |
---|
497 | |
---|
498 | /** get use the arc reversal operation |
---|
499 | * @return whether the arc reversal operation should be used |
---|
500 | */ |
---|
501 | public boolean getUseArcReversal() { |
---|
502 | return m_bUseArcReversal; |
---|
503 | } // getUseArcReversal |
---|
504 | |
---|
505 | /** set use the arc reversal operation |
---|
506 | * @param bUseArcReversal whether the arc reversal operation should be used |
---|
507 | */ |
---|
508 | public void setUseArcReversal(boolean bUseArcReversal) { |
---|
509 | m_bUseArcReversal = bUseArcReversal; |
---|
510 | } // setUseArcReversal |
---|
511 | |
---|
512 | /** |
---|
513 | * This will return a string describing the search algorithm. |
---|
514 | * @return The string. |
---|
515 | */ |
---|
516 | public String globalInfo() { |
---|
517 | return "This Bayes Network learning algorithm uses a hill climbing algorithm " + |
---|
518 | "adding, deleting and reversing arcs. The search is not restricted by an order " + |
---|
519 | "on the variables (unlike K2). The difference with B and B2 is that this hill " + |
---|
520 | "climber also considers arrows part of the naive Bayes structure for deletion."; |
---|
521 | } // globalInfo |
---|
522 | |
---|
523 | /** |
---|
524 | * @return a string to describe the Use Arc Reversal option. |
---|
525 | */ |
---|
526 | public String useArcReversalTipText() { |
---|
527 | return "When set to true, the arc reversal operation is used in the search."; |
---|
528 | } // useArcReversalTipText |
---|
529 | |
---|
530 | /** |
---|
531 | * Returns the revision string. |
---|
532 | * |
---|
533 | * @return the revision |
---|
534 | */ |
---|
535 | public String getRevision() { |
---|
536 | return RevisionUtils.extract("$Revision: 1.9 $"); |
---|
537 | } |
---|
538 | } // HillClimber |
---|