1 | |
---|
2 | /* |
---|
3 | * This program is free software; you can redistribute it and/or modify |
---|
4 | * it under the terms of the GNU General Public License as published by |
---|
5 | * the Free Software Foundation; either version 2 of the License, or |
---|
6 | * (at your option) any later version. |
---|
7 | * |
---|
8 | * This program is distributed in the hope that it will be useful, |
---|
9 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
10 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
11 | * GNU General Public License for more details. |
---|
12 | * |
---|
13 | * You should have received a copy of the GNU General Public License |
---|
14 | * along with this program; if not, write to the Free Software |
---|
15 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
16 | */ |
---|
17 | |
---|
18 | /* |
---|
19 | * DiscreteEstimatorBayes.java |
---|
20 | * Adapted from DiscreteEstimator.java |
---|
21 | * |
---|
22 | */ |
---|
23 | package weka.classifiers.bayes.net.estimate; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.net.search.local.Scoreable; |
---|
26 | import weka.core.RevisionUtils; |
---|
27 | import weka.core.Statistics; |
---|
28 | import weka.core.Utils; |
---|
29 | import weka.estimators.DiscreteEstimator; |
---|
30 | import weka.estimators.Estimator; |
---|
31 | |
---|
32 | /** |
---|
33 | * Symbolic probability estimator based on symbol counts and a prior. |
---|
34 | * |
---|
35 | * @author Remco Bouckaert (rrb@xm.co.nz) |
---|
36 | * @version $Revision: 1.7 $ |
---|
37 | */ |
---|
38 | public class DiscreteEstimatorBayes extends Estimator |
---|
39 | implements Scoreable { |
---|
40 | |
---|
41 | /** for serialization */ |
---|
42 | static final long serialVersionUID = 4215400230843212684L; |
---|
43 | |
---|
44 | /** |
---|
45 | * Hold the counts |
---|
46 | */ |
---|
47 | protected double[] m_Counts; |
---|
48 | |
---|
49 | /** |
---|
50 | * Hold the sum of counts |
---|
51 | */ |
---|
52 | protected double m_SumOfCounts; |
---|
53 | |
---|
54 | /** |
---|
55 | * Holds number of symbols in distribution |
---|
56 | */ |
---|
57 | protected int m_nSymbols = 0; |
---|
58 | |
---|
59 | /** |
---|
60 | * Holds the prior probability |
---|
61 | */ |
---|
62 | protected double m_fPrior = 0.0; |
---|
63 | |
---|
64 | /** |
---|
65 | * Constructor |
---|
66 | * |
---|
67 | * @param nSymbols the number of possible symbols (remember to include 0) |
---|
68 | * @param fPrior |
---|
69 | */ |
---|
70 | public DiscreteEstimatorBayes(int nSymbols, double fPrior) { |
---|
71 | m_fPrior = fPrior; |
---|
72 | m_nSymbols = nSymbols; |
---|
73 | m_Counts = new double[m_nSymbols]; |
---|
74 | |
---|
75 | for (int iSymbol = 0; iSymbol < m_nSymbols; iSymbol++) { |
---|
76 | m_Counts[iSymbol] = m_fPrior; |
---|
77 | } |
---|
78 | |
---|
79 | m_SumOfCounts = m_fPrior * (double) m_nSymbols; |
---|
80 | } // DiscreteEstimatorBayes |
---|
81 | |
---|
82 | /** |
---|
83 | * Add a new data value to the current estimator. |
---|
84 | * |
---|
85 | * @param data the new data value |
---|
86 | * @param weight the weight assigned to the data value |
---|
87 | */ |
---|
88 | public void addValue(double data, double weight) { |
---|
89 | m_Counts[(int) data] += weight; |
---|
90 | m_SumOfCounts += weight; |
---|
91 | } |
---|
92 | |
---|
93 | /** |
---|
94 | * Get a probability estimate for a value |
---|
95 | * |
---|
96 | * @param data the value to estimate the probability of |
---|
97 | * @return the estimated probability of the supplied value |
---|
98 | */ |
---|
99 | public double getProbability(double data) { |
---|
100 | if (m_SumOfCounts == 0) { |
---|
101 | |
---|
102 | // this can only happen if numSymbols = 0 in constructor |
---|
103 | return 0; |
---|
104 | } |
---|
105 | |
---|
106 | return (double) m_Counts[(int) data] / m_SumOfCounts; |
---|
107 | } |
---|
108 | |
---|
109 | /** |
---|
110 | * Get a counts for a value |
---|
111 | * |
---|
112 | * @param data the value to get the counts for |
---|
113 | * @return the count of the supplied value |
---|
114 | */ |
---|
115 | public double getCount(double data) { |
---|
116 | if (m_SumOfCounts == 0) { |
---|
117 | // this can only happen if numSymbols = 0 in constructor |
---|
118 | return 0; |
---|
119 | } |
---|
120 | |
---|
121 | return m_Counts[(int) data]; |
---|
122 | } |
---|
123 | |
---|
124 | /** |
---|
125 | * Gets the number of symbols this estimator operates with |
---|
126 | * |
---|
127 | * @return the number of estimator symbols |
---|
128 | */ |
---|
