| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * GeneticSearch.java |
|---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.bayes.net.search.global; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.bayes.BayesNet; |
|---|
| 26 | import weka.classifiers.bayes.net.ParentSet; |
|---|
| 27 | import weka.core.Instances; |
|---|
| 28 | import weka.core.Option; |
|---|
| 29 | import weka.core.RevisionHandler; |
|---|
| 30 | import weka.core.RevisionUtils; |
|---|
| 31 | import weka.core.Utils; |
|---|
| 32 | |
|---|
| 33 | import java.util.Enumeration; |
|---|
| 34 | import java.util.Random; |
|---|
| 35 | import java.util.Vector; |
|---|
| 36 | |
|---|
| 37 | /** |
|---|
| 38 | <!-- globalinfo-start --> |
|---|
| 39 | * This Bayes Network learning algorithm uses genetic search for finding a well scoring Bayes network structure. Genetic search works by having a population of Bayes network structures and allow them to mutate and apply cross over to get offspring. The best network structure found during the process is returned. |
|---|
| 40 | * <p/> |
|---|
| 41 | <!-- globalinfo-end --> |
|---|
| 42 | * |
|---|
| 43 | <!-- options-start --> |
|---|
| 44 | * Valid options are: <p/> |
|---|
| 45 | * |
|---|
| 46 | * <pre> -L <integer> |
|---|
| 47 | * Population size</pre> |
|---|
| 48 | * |
|---|
| 49 | * <pre> -A <integer> |
|---|
| 50 | * Descendant population size</pre> |
|---|
| 51 | * |
|---|
| 52 | * <pre> -U <integer> |
|---|
| 53 | * Number of runs</pre> |
|---|
| 54 | * |
|---|
| 55 | * <pre> -M |
|---|
| 56 | * Use mutation. |
|---|
| 57 | * (default true)</pre> |
|---|
| 58 | * |
|---|
| 59 | * <pre> -C |
|---|
| 60 | * Use cross-over. |
|---|
| 61 | * (default true)</pre> |
|---|
| 62 | * |
|---|
| 63 | * <pre> -O |
|---|
| 64 | * Use tournament selection (true) or maximum subpopulatin (false). |
|---|
| 65 | * (default false)</pre> |
|---|
| 66 | * |
|---|
| 67 | * <pre> -R <seed> |
|---|
| 68 | * Random number seed</pre> |
|---|
| 69 | * |
|---|
| 70 | * <pre> -mbc |
|---|
| 71 | * Applies a Markov Blanket correction to the network structure, |
|---|
| 72 | * after a network structure is learned. This ensures that all |
|---|
| 73 | * nodes in the network are part of the Markov blanket of the |
|---|
| 74 | * classifier node.</pre> |
|---|
| 75 | * |
|---|
| 76 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] |
|---|
| 77 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> |
|---|
| 78 | * |
|---|
| 79 | * <pre> -Q |
|---|
| 80 | * Use probabilistic or 0/1 scoring. |
|---|
| 81 | * (default probabilistic scoring)</pre> |
|---|
| 82 | * |
|---|
| 83 | <!-- options-end --> |
|---|
| 84 | * |
|---|
| 85 | * @author Remco Bouckaert (rrb@xm.co.nz) |
|---|
| 86 | * @version $Revision: 1.5 $ |
|---|
| 87 | */ |
|---|
| 88 | public class GeneticSearch |
|---|
| 89 | extends GlobalScoreSearchAlgorithm { |
|---|
| 90 | |
|---|
| 91 | /** for serialization */ |
|---|
| 92 | static final long serialVersionUID = 4236165533882462203L; |
|---|
| 93 | |
|---|
| 94 | /** number of runs **/ |
|---|
| 95 | int m_nRuns = 10; |
|---|
| 96 | |
|---|
| 97 | /** size of population **/ |
|---|
| 98 | int m_nPopulationSize = 10; |
|---|
| 99 | |
|---|
| 100 | /** size of descendant population **/ |
|---|
| 101 | int m_nDescendantPopulationSize = 100; |
|---|
| 102 | |
|---|
| 103 | /** use cross-over? **/ |
|---|
| 104 | boolean m_bUseCrossOver = true; |
|---|
| 105 | |
|---|
| 106 | /** use mutation? **/ |
|---|
| 107 | boolean m_bUseMutation = true; |
|---|
| 108 | |
|---|
| 109 | /** use tournament selection or take best sub-population **/ |
|---|
| 110 | boolean m_bUseTournamentSelection = false; |
|---|
| 111 | |
|---|
| 112 | /** random number seed **/ |
|---|
| 113 | int m_nSeed = 1; |
|---|
| 114 | |
|---|
| 115 | /** random number generator **/ |
