| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * BayesNet.java |
|---|
| 19 | * Copyright (C) 2004 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.classifiers.bayes.net.estimate; |
|---|
| 24 | |
|---|
| 25 | import weka.classifiers.bayes.BayesNet; |
|---|
| 26 | import weka.classifiers.bayes.net.search.local.K2; |
|---|
| 27 | import weka.core.Instance; |
|---|
| 28 | import weka.core.Instances; |
|---|
| 29 | import weka.core.Option; |
|---|
| 30 | import weka.core.RevisionUtils; |
|---|
| 31 | import weka.core.Statistics; |
|---|
| 32 | import weka.core.Utils; |
|---|
| 33 | import weka.estimators.Estimator; |
|---|
| 34 | |
|---|
| 35 | import java.util.Enumeration; |
|---|
| 36 | import java.util.Vector; |
|---|
| 37 | |
|---|
| 38 | /** |
|---|
| 39 | <!-- globalinfo-start --> |
|---|
| 40 | * BMAEstimator estimates conditional probability tables of a Bayes network using Bayes Model Averaging (BMA). |
|---|
| 41 | * <p/> |
|---|
| 42 | <!-- globalinfo-end --> |
|---|
| 43 | * |
|---|
| 44 | <!-- options-start --> |
|---|
| 45 | * Valid options are: <p/> |
|---|
| 46 | * |
|---|
| 47 | * <pre> -k2 |
|---|
| 48 | * Whether to use K2 prior. |
|---|
| 49 | * </pre> |
|---|
| 50 | * |
|---|
| 51 | * <pre> -A <alpha> |
|---|
| 52 | * Initial count (alpha) |
|---|
| 53 | * </pre> |
|---|
| 54 | * |
|---|
| 55 | <!-- options-end --> |
|---|
| 56 | * |
|---|
| 57 | * @author Remco Bouckaert (rrb@xm.co.nz) |
|---|
| 58 | * @version $Revision: 1.8 $ |
|---|
| 59 | */ |
|---|
| 60 | public class BMAEstimator |
|---|
| 61 | extends SimpleEstimator { |
|---|
| 62 | |
|---|
| 63 | /** for serialization */ |
|---|
| 64 | static final long serialVersionUID = -1846028304233257309L; |
|---|
| 65 | |
|---|
| 66 | /** whether to use K2 prior */ |
|---|
| 67 | protected boolean m_bUseK2Prior = false; |
|---|
| 68 | |
|---|
| 69 | /** |
|---|
| 70 | * Returns a string describing this object |
|---|
| 71 | * @return a description of the classifier suitable for |
|---|
| 72 | * displaying in the explorer/experimenter gui |
|---|
| 73 | */ |
|---|
| 74 | public String globalInfo() { |
|---|
| 75 | return |
|---|
| 76 | "BMAEstimator estimates conditional probability tables of a Bayes " |
|---|
| 77 | + "network using Bayes Model Averaging (BMA)."; |
|---|
| 78 | } |
|---|
| 79 | |
|---|
| 80 | /** |
|---|
| 81 | * estimateCPTs estimates the conditional probability tables for the Bayes |
|---|
| 82 | * Net using the network structure. |
|---|
| 83 | * |
|---|
| 84 | * @param bayesNet the bayes net to use |
|---|
| 85 | * @throws Exception if an error occurs |
|---|
| 86 | */ |
|---|
| 87 | public void estimateCPTs(BayesNet bayesNet) throws Exception { |
|---|
| 88 | initCPTs(bayesNet); |
|---|
| 89 | |
|---|
| 90 | Instances instances = bayesNet.m_Instances; |
|---|
| 91 | // sanity check to see if nodes have not more than one parent |
|---|
| 92 | for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { |
|---|
| 93 | if (bayesNet.getParentSet(iAttribute).getNrOfParents() > 1) { |
|---|
| 94 | throw new Exception("Cannot handle networks with nodes with more than 1 parent (yet)."); |
|---|
| 95 | } |
|---|
| 96 | } |
|---|
| 97 | |
|---|
