1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * BayesNetEstimator.java |
---|
19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.classifiers.bayes.net.estimate; |
---|
24 | |
---|
25 | import weka.classifiers.bayes.BayesNet; |
---|
26 | import weka.core.Instance; |
---|
27 | import weka.core.Option; |
---|
28 | import weka.core.OptionHandler; |
---|
29 | import weka.core.RevisionHandler; |
---|
30 | import weka.core.RevisionUtils; |
---|
31 | import weka.core.Utils; |
---|
32 | |
---|
33 | import java.io.Serializable; |
---|
34 | import java.util.Enumeration; |
---|
35 | import java.util.Vector; |
---|
36 | |
---|
37 | /** |
---|
38 | <!-- globalinfo-start --> |
---|
39 | * BayesNetEstimator is the base class for estimating the conditional probability tables of a Bayes network once the structure has been learned. |
---|
40 | * <p/> |
---|
41 | <!-- globalinfo-end --> |
---|
42 | * |
---|
43 | <!-- options-start --> |
---|
44 | * Valid options are: <p/> |
---|
45 | * |
---|
46 | * <pre> -A <alpha> |
---|
47 | * Initial count (alpha) |
---|
48 | * </pre> |
---|
49 | * |
---|
50 | <!-- options-end --> |
---|
51 | * |
---|
52 | * @author Remco Bouckaert (rrb@xm.co.nz) |
---|
53 | * @version $Revision: 1.4 $ |
---|
54 | */ |
---|
55 | public class BayesNetEstimator |
---|
56 | implements OptionHandler, Serializable, RevisionHandler { |
---|
57 | |
---|
58 | /** for serialization */ |
---|
59 | static final long serialVersionUID = 2184330197666253884L; |
---|
60 | |
---|
61 | /** |
---|
62 | * Holds prior on count |
---|
63 | */ |
---|
64 | protected double m_fAlpha = 0.5; |
---|
65 | |
---|
66 | /** |
---|
67 | * estimateCPTs estimates the conditional probability tables for the Bayes |
---|
68 | * Net using the network structure. |
---|
69 | * |
---|
70 | * @param bayesNet the bayes net to use |
---|
71 | * @throws Exception always throws an exception, since subclass needs to be used |
---|
72 | */ |
---|
73 | public void estimateCPTs(BayesNet bayesNet) throws Exception { |
---|
74 | throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); |
---|
75 | } |
---|
76 | |
---|
77 | /** |
---|
78 | * Updates the classifier with the given instance. |
---|
79 | * |
---|
80 | * @param bayesNet the bayes net to use |
---|
81 | * @param instance the new training instance to include in the model |
---|
82 | * @throws Exception always throws an exception, since subclass needs to be used |
---|
83 | */ |
---|
84 | public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception { |
---|
85 | throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); |
---|
86 | } |
---|
87 | |
---|
88 | /** |
---|
89 | * Calculates the class membership probabilities for the given test |
---|
90 | * instance. |
---|
91 | * |
---|
92 | * @param bayesNet the bayes net to use |
---|
93 | * @param instance the instance to be classified |
---|
94 | * @return predicted class probability distribution |
---|
95 | * @throws Exception always throws an exception, since subclass needs to be used |
---|
96 | */ |
---|
97 | public double[] distributionForInstance(BayesNet bayesNet, Instance instance) throws Exception { |
---|
98 | throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); |
---|
99 | } |
---|
100 | |
---|
101 | /** |
---|
102 | * initCPTs reserves space for CPTs and set all counts to zero |
---|
103 | * |
---|
104 | * @param bayesNet the bayes net to use |
---|
105 | * @throws Exception always throws an exception, since subclass needs to be used |
---|
106 | */ |
---|
107 | public void initCPTs(BayesNet bayesNet) throws Exception { |