|---|
| 116 | Random m_random = null; |
|---|
| 117 | |
|---|
| 118 | |
|---|
| 119 | /** used in BayesNetRepresentation for efficiently determining |
|---|
| 120 | * whether a number is square |
|---|
| 121 | */ |
|---|
| 122 | static boolean [] g_bIsSquare; |
|---|
| 123 | |
|---|
| 124 | class BayesNetRepresentation implements RevisionHandler { |
|---|
| 125 | /** number of nodes in network **/ |
|---|
| 126 | int m_nNodes = 0; |
|---|
| 127 | |
|---|
| 128 | /** bit representation of parent sets |
|---|
| 129 | * m_bits[iTail + iHead * m_nNodes] represents arc iTail->iHead |
|---|
| 130 | */ |
|---|
| 131 | boolean [] m_bits; |
|---|
| 132 | |
|---|
| 133 | /** score of represented network structure **/ |
|---|
| 134 | double m_fScore = 0.0f; |
|---|
| 135 | |
|---|
| 136 | /** |
|---|
| 137 | * return score of represented network structure |
|---|
| 138 | * |
|---|
| 139 | * @return the score |
|---|
| 140 | */ |
|---|
| 141 | public double getScore() { |
|---|
| 142 | return m_fScore; |
|---|
| 143 | } // getScore |
|---|
| 144 | |
|---|
| 145 | /** |
|---|
| 146 | * c'tor |
|---|
| 147 | * |
|---|
| 148 | * @param nNodes the number of nodes |
|---|
| 149 | */ |
|---|
| 150 | BayesNetRepresentation (int nNodes) { |
|---|
| 151 | m_nNodes = nNodes; |
|---|
| 152 | } // c'tor |
|---|
| 153 | |
|---|
| 154 | /** initialize with a random structure by randomly placing |
|---|
| 155 | * m_nNodes arcs. |
|---|
| 156 | */ |
|---|
| 157 | public void randomInit() { |
|---|
| 158 | do { |
|---|
| 159 | m_bits = new boolean [m_nNodes * m_nNodes]; |
|---|
| 160 | for (int i = 0; i < m_nNodes; i++) { |
|---|
| 161 | int iPos; |
|---|
| 162 | do { |
|---|
| 163 | iPos = m_random.nextInt(m_nNodes * m_nNodes); |
|---|
| 164 | } while (isSquare(iPos)); |
|---|
| 165 | m_bits[iPos] = true; |
|---|
| 166 | } |
|---|
| 167 | } while (hasCycles()); |
|---|
| 168 | calcGlobalScore(); |
|---|
| 169 | } |
|---|
| 170 | |
|---|
| 171 | /** calculate score of current network representation |
|---|
| 172 | * As a side effect, the parent sets are set |
|---|
| 173 | */ |
|---|
| 174 | void calcGlobalScore() { |
|---|
| 175 | // clear current network |
|---|
| 176 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
|---|
| 177 | ParentSet parentSet = m_BayesNet.getParentSet(iNode); |
|---|
| 178 | while (parentSet.getNrOfParents() > 0) { |
|---|
| 179 | parentSet.deleteLastParent(m_BayesNet.m_Instances); |
|---|
| 180 | } |
|---|
| 181 | } |
|---|
| 182 | // insert arrows |
|---|
| 183 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
|---|
| 184 | ParentSet parentSet = m_BayesNet.getParentSet(iNode); |
|---|
| 185 | for (int iNode2 = 0; iNode2 < m_nNodes; iNode2++) { |
|---|
| 186 | if (m_bits[iNode2 + iNode * m_nNodes]) { |
|---|
| 187 | parentSet.addParent(iNode2, m_BayesNet.m_Instances); |
|---|
| 188 | } |
|---|
| 189 | } |
|---|
| 190 | } |
|---|
| 191 | // calc score |
|---|
| 192 | try { |
|---|
| 193 | m_fScore = calcScore(m_BayesNet); |
|---|
| 194 | } catch (Exception e) { |
|---|
| 195 | // ignore |
|---|
| 196 | } |
|---|
| 197 | } // calcScore |
|---|
| 198 | |
|---|
| 199 | /** check whether there are cycles in the network |
|---|
| 200 | * |
|---|
| 201 | * @return true if a cycle is found, false otherwise |
|---|
| 202 | */ |
|---|
| 203 | public boolean hasCycles() { |
|---|
| 204 | // check for cycles |
|---|
| 205 | boolean[] bDone = new boolean[m_nNodes]; |
|---|
| 206 | for (int iNode = 0; iNode < m_nNodes; iNode++) { |
|---|
| 207 | |
|---|
| 208 | // find a node for which all parents are 'done' |
|---|
| 209 | boolean bFound = false; |
|---|
| 210 | |
|---|
| 211 | for (int iNode2 = 0; !bFound && iNode2 < m_nNodes; iNode2++) { |
|---|
| 212 | if (!bDone[iNode2]) { |
|---|
| 213 | boolean bHasNoParents = true; |
|---|