| 98 | BayesNet EmptyNet = new BayesNet(); |
|---|
| 99 | K2 oSearchAlgorithm = new K2(); |
|---|
| 100 | oSearchAlgorithm.setInitAsNaiveBayes(false); |
|---|
| 101 | oSearchAlgorithm.setMaxNrOfParents(0); |
|---|
| 102 | EmptyNet.setSearchAlgorithm(oSearchAlgorithm); |
|---|
| 103 | EmptyNet.buildClassifier(instances); |
|---|
| 104 | |
|---|
| 105 | BayesNet NBNet = new BayesNet(); |
|---|
| 106 | oSearchAlgorithm.setInitAsNaiveBayes(true); |
|---|
| 107 | oSearchAlgorithm.setMaxNrOfParents(1); |
|---|
| 108 | NBNet.setSearchAlgorithm(oSearchAlgorithm); |
|---|
| 109 | NBNet.buildClassifier(instances); |
|---|
| 110 | |
|---|
| 111 | // estimate CPTs |
|---|
| 112 | for (int iAttribute = 0; iAttribute < instances.numAttributes(); iAttribute++) { |
|---|
| 113 | if (iAttribute != instances.classIndex()) { |
|---|
| 114 | double w1 = 0.0, w2 = 0.0; |
|---|
| 115 | int nAttValues = instances.attribute(iAttribute).numValues(); |
|---|
| 116 | if (m_bUseK2Prior == true) { |
|---|
| 117 | // use Cooper and Herskovitz's metric |
|---|
| 118 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
|---|
| 119 | w1 += Statistics.lnGamma(1 + ((DiscreteEstimatorBayes)EmptyNet.m_Distributions[iAttribute][0]).getCount(iAttValue)) |
|---|
| 120 | - Statistics.lnGamma(1); |
|---|
| 121 | } |
|---|
| 122 | w1 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + instances.numInstances()); |
|---|
| 123 | |
|---|
| 124 | for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { |
|---|
| 125 | int nTotal = 0; |
|---|
| 126 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
|---|
| 127 | double nCount = ((DiscreteEstimatorBayes)NBNet.m_Distributions[iAttribute][iParent]).getCount(iAttValue); |
|---|
| 128 | w2 += Statistics.lnGamma(1 + nCount) |
|---|
| 129 | - Statistics.lnGamma(1); |
|---|
| 130 | nTotal += nCount; |
|---|
| 131 | } |
|---|
| 132 | w2 += Statistics.lnGamma(nAttValues) - Statistics.lnGamma(nAttValues + nTotal); |
|---|
| 133 | } |
|---|
| 134 | } else { |
|---|
| 135 | // use BDe metric |
|---|
| 136 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
|---|
| 137 | w1 += Statistics.lnGamma(1.0/nAttValues + ((DiscreteEstimatorBayes)EmptyNet.m_Distributions[iAttribute][0]).getCount(iAttValue)) |
|---|
| 138 | - Statistics.lnGamma(1.0/nAttValues); |
|---|
| 139 | } |
|---|
| 140 | w1 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + instances.numInstances()); |
|---|
| 141 | |
|---|
| 142 | int nParentValues = bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); |
|---|
| 143 | for (int iParent = 0; iParent < nParentValues; iParent++) { |
|---|
| 144 | int nTotal = 0; |
|---|
| 145 | for (int iAttValue = 0; iAttValue < nAttValues; iAttValue++) { |
|---|
| 146 | double nCount = ((DiscreteEstimatorBayes)NBNet.m_Distributions[iAttribute][iParent]).getCount(iAttValue); |
|---|
| 147 | w2 += Statistics.lnGamma(1.0/(nAttValues * nParentValues) + nCount) |
|---|
| 148 | - Statistics.lnGamma(1.0/(nAttValues * nParentValues)); |
|---|
| 149 | nTotal += nCount; |
|---|
| 150 | } |
|---|
| 151 | w2 += Statistics.lnGamma(1) - Statistics.lnGamma(1 + nTotal); |
|---|
| 152 | } |
|---|
| 153 | } |
|---|
| 154 | |
|---|
| 155 | // System.out.println(w1 + " " + w2 + " " + (w2 - w1)); |
