1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * CISearchAlgorithm.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes.net.search.ci; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.BayesNet; |
---|
26 | import weka.classifiers.bayes.net.ParentSet; |
---|
27 | import weka.classifiers.bayes.net.search.local.LocalScoreSearchAlgorithm; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.RevisionUtils; |
---|
30 | |
---|
31 | /** |
---|
32 | <!-- globalinfo-start --> |
---|
33 | * The CISearchAlgorithm class supports Bayes net structure search algorithms that are based on conditional independence test (as opposed to for example score based of cross validation based search algorithms). |
---|
34 | * <p/> |
---|
35 | <!-- globalinfo-end --> |
---|
36 | * |
---|
37 | <!-- options-start --> |
---|
38 | * Valid options are: <p/> |
---|
39 | * |
---|
40 | * <pre> -mbc |
---|
41 | * Applies a Markov Blanket correction to the network structure, |
---|
42 | * after a network structure is learned. This ensures that all |
---|
43 | * nodes in the network are part of the Markov blanket of the |
---|
44 | * classifier node.</pre> |
---|
45 | * |
---|
46 | * <pre> -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES] |
---|
47 | * Score type (BAYES, BDeu, MDL, ENTROPY and AIC)</pre> |
---|
48 | * |
---|
49 | <!-- options-end --> |
---|
50 | * |
---|
51 | * @author Remco Bouckaert (rrb@xm.co.nz) |
---|
52 | * @version $Revision: 1.7 $ |
---|
53 | */ |
---|
54 | public class CISearchAlgorithm |
---|
55 | extends LocalScoreSearchAlgorithm { |
---|
56 | |
---|
57 | /** for serialization */ |
---|
58 | static final long serialVersionUID = 3165802334119704560L; |
---|
59 | |
---|
60 | BayesNet m_BayesNet; |
---|
61 | Instances m_instances; |
---|
62 | |
---|
63 | /** |
---|
64 | * Returns a string describing this object |
---|
65 | * @return a description of the classifier suitable for |
---|
66 | * displaying in the explorer/experimenter gui |
---|
67 | */ |
---|
68 | public String globalInfo() { |
---|
69 | return |
---|
70 | "The CISearchAlgorithm class supports Bayes net structure " |
---|
71 | + "search algorithms that are based on conditional independence " |
---|
72 | + "test (as opposed to for example score based of cross validation " |
---|
73 | + "based search algorithms)."; |
---|
74 | } |
---|
75 | |
---|
76 | /** IsConditionalIndependent tests whether two nodes X and Y are independent |
---|
77 | * given a set of variables Z. The test compares the score of the Bayes network |
---|
78 | * with and without arrow Y->X where all nodes in Z are parents of X. |
---|
79 | * @param iAttributeX - index of attribute representing variable X |
---|
80 | * @param iAttributeY - index of attribute representing variable Y |
---|
81 | * @param iAttributesZ - array of integers representing indices of attributes in set Z |
---|
82 | * @param nAttributesZ - cardinality of Z |
---|
83 | * @return true if X and Y conditionally independent given Z |
---|
84 | */ |
---|
85 | protected boolean isConditionalIndependent( |
---|
86 | int iAttributeX, |
---|
87 | int iAttributeY, |
---|
88 | int [] iAttributesZ, |
---|
89 | int nAttributesZ) { |
---|
90 | ParentSet oParentSetX = m_BayesNet.getParentSet(iAttributeX); |
---|
91 | // clear parent set of AttributeX |
---|
92 | while (oParentSetX.getNrOfParents() > 0) { |
---|
93 | oParentSetX.deleteLastParent(m_instances); |
---|
94 | } |
---|
95 | |
---|
96 | // insert parents in iAttributeZ |
---|
97 | for (int iAttributeZ = 0; iAttributeZ < nAttributesZ; iAttributeZ++) { |
---|
98 | oParentSetX.addParent( iAttributesZ[iAttributeZ], m_instances); |
---|
99 | } |
---|
100 | |
---|
101 | double fScoreZ = calcNodeScore(iAttributeX); |
---|
102 | double fScoreZY = calcScoreWithExtraParent(iAttributeX, iAttributeY); |
---|
103 | if (fScoreZY <= fScoreZ) { |
---|
104 | // the score does not improve by adding Y to the parent set of X |
---|
105 | // so we conclude that nodes X and Y are conditionally independent |
---|
106 | // given the set of variables Z |
---|
107 | return true; |
---|
108 | } |
---|
109 | return false; |
---|
110 | } // IsConditionalIndependent |
---|
111 | |
---|
112 | /** |
---|
113 | * Returns the revision string. |
---|
114 | * |
---|
115 | * @return the revision |
---|
116 | */ |
---|
117 | public String getRevision() { |
---|
118 | return RevisionUtils.extract("$Revision: 1.7 $"); |
---|
119 | } |
---|
120 | } // class CISearchAlgorithm |
---|