| 214 | for (int iParent = 0; iParent < m_nNodes; iParent++) { |
|---|
| 215 | if (m_bits[iParent + iNode2 * m_nNodes] && !bDone[iParent]) { |
|---|
| 216 | bHasNoParents = false; |
|---|
| 217 | } |
|---|
| 218 | } |
|---|
| 219 | if (bHasNoParents) { |
|---|
| 220 | bDone[iNode2] = true; |
|---|
| 221 | bFound = true; |
|---|
| 222 | } |
|---|
| 223 | } |
|---|
| 224 | } |
|---|
| 225 | if (!bFound) { |
|---|
| 226 | return true; |
|---|
| 227 | } |
|---|
| 228 | } |
|---|
| 229 | return false; |
|---|
| 230 | } // hasCycles |
|---|
| 231 | |
|---|
| 232 | /** create clone of current object |
|---|
| 233 | * @return cloned object |
|---|
| 234 | */ |
|---|
| 235 | BayesNetRepresentation copy() { |
|---|
| 236 | BayesNetRepresentation b = new BayesNetRepresentation(m_nNodes); |
|---|
| 237 | b.m_bits = new boolean [m_bits.length]; |
|---|
| 238 | for (int i = 0; i < m_nNodes * m_nNodes; i++) { |
|---|
| 239 | b.m_bits[i] = m_bits[i]; |
|---|
| 240 | } |
|---|
| 241 | b.m_fScore = m_fScore; |
|---|
| 242 | return b; |
|---|
| 243 | } // copy |
|---|
| 244 | |
|---|
| 245 | /** Apply mutation operation to BayesNet |
|---|
| 246 | * Calculate score and as a side effect sets BayesNet parent sets. |
|---|
| 247 | */ |
|---|
| 248 | void mutate() { |
|---|
| 249 | // flip a bit |
|---|
| 250 | do { |
|---|
| 251 | int iBit; |
|---|
| 252 | do { |
|---|
| 253 | iBit = m_random.nextInt(m_nNodes * m_nNodes); |
|---|
| 254 | } while (isSquare(iBit)); |
|---|
| 255 | |
|---|
| 256 | m_bits[iBit] = !m_bits[iBit]; |
|---|
| 257 | } while (hasCycles()); |
|---|
| 258 | |
|---|
| 259 | calcGlobalScore(); |
|---|
| 260 | } // mutate |
|---|
| 261 | |
|---|
| 262 | /** Apply cross-over operation to BayesNet |
|---|
| 263 | * Calculate score and as a side effect sets BayesNet parent sets. |
|---|
| 264 | * @param other BayesNetRepresentation to cross over with |
|---|
| 265 | */ |
|---|
| 266 | void crossOver(BayesNetRepresentation other) { |
|---|
| 267 | boolean [] bits = new boolean [m_bits.length]; |
|---|
| 268 | for (int i = 0; i < m_bits.length; i++) { |
|---|
| 269 | bits[i] = m_bits[i]; |
|---|
| 270 | } |
|---|
| 271 | int iCrossOverPoint = m_bits.length; |
|---|
| 272 | do { |
|---|
| 273 | // restore to original state |
|---|
| 274 | for (int i = iCrossOverPoint; i < m_bits.length; i++) { |
|---|
| 275 | m_bits[i] = bits[i]; |
|---|
| 276 | } |
|---|
| 277 | // take all bits from cross-over points onwards |
|---|
| 278 | iCrossOverPoint = m_random.nextInt(m_bits.length); |
|---|
| 279 | for (int i = iCrossOverPoint; i < m_bits.length; i++) { |
|---|
| 280 | m_bits[i] = other.m_bits[i]; |
|---|
| 281 | } |
|---|
| 282 | } while (hasCycles()); |
|---|
| 283 | calcGlobalScore(); |
|---|
| 284 | } // crossOver |
|---|
| 285 | |
|---|
| 286 | /** check if number is square and initialize g_bIsSquare structure |
|---|
| 287 | * if necessary |
|---|
| 288 | * @param nNum number to check (should be below m_nNodes * m_nNodes) |
|---|
| 289 | * @return true if number is square |
|---|
| 290 | */ |
|---|
| 291 | boolean isSquare(int nNum) { |
|---|
| 292 | if (g_bIsSquare == null || g_bIsSquare.length < nNum) { |
|---|
| 293 | g_bIsSquare = new boolean [m_nNodes * m_nNodes]; |
|---|
| 294 | for (int i = 0; i < m_nNodes; i++) { |
|---|
| 295 | g_bIsSquare[i * m_nNodes + i] = true; |
|---|
| 296 | } |
|---|
| 297 | } |
|---|
| 298 | return g_bIsSquare[nNum]; |
|---|
| 299 | } // isSquare |
|---|
| 300 | |
|---|
| 301 | /** |
|---|
| 302 | * Returns the revision string. |
|---|
| 303 | * |
|---|
| 304 | * @return the revision |
|---|
| 305 | */ |
|---|
| 306 | public String getRevision() { |
|---|
| 307 | return RevisionUtils.extract("$Revision: 1.5 $"); |
|---|
| 308 | } |
|---|
| 309 | } // class BayesNetRepresentation |
|---|
| 310 | |
|---|
| 311 | /** |
|---|
| 312 | * search determines the network structure/graph of the network |