|---|
| 156 | if (w1 < w2) { |
|---|
| 157 | w2 = w2 - w1; |
|---|
| 158 | w1 = 0; |
|---|
| 159 | w1 = 1 / (1 + Math.exp(w2)); |
|---|
| 160 | w2 = Math.exp(w2) / (1 + Math.exp(w2)); |
|---|
| 161 | } else { |
|---|
| 162 | w1 = w1 - w2; |
|---|
| 163 | w2 = 0; |
|---|
| 164 | w2 = 1 / (1 + Math.exp(w1)); |
|---|
| 165 | w1 = Math.exp(w1) / (1 + Math.exp(w1)); |
|---|
| 166 | } |
|---|
| 167 | |
|---|
| 168 | for (int iParent = 0; iParent < bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); iParent++) { |
|---|
| 169 | bayesNet.m_Distributions[iAttribute][iParent] = |
|---|
| 170 | new DiscreteEstimatorFullBayes( |
|---|
| 171 | instances.attribute(iAttribute).numValues(), |
|---|
| 172 | w1, w2, |
|---|
| 173 | (DiscreteEstimatorBayes) EmptyNet.m_Distributions[iAttribute][0], |
|---|
| 174 | (DiscreteEstimatorBayes) NBNet.m_Distributions[iAttribute][iParent], |
|---|
| 175 | m_fAlpha |
|---|
| 176 | ); |
|---|
| 177 | } |
|---|
| 178 | } |
|---|
| 179 | } |
|---|
| 180 | int iAttribute = instances.classIndex(); |
|---|
| 181 | bayesNet.m_Distributions[iAttribute][0] = EmptyNet.m_Distributions[iAttribute][0]; |
|---|
| 182 | } // estimateCPTs |
|---|
| 183 | |
|---|
| 184 | /** |
|---|
| 185 | * Updates the classifier with the given instance. |
|---|
| 186 | * |
|---|
| 187 | * @param bayesNet the bayes net to use |
|---|
| 188 | * @param instance the new training instance to include in the model |
|---|
| 189 | * @throws Exception if the instance could not be incorporated in |
|---|
| 190 | * the model. |
|---|
| 191 | */ |
|---|
| 192 | public void updateClassifier(BayesNet bayesNet, Instance instance) throws Exception { |
|---|
| 193 | throw new Exception("updateClassifier does not apply to BMA estimator"); |
|---|
| 194 | } // updateClassifier |
|---|
| 195 | |
|---|
| 196 | /** |
|---|
| 197 | * initCPTs reserves space for CPTs and set all counts to zero |
|---|
| 198 | * |
|---|
| 199 | * @param bayesNet the bayes net to use |
|---|
| 200 | * @throws Exception if something goes wrong |
|---|
| 201 | */ |
|---|
| 202 | public void initCPTs(BayesNet bayesNet) throws Exception { |
|---|
| 203 | // Reserve space for CPTs |
|---|
| 204 | int nMaxParentCardinality = 1; |
|---|
| 205 | |
|---|
| 206 | for (int iAttribute = 0; iAttribute < bayesNet.m_Instances.numAttributes(); iAttribute++) { |
|---|
| 207 | if (bayesNet.getParentSet(iAttribute).getCardinalityOfParents() > nMaxParentCardinality) { |
|---|
| 208 | nMaxParentCardinality = bayesNet.getParentSet(iAttribute).getCardinalityOfParents(); |
|---|
| 209 | } |
|---|
| 210 | } |
|---|
| 211 | |
|---|
| 212 | // Reserve plenty of memory |
|---|
| 213 | bayesNet.m_Distributions = new Estimator[bayesNet.m_Instances.numAttributes()][nMaxParentCardinality]; |
|---|
| 214 | } // initCPTs |
|---|
| 215 | |
|---|
| 216 | |
|---|
| 217 | /** |
|---|
| 218 | * Returns whether K2 prior is used |
|---|
| 219 | * |
|---|
| 220 | * @return true if K2 prior is used |
|---|
| 221 | */ |
|---|
| 222 | public boolean isUseK2Prior() { |
|---|
| 223 | return m_bUseK2Prior; |
|---|
| 224 | } |
|---|
| 225 | |
|---|
| 226 | /** |
|---|
| 227 | * Sets the UseK2Prior. |
|---|
| 228 | * |