129 | public int getNumSymbols() { |
---|
130 | return (m_Counts == null) ? 0 : m_Counts.length; |
---|
131 | } |
---|
132 | |
---|
133 | /** |
---|
134 | * Gets the log score contribution of this distribution |
---|
135 | * @param nType score type |
---|
136 | * @return the score |
---|
137 | */ |
---|
138 | public double logScore(int nType, int nCardinality) { |
---|
139 | double fScore = 0.0; |
---|
140 | |
---|
141 | switch (nType) { |
---|
142 | |
---|
143 | case (Scoreable.BAYES): { |
---|
144 | for (int iSymbol = 0; iSymbol < m_nSymbols; iSymbol++) { |
---|
145 | fScore += Statistics.lnGamma(m_Counts[iSymbol]); |
---|
146 | } |
---|
147 | |
---|
148 | fScore -= Statistics.lnGamma(m_SumOfCounts); |
---|
149 | if (m_fPrior != 0.0) { |
---|
150 | fScore -= m_nSymbols * Statistics.lnGamma(m_fPrior); |
---|
151 | fScore += Statistics.lnGamma(m_nSymbols * m_fPrior); |
---|
152 | } |
---|
153 | } |
---|
154 | |
---|
155 | break; |
---|
156 | case (Scoreable.BDeu): { |
---|
157 | for (int iSymbol = 0; iSymbol < m_nSymbols; iSymbol++) { |
---|
158 | fScore += Statistics.lnGamma(m_Counts[iSymbol]); |
---|
159 | } |
---|
160 | |
---|
161 | fScore -= Statistics.lnGamma(m_SumOfCounts); |
---|
162 | //fScore -= m_nSymbols * Statistics.lnGamma(1.0); |
---|
163 | //fScore += Statistics.lnGamma(m_nSymbols * 1.0); |
---|
164 | fScore -= m_nSymbols * Statistics.lnGamma(1.0/(m_nSymbols * nCardinality)); |
---|
165 | fScore += Statistics.lnGamma(1.0/nCardinality); |
---|
166 | } |
---|
167 | break; |
---|
168 | |
---|
169 | case (Scoreable.MDL): |
---|
170 | |
---|
171 | case (Scoreable.AIC): |
---|
172 | |
---|
173 | case (Scoreable.ENTROPY): { |
---|
174 | for (int iSymbol = 0; iSymbol < m_nSymbols; iSymbol++) { |
---|
175 | double fP = getProbability(iSymbol); |
---|
176 | |
---|
177 | fScore += m_Counts[iSymbol] * Math.log(fP); |
---|
178 | } |
---|
179 | } |
---|
180 | |
---|
181 | break; |
---|
182 | |
---|
183 | default: {} |
---|
184 | } |
---|
185 | |
---|
186 | return fScore; |
---|
187 | } |
---|
188 | |
---|
189 | /** |
---|
190 | * Display a representation of this estimator |
---|
191 | * |
---|
192 | * @return a string representation of the estimator |
---|
193 | */ |
---|
194 | public String toString() { |
---|
195 | String result = "Discrete Estimator. Counts = "; |
---|
196 | |
---|
197 | if (m_SumOfCounts > 1) { |
---|
198 | for (int i = 0; i < m_Counts.length; i++) { |
---|
199 | result += " " + Utils.doubleToString(m_Counts[i], 2); |
---|
200 | } |
---|
201 | |
---|
202 | result += " (Total = " + Utils.doubleToString(m_SumOfCounts, 2) |
---|
203 | + ")\n"; |
---|
204 | } else { |
---|
205 | for (int i = 0; i < m_Counts.length; i++) { |
---|
206 | result += " " + m_Counts[i]; |
---|
207 | } |
---|
208 | |
---|
209 | result += " (Total = " + m_SumOfCounts + ")\n"; |
---|
210 | } |
---|
211 | |
---|
212 | return result; |
---|
213 | } |
---|
214 | |
---|
215 | /** |
---|
216 | * Returns the revision string. |
---|
217 | * |
---|
218 | * @return the revision |
---|
219 | */ |
---|
220 | public String getRevision() { |
---|
221 | return RevisionUtils.extract("$Revision: 1.7 $"); |
---|
222 | } |
---|
223 | |
---|
224 | /** |
---|
225 | * Main method for testing this class. |
---|
226 | * |
---|
227 | * @param argv should contain a sequence of integers which |
---|
228 | * will be treated as symbolic. |
---|
229 | */ |
---|
230 | public static void main(String[] argv) { |
---|
231 | try { |
---|
232 | if (argv.length == 0) { |
---|
233 | System.out.println("Please specify a set of instances."); |
---|
234 | |
---|
235 | return; |
---|
236 | } |
---|
237 | |
---|
238 | int current = Integer.parseInt(argv[0]); |
---|
239 | int max = current; |
---|
240 | |
---|
241 | for (int i = 1; i < argv.length; i++) { |
---|
242 | current = Integer.parseInt(argv[i]); |
---|
243 | |
---|
244 | if (current > max) { |
---|
245 | max = current; |
---|
246 | } |
---|
247 | } |
---|
248 | |
---|
249 | DiscreteEstimator newEst = new DiscreteEstimator(max + 1, true); |
---|
250 | |
---|
251 | for (int i = 0; i < argv.length; i++) { |
---|
252 | current = Integer.parseInt(argv[i]); |
---|
253 | |
---|
254 | System.out.println(newEst); |
---|
255 | System.out.println("Prediction for " + current + " = " |
---|
256 | + newEst.getProbability(current)); |
---|
257 | newEst.addValue(current, 1); |
---|
258 | } |
---|
259 | } catch (Exception e) { |
---|
260 | System.out.println(e.getMessage()); |
---|
261 | } |
---|
262 | } // main |
---|
263 | |
---|
264 | } // class DiscreteEstimatorBayes |
---|