|---|
| 313 | * with a genetic search algorithm. |
|---|
| 314 | * |
|---|
| 315 | * @param bayesNet the network to search |
|---|
| 316 | * @param instances the instances to use |
|---|
| 317 | * @throws Exception if population size doesn fit or neither cross-over or mutation was chosen |
|---|
| 318 | */ |
|---|
| 319 | protected void search(BayesNet bayesNet, Instances instances) throws Exception { |
|---|
| 320 | // sanity check |
|---|
| 321 | if (getDescendantPopulationSize() < getPopulationSize()) { |
|---|
| 322 | throw new Exception ("Descendant PopulationSize should be at least Population Size"); |
|---|
| 323 | } |
|---|
| 324 | if (!getUseCrossOver() && !getUseMutation()) { |
|---|
| 325 | throw new Exception ("At least one of mutation or cross-over should be used"); |
|---|
| 326 | } |
|---|
| 327 | |
|---|
| 328 | m_random = new Random(m_nSeed); |
|---|
| 329 | |
|---|
| 330 | // keeps track of best structure found so far |
|---|
| 331 | BayesNet bestBayesNet; |
|---|
| 332 | // keeps track of score pf best structure found so far |
|---|
| 333 | double fBestScore = calcScore(bayesNet); |
|---|
| 334 | |
|---|
| 335 | // initialize bestBayesNet |
|---|
| 336 | bestBayesNet = new BayesNet(); |
|---|
| 337 | bestBayesNet.m_Instances = instances; |
|---|
| 338 | bestBayesNet.initStructure(); |
|---|
| 339 | copyParentSets(bestBayesNet, bayesNet); |
|---|
| 340 | |
|---|
| 341 | |
|---|
| 342 | // initialize population |
|---|
| 343 | BayesNetRepresentation [] population = new BayesNetRepresentation [getPopulationSize()]; |
|---|
| 344 | for (int i = 0; i < getPopulationSize(); i++) { |
|---|
| 345 | population[i] = new BayesNetRepresentation (instances.numAttributes()); |
|---|
| 346 | population[i].randomInit(); |
|---|
| 347 | if (population[i].getScore() > fBestScore) { |
|---|
| 348 | copyParentSets(bestBayesNet, bayesNet); |
|---|
| 349 | fBestScore = population[i].getScore(); |
|---|
| 350 | |
|---|
| 351 | } |
|---|
| 352 | } |
|---|
| 353 | |
|---|
| 354 | // go do the search |
|---|
| 355 | for (int iRun = 0; iRun < m_nRuns; iRun++) { |
|---|
| 356 | // create descendants |
|---|
| 357 | BayesNetRepresentation [] descendantPopulation = new BayesNetRepresentation [getDescendantPopulationSize()]; |
|---|
| 358 | for (int i = 0; i < getDescendantPopulationSize(); i++) { |
|---|
| 359 | descendantPopulation[i] = population[m_random.nextInt(getPopulationSize())].copy(); |
|---|
| 360 | if (getUseMutation()) { |
|---|
| 361 | if (getUseCrossOver() && m_random.nextBoolean()) { |
|---|
| 362 | descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); |
|---|
| 363 | } else { |
|---|
| 364 | descendantPopulation[i].mutate(); |
|---|
| 365 | } |
|---|
| 366 | } else { |
|---|
| 367 | // use crossover |
|---|
| 368 | descendantPopulation[i].crossOver(population[m_random.nextInt(getPopulationSize())]); |
|---|
| 369 | } |
|---|
| 370 | |
|---|
| 371 | if (descendantPopulation[i].getScore() > fBestScore) { |
|---|
| 372 | copyParentSets(bestBayesNet, bayesNet); |
|---|
| 373 | fBestScore = descendantPopulation[i].getScore(); |
|---|
| 374 | } |
|---|
| 375 | } |
|---|
| 376 | // select new population |
|---|
| 377 | boolean [] bSelected = new boolean [getDescendantPopulationSize()]; |
|---|
| 378 | for (int i = 0; i < getPopulationSize(); i++) { |
|---|
| 379 | int iSelected = 0; |
|---|
| 380 | if (m_bUseTournamentSelection) { |
|---|
| 381 | // use tournament selection |
|---|
| 382 | iSelected = m_random.nextInt(getDescendantPopulationSize()); |
|---|
| 383 | while (bSelected[iSelected]) { |
|---|
| 384 | iSelected = (iSelected + 1) % getDescendantPopulationSize(); |
|---|
| 385 | } |
|---|
| 386 | int iSelected2 = m_random.nextInt(getDescendantPopulationSize()); |
|---|
| 387 | while (bSelected[iSelected2]) { |