|---|
| 229 | * @param bUseK2Prior The bUseK2Prior to set |
|---|
| 230 | */ |
|---|
| 231 | public void setUseK2Prior(boolean bUseK2Prior) { |
|---|
| 232 | m_bUseK2Prior = bUseK2Prior; |
|---|
| 233 | } |
|---|
| 234 | |
|---|
| 235 | /** |
|---|
| 236 | * Returns an enumeration describing the available options |
|---|
| 237 | * |
|---|
| 238 | * @return an enumeration of all the available options |
|---|
| 239 | */ |
|---|
| 240 | public Enumeration listOptions() { |
|---|
| 241 | Vector newVector = new Vector(1); |
|---|
| 242 | |
|---|
| 243 | newVector.addElement(new Option( |
|---|
| 244 | "\tWhether to use K2 prior.\n", |
|---|
| 245 | "k2", 0, "-k2")); |
|---|
| 246 | |
|---|
| 247 | Enumeration enu = super.listOptions(); |
|---|
| 248 | while (enu.hasMoreElements()) { |
|---|
| 249 | newVector.addElement(enu.nextElement()); |
|---|
| 250 | } |
|---|
| 251 | |
|---|
| 252 | return newVector.elements(); |
|---|
| 253 | } // listOptions |
|---|
| 254 | |
|---|
| 255 | /** |
|---|
| 256 | * Parses a given list of options. <p/> |
|---|
| 257 | * |
|---|
| 258 | <!-- options-start --> |
|---|
| 259 | * Valid options are: <p/> |
|---|
| 260 | * |
|---|
| 261 | * <pre> -k2 |
|---|
| 262 | * Whether to use K2 prior. |
|---|
| 263 | * </pre> |
|---|
| 264 | * |
|---|
| 265 | * <pre> -A <alpha> |
|---|
| 266 | * Initial count (alpha) |
|---|
| 267 | * </pre> |
|---|
| 268 | * |
|---|
| 269 | <!-- options-end --> |
|---|
| 270 | * |
|---|
| 271 | * @param options the list of options as an array of strings |
|---|
| 272 | * @throws Exception if an option is not supported |
|---|
| 273 | */ |
|---|
| 274 | public void setOptions(String[] options) throws Exception { |
|---|
| 275 | setUseK2Prior(Utils.getFlag("k2", options)); |
|---|
| 276 | |
|---|
| 277 | super.setOptions(options); |
|---|
| 278 | } // setOptions |
|---|
| 279 | |
|---|
| 280 | /** |
|---|
| 281 | * Gets the current settings of the classifier. |
|---|
| 282 | * |
|---|
| 283 | * @return an array of strings suitable for passing to setOptions |
|---|
| 284 | */ |
|---|
| 285 | public String[] getOptions() { |
|---|
| 286 | String[] superOptions = super.getOptions(); |
|---|
| 287 | String[] options = new String[1 + superOptions.length]; |
|---|
| 288 | int current = 0; |
|---|
| 289 | |
|---|
| 290 | if (isUseK2Prior()) |
|---|
| 291 | options[current++] = "-k2"; |
|---|
| 292 | |
|---|
| 293 | // insert options from parent class |
|---|
| 294 | for (int iOption = 0; iOption < superOptions.length; iOption++) { |
|---|
| 295 | options[current++] = superOptions[iOption]; |
|---|
| 296 | } |
|---|
| 297 | |
|---|
| 298 | // Fill up rest with empty strings, not nulls! |
|---|
| 299 | while (current < options.length) { |
|---|
| 300 | options[current++] = ""; |
|---|
| 301 | } |
|---|
| 302 | |
|---|
| 303 | return options; |
|---|
| 304 | } // getOptions |
|---|
| 305 | |
|---|
| 306 | /** |
|---|
| 307 | * Returns the revision string. |
|---|
| 308 | * |
|---|
| 309 | * @return the revision |
|---|
| 310 | */ |
|---|
| 311 | public String getRevision() { |
|---|
| 312 | return RevisionUtils.extract("$Revision: 1.8 $"); |
|---|
| 313 | } |
|---|
| 314 | } // class BMAEstimator |
|---|