---|
108 | throw new Exception("Incorrect BayesNetEstimator: use subclass instead."); |
---|
109 | } // initCPTs |
---|
110 | |
---|
111 | /** |
---|
112 | * Returns an enumeration describing the available options |
---|
113 | * |
---|
114 | * @return an enumeration of all the available options |
---|
115 | */ |
---|
116 | public Enumeration listOptions() { |
---|
117 | Vector newVector = new Vector(1); |
---|
118 | |
---|
119 | newVector.addElement(new Option("\tInitial count (alpha)\n", "A", 1, "-A <alpha>")); |
---|
120 | |
---|
121 | return newVector.elements(); |
---|
122 | } // listOptions |
---|
123 | |
---|
124 | /** |
---|
125 | * Parses a given list of options. <p/> |
---|
126 | * |
---|
127 | <!-- options-start --> |
---|
128 | * Valid options are: <p/> |
---|
129 | * |
---|
130 | * <pre> -A <alpha> |
---|
131 | * Initial count (alpha) |
---|
132 | * </pre> |
---|
133 | * |
---|
134 | <!-- options-end --> |
---|
135 | * |
---|
136 | * @param options the list of options as an array of strings |
---|
137 | * @throws Exception if an option is not supported |
---|
138 | */ |
---|
139 | public void setOptions(String[] options) throws Exception { |
---|
140 | String sAlpha = Utils.getOption('A', options); |
---|
141 | |
---|
142 | if (sAlpha.length() != 0) { |
---|
143 | m_fAlpha = (new Float(sAlpha)).floatValue(); |
---|
144 | } else { |
---|
145 | m_fAlpha = 0.5f; |
---|
146 | } |
---|
147 | |
---|
148 | Utils.checkForRemainingOptions(options); |
---|
149 | } // setOptions |
---|
150 | |
---|
151 | /** |
---|
152 | * Gets the current settings of the classifier. |
---|
153 | * |
---|
154 | * @return an array of strings suitable for passing to setOptions |
---|
155 | */ |
---|
156 | public String[] getOptions() { |
---|
157 | String[] options = new String[2]; |
---|
158 | int current = 0; |
---|
159 | |
---|
160 | options[current++] = "-A"; |
---|
161 | options[current++] = "" + m_fAlpha; |
---|
162 | |
---|
163 | return options; |
---|
164 | } // getOptions |
---|
165 | |
---|
166 | /** |
---|
167 | * Set prior used in probability table estimation |
---|
168 | * @param fAlpha representing prior |
---|
169 | */ |
---|
170 | public void setAlpha(double fAlpha) { |
---|
171 | m_fAlpha = fAlpha; |
---|
172 | } |
---|
173 | |
---|
174 | /** |
---|
175 | * Get prior used in probability table estimation |
---|
176 | * @return prior |
---|
177 | */ |
---|
178 | public double getAlpha() { |
---|
179 | return m_fAlpha; |
---|
180 | } |
---|
181 | |
---|
182 | |
---|
183 | /** |
---|
184 | * @return a string to describe the Alpha option. |
---|
185 | */ |
---|
186 | public String alphaTipText() { |
---|
187 | return "Alpha is used for estimating the probability tables and can be interpreted" |
---|
188 | + " as the initial count on each value."; |
---|
189 | } |
---|
190 | |
---|
191 | /** |
---|
192 | * This will return a string describing the class. |
---|
193 | * @return The string. |
---|
194 | */ |
---|
195 | public String globalInfo() { |
---|
196 | return |
---|
197 | "BayesNetEstimator is the base class for estimating the " |
---|
198 | + "conditional probability tables of a Bayes network once the " |
---|
199 | + "structure has been learned."; |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Returns the revision string. |
---|
204 | * |
---|
205 | * @return the revision |
---|
206 | */ |
---|
207 | public String getRevision() { |
---|
208 | return RevisionUtils.extract("$Revision: 1.4 $"); |
---|
209 | } |
---|
210 | |
---|
211 | } // BayesNetEstimator |
---|