|---|
| 388 | iSelected2 = (iSelected2 + 1) % getDescendantPopulationSize(); |
|---|
| 389 | } |
|---|
| 390 | if (descendantPopulation[iSelected2].getScore() > descendantPopulation[iSelected].getScore()) { |
|---|
| 391 | iSelected = iSelected2; |
|---|
| 392 | } |
|---|
| 393 | } else { |
|---|
| 394 | // find best scoring network in population |
|---|
| 395 | while (bSelected[iSelected]) { |
|---|
| 396 | iSelected++; |
|---|
| 397 | } |
|---|
| 398 | double fScore = descendantPopulation[iSelected].getScore(); |
|---|
| 399 | for (int j = 0; j < getDescendantPopulationSize(); j++) { |
|---|
| 400 | if (!bSelected[j] && descendantPopulation[j].getScore() > fScore) { |
|---|
| 401 | fScore = descendantPopulation[j].getScore(); |
|---|
| 402 | iSelected = j; |
|---|
| 403 | } |
|---|
| 404 | } |
|---|
| 405 | } |
|---|
| 406 | population[i] = descendantPopulation[iSelected]; |
|---|
| 407 | bSelected[iSelected] = true; |
|---|
| 408 | } |
|---|
| 409 | } |
|---|
| 410 | |
|---|
| 411 | // restore current network to best network |
|---|
| 412 | copyParentSets(bayesNet, bestBayesNet); |
|---|
| 413 | |
|---|
| 414 | // free up memory |
|---|
| 415 | bestBayesNet = null; |
|---|
| 416 | } // search |
|---|
| 417 | |
|---|
| 418 | |
|---|
| 419 | /** copyParentSets copies parent sets of source to dest BayesNet |
|---|
| 420 | * @param dest destination network |
|---|
| 421 | * @param source source network |
|---|
| 422 | */ |
|---|
| 423 | void copyParentSets(BayesNet dest, BayesNet source) { |
|---|
| 424 | int nNodes = source.getNrOfNodes(); |
|---|
| 425 | // clear parent set first |
|---|
| 426 | for (int iNode = 0; iNode < nNodes; iNode++) { |
|---|
| 427 | dest.getParentSet(iNode).copy(source.getParentSet(iNode)); |
|---|
| 428 | } |
|---|
| 429 | } // CopyParentSets |
|---|
| 430 | |
|---|
| 431 | /** |
|---|
| 432 | * @return number of runs |
|---|
| 433 | */ |
|---|
| 434 | public int getRuns() { |
|---|
| 435 | return m_nRuns; |
|---|
| 436 | } // getRuns |
|---|
| 437 | |
|---|
| 438 | /** |
|---|
| 439 | * Sets the number of runs |
|---|
| 440 | * @param nRuns The number of runs to set |
|---|
| 441 | */ |
|---|
| 442 | public void setRuns(int nRuns) { |
|---|
| 443 | m_nRuns = nRuns; |
|---|
| 444 | } // setRuns |
|---|
| 445 | |
|---|
| 446 | /** |
|---|
| 447 | * Returns an enumeration describing the available options. |
|---|
| 448 | * |
|---|
| 449 | * @return an enumeration of all the available options. |
|---|
| 450 | */ |
|---|
| 451 | public Enumeration listOptions() { |
|---|
| 452 | Vector newVector = new Vector(7); |
|---|
| 453 | |
|---|
| 454 | newVector.addElement(new Option("\tPopulation size", "L", 1, "-L <integer>")); |
|---|
| 455 | newVector.addElement(new Option("\tDescendant population size", "A", 1, "-A <integer>")); |
|---|
| 456 | newVector.addElement(new Option("\tNumber of runs", "U", 1, "-U <integer>")); |
|---|
| 457 | newVector.addElement(new Option("\tUse mutation.\n\t(default true)", "M", 0, "-M")); |
|---|
| 458 | newVector.addElement(new Option("\tUse cross-over.\n\t(default true)", "C", 0, "-C")); |
|---|
| 459 | newVector.addElement(new Option("\tUse tournament selection (true) or maximum subpopulatin (false).\n\t(default false)", "O", 0, "-O")); |
|---|
| 460 | newVector.addElement(new Option("\tRandom number seed", "R", 1, "-R <seed>")); |
|---|
| 461 | |
|---|
| 462 | Enumeration enu = super.listOptions(); |
|---|
| 463 | while (enu.hasMoreElements()) { |
|---|
| 464 | newVector.addElement(enu.nextElement()); |
|---|
| 465 | } |
|---|
| 466 | return newVector.elements(); |
|---|
| 467 | } // listOptions |
|---|
| 468 | |
|---|
| 469 | /** |
|---|
| 470 | * Parses a given list of options. <p/> |
|---|
| 471 | * |
|---|
| 472 | <!-- options-start --> |
|---|
| 473 | * Valid options are: <p/> |
|---|
| 474 | * |
|---|
| 475 | * <pre> -L <integer> |
|---|
| 476 | * Population size</pre> |
|---|
| 477 | * |
|---|
| 478 | * <pre> -A <integer> |
|---|
| 479 | * Descendant population size</pre> |
|---|
| 480 | * |
|---|
| 481 | * <pre> -U <integer> |
|---|
| 482 | * Number of runs</pre> |
|---|
| 483 | * |
|---|
| 484 | * <pre> -M |
|---|
| 485 | * Use mutation. |
|---|
| 486 | * (default true)</pre> |
|---|
| 487 | * |
|---|
| 488 | * <pre> -C |
|---|
| 489 | * Use cross-over. |
|---|
| 490 | * (default true)</pre> |
|---|
| 491 | * |
|---|
| 492 | * <pre> -O |
|---|
| 493 | * Use tournament selection (true) or maximum subpopulatin (false). |
|---|
| 494 | * (default false)</pre> |
|---|
| 495 | * |
|---|
| 496 | * <pre> -R <seed> |
|---|
| 497 | * Random number seed</pre> |
|---|
| 498 | * |
|---|
| 499 | * <pre> -mbc |
|---|
| 500 | * Applies a Markov Blanket correction to the network structure, |
|---|
| 501 | * after a network structure is learned. This ensures that all |
|---|
| 502 | * nodes in the network are part of the Markov blanket of the |
|---|
| 503 | * classifier node.</pre> |
|---|
| 504 | * |
|---|
| 505 | * <pre> -S [LOO-CV|k-Fold-CV|Cumulative-CV] |
|---|
| 506 | * Score type (LOO-CV,k-Fold-CV,Cumulative-CV)</pre> |
|---|
| 507 | * |
|---|
| 508 | * <pre> -Q |
|---|
| 509 | * Use probabilistic or 0/1 scoring. |
|---|
| 510 | * (default probabilistic scoring)</pre> |
|---|
| 511 | * |
|---|
| 512 | <!-- options-end --> |
|---|
| 513 | * |
|---|
| 514 | * @param options the list of options as an array of strings |
|---|
| 515 | * @throws Exception if an option is not supported |
|---|
| 516 | */ |
|---|
| 517 | public void setOptions(String[] options) throws Exception { |
|---|
| 518 | String sPopulationSize = Utils.getOption('L', options); |
|---|
| 519 | if (sPopulationSize.length() != 0) { |
|---|
| 520 | setPopulationSize(Integer.parseInt(sPopulationSize)); |
|---|
| 521 | } |
|---|
| 522 | String sDescendantPopulationSize = Utils.getOption('A', options); |
|---|
| 523 | if (sDescendantPopulationSize.length() != 0) { |
|---|
| 524 | setDescendantPopulationSize(Integer.parseInt(sDescendantPopulationSize)); |
|---|
| 525 | } |
|---|
| 526 | String sRuns = Utils.getOption('U', options); |
|---|
| 527 | if (sRuns.length() != 0) { |
|---|
| 528 | setRuns(Integer.parseInt(sRuns)); |
|---|
| 529 | } |
|---|
| 530 | String sSeed = Utils.getOption('R', options); |
|---|
| 531 | if (sSeed.length() != 0) { |
|---|
| 532 | setSeed(Integer.parseInt(sSeed)); |
|---|
| 533 | } |
|---|
| 534 | setUseMutation(Utils.getFlag('M', options)); |
|---|
| 535 | setUseCrossOver(Utils.getFlag('C', options)); |
|---|
| 536 | setUseTournamentSelection(Utils.getFlag('O', options)); |
|---|
| 537 | |
|---|
| 538 | super.setOptions(options); |
|---|
| 539 | } // setOptions |
|---|
| 540 | |
|---|
| 541 | /** |
|---|
| 542 | * Gets the current settings of the search algorithm. |
|---|
| 543 | * |
|---|
| 544 | * @return an array of strings suitable for passing to setOptions |
|---|
| 545 | */ |
|---|
| 546 | public String[] getOptions() { |
|---|
| 547 | String[] superOptions = super.getOptions(); |
|---|
| 548 | String[] options = new String[11 + superOptions.length]; |
|---|
| 549 | int current = 0; |
|---|
| 550 | |
|---|
| 551 | options[current++] = "-L"; |
|---|
| 552 | options[current++] = "" + getPopulationSize(); |
|---|
| 553 | |
|---|
| 554 | options[current++] = "-A"; |
|---|
| 555 | options[current++] = "" + getDescendantPopulationSize(); |
|---|
| 556 | |
|---|
| 557 | options[current++] = "-U"; |
|---|
| 558 | options[current++] = "" + getRuns(); |
|---|
| 559 | |
|---|
| 560 | options[current++] = "-R"; |
|---|
| 561 | options[current++] = "" + getSeed(); |
|---|
| 562 | |
|---|
| 563 | if (getUseMutation()) { |
|---|
| 564 | options[current++] = "-M"; |
|---|
| 565 | } |
|---|
| 566 | if (getUseCrossOver()) { |
|---|
| 567 | options[current++] = "-C"; |
|---|
| 568 | } |
|---|
| 569 | if (getUseTournamentSelection()) { |
|---|
| 570 | options[current++] = "-O"; |
|---|
| 571 | } |
|---|
| 572 | |
|---|
| 573 | // insert options from parent class |
|---|
| 574 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
|---|
| 575 | options[current++] = superOptions[iOption]; |
|---|
| 576 | } |
|---|
| 577 | |
|---|
| 578 | // Fill up rest with empty strings, not nulls! |
|---|
| 579 | while (current < options.length) { |
|---|
| 580 | options[current++] = ""; |
|---|
| 581 | } |
|---|
| 582 | return options; |
|---|
| 583 | } // getOptions |
|---|
| 584 | |
|---|
| 585 | /** |
|---|
| 586 | * @return whether cross-over is used |
|---|
| 587 | */ |
|---|
| 588 | public boolean getUseCrossOver() { |
|---|
| 589 | return m_bUseCrossOver; |
|---|
| 590 | } |
|---|
| 591 | |
|---|
| 592 | /** |
|---|
| 593 | * @return whether mutation is used |
|---|
| 594 | */ |
|---|
| 595 | public boolean getUseMutation() { |
|---|
| 596 | return m_bUseMutation; |
|---|
| 597 | } |
|---|
| 598 | |
|---|
| 599 | /** |
|---|
| 600 | * @return descendant population size |
|---|
| 601 | */ |
|---|
| 602 | public int getDescendantPopulationSize() { |
|---|
| 603 | return m_nDescendantPopulationSize; |
|---|
| 604 | } |
|---|
| 605 | |
|---|
| 606 | /** |
|---|
| 607 | * @return population size |
|---|
| 608 | */ |
|---|
| 609 | public int getPopulationSize() { |
|---|
| 610 | return m_nPopulationSize; |
|---|
| 611 | } |
|---|
| 612 | |
|---|
| 613 | /** |
|---|
| 614 | * @param bUseCrossOver sets whether cross-over is used |
|---|
| 615 | */ |
|---|
| 616 | public void setUseCrossOver(boolean bUseCrossOver) { |
|---|
| 617 | m_bUseCrossOver = bUseCrossOver; |
|---|
| 618 | } |
|---|
| 619 | |
|---|
| 620 | /** |
|---|
| 621 | * @param bUseMutation sets whether mutation is used |
|---|
| 622 | */ |
|---|
| 623 | public void setUseMutation(boolean bUseMutation) { |
|---|
| 624 | m_bUseMutation = bUseMutation; |
|---|
| 625 | } |
|---|
| 626 | |
|---|
| 627 | /** |
|---|
| 628 | * @return whether Tournament Selection (true) or Maximum Sub-Population (false) should be used |
|---|
| 629 | */ |
|---|
| 630 | public boolean getUseTournamentSelection() { |
|---|
| 631 | return m_bUseTournamentSelection; |
|---|
| 632 | } |
|---|
| 633 | |
|---|
| 634 | /** |
|---|
| 635 | * @param bUseTournamentSelection sets whether Tournament Selection or Maximum Sub-Population should be used |
|---|
| 636 | */ |
|---|
| 637 | public void setUseTournamentSelection(boolean bUseTournamentSelection) { |
|---|
| 638 | m_bUseTournamentSelection = bUseTournamentSelection; |
|---|
| 639 | } |
|---|
| 640 | |
|---|
| 641 | /** |
|---|
| 642 | * @param iDescendantPopulationSize sets descendant population size |
|---|
| 643 | */ |
|---|
| 644 | public void setDescendantPopulationSize(int iDescendantPopulationSize) { |
|---|
| 645 | m_nDescendantPopulationSize = iDescendantPopulationSize; |
|---|
| 646 | } |
|---|
| 647 | |
|---|
| 648 | /** |
|---|
| 649 | * @param iPopulationSize sets population size |
|---|
| 650 | */ |
|---|
| 651 | public void setPopulationSize(int iPopulationSize) { |
|---|
| 652 | m_nPopulationSize = iPopulationSize; |
|---|
| 653 | } |
|---|
| 654 | |
|---|
| 655 | /** |
|---|
| 656 | * @return random number seed |
|---|
| 657 | */ |
|---|
| 658 | public int getSeed() { |
|---|
| 659 | return m_nSeed; |
|---|
| 660 | } // getSeed |
|---|
| 661 | |
|---|
| 662 | /** |
|---|
| 663 | * Sets the random number seed |
|---|
| 664 | * @param nSeed The number of the seed to set |
|---|
| 665 | */ |
|---|
| 666 | public void setSeed(int nSeed) { |
|---|
| 667 | m_nSeed = nSeed; |
|---|
| 668 | } // setSeed |
|---|
| 669 | |
|---|
| 670 | /** |
|---|
| 671 | * This will return a string describing the classifier. |
|---|
| 672 | * @return The string. |
|---|
| 673 | */ |
|---|
| 674 | public String globalInfo() { |
|---|
| 675 | return "This Bayes Network learning algorithm uses genetic search for finding a well scoring " + |
|---|
| 676 | "Bayes network structure. Genetic search works by having a population of Bayes network structures " + |
|---|
| 677 | "and allow them to mutate and apply cross over to get offspring. The best network structure " + |
|---|
| 678 | "found during the process is returned."; |
|---|
| 679 | } // globalInfo |
|---|
| 680 | |
|---|
| 681 | /** |
|---|
| 682 | * @return a string to describe the Runs option. |
|---|
| 683 | */ |
|---|
| 684 | public String runsTipText() { |
|---|
| 685 | return "Sets the number of generations of Bayes network structure populations."; |
|---|
| 686 | } // runsTipText |
|---|
| 687 | |
|---|
| 688 | /** |
|---|
| 689 | * @return a string to describe the Seed option. |
|---|
| 690 | */ |
|---|
| 691 | public String seedTipText() { |
|---|
| 692 | return "Initialization value for random number generator." + |
|---|
| 693 | " Setting the seed allows replicability of experiments."; |
|---|
| 694 | } // seedTipText |
|---|
| 695 | |
|---|
| 696 | /** |
|---|
| 697 | * @return a string to describe the Population Size option. |
|---|
| 698 | */ |
|---|
| 699 | public String populationSizeTipText() { |
|---|
| 700 | return "Sets the size of the population of network structures that is selected each generation."; |
|---|
| 701 | } // populationSizeTipText |
|---|
| 702 | |
|---|
| 703 | /** |
|---|
| 704 | * @return a string to describe the Descendant Population Size option. |
|---|
| 705 | */ |
|---|
| 706 | public String descendantPopulationSizeTipText() { |
|---|
| 707 | return "Sets the size of the population of descendants that is created each generation."; |
|---|
| 708 | } // descendantPopulationSizeTipText |
|---|
| 709 | |
|---|
| 710 | /** |
|---|
| 711 | * @return a string to describe the Use Mutation option. |
|---|
| 712 | */ |
|---|
| 713 | public String useMutationTipText() { |
|---|
| 714 | return "Determines whether mutation is allowed. Mutation flips a bit in the bit " + |
|---|
| 715 | "representation of the network structure. At least one of mutation or cross-over " + |
|---|
| 716 | "should be used."; |
|---|
| 717 | } // useMutationTipText |
|---|
| 718 | |
|---|
| 719 | /** |
|---|
| 720 | * @return a string to describe the Use Cross-Over option. |
|---|
| 721 | */ |
|---|
| 722 | public String useCrossOverTipText() { |
|---|
| 723 | return "Determines whether cross-over is allowed. Cross over combined the bit " + |
|---|
| 724 | "representations of network structure by taking a random first k bits of one" + |
|---|
| 725 | "and adding the remainder of the other. At least one of mutation or cross-over " + |
|---|
| 726 | "should be used."; |
|---|
| 727 | } // useCrossOverTipText |
|---|
| 728 | |
|---|
| 729 | /** |
|---|
| 730 | * @return a string to describe the Use Tournament Selection option. |
|---|
| 731 | */ |
|---|
| 732 | public String useTournamentSelectionTipText() { |
|---|
| 733 | return "Determines the method of selecting a population. When set to true, tournament " + |
|---|
| 734 | "selection is used (pick two at random and the highest is allowed to continue). " + |
|---|
| 735 | "When set to false, the top scoring network structures are selected."; |
|---|
| 736 | } // useTournamentSelectionTipText |
|---|
| 737 | |
|---|
| 738 | /** |
|---|
| 739 | * Returns the revision string. |
|---|
| 740 | * |
|---|
| 741 | * @return the revision |
|---|
| 742 | */ |
|---|
| 743 | public String getRevision() { |
|---|
| 744 | return RevisionUtils.extract("$Revision: 1.5 $"); |
|---|
| 745 | } |
|---|
| 746 | } // GeneticSearch |
|---|