/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand */ package weka.clusterers; import weka.core.CheckGOE; import weka.core.CheckOptionHandler; import weka.core.Instances; import weka.core.OptionHandler; import weka.test.Regression; import junit.framework.TestCase; /** * Abstract Test class for Clusterers. Internally it uses the class * CheckClusterer to determine success or failure of the * tests. It follows basically the runTests method. * * @author FracPete (fracpete at waikato dot ac dot nz) * @version $Revision: 1.9 $ * * @see CheckClusterer * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public abstract class AbstractClustererTest extends TestCase { /** The clusterer to be tested */ protected Clusterer m_Clusterer; /** For testing the clusterer */ protected CheckClusterer m_Tester; /** whether classifier is updateable */ protected boolean m_updateableClusterer; /** whether clusterer handles weighted instances */ protected boolean m_weightedInstancesHandler; /** whether clusterer handles multi-instance data */ protected boolean m_multiInstanceHandler; /** whether to run CheckClusterer in DEBUG mode */ protected boolean DEBUG = false; /** wether clusterer can predict nominal attributes (array index is attribute type of class) */ protected boolean m_NominalPredictors; /** wether clusterer can predict numeric attributes (array index is attribute type of class) */ protected boolean m_NumericPredictors; /** wether clusterer can predict string attributes (array index is attribute type of class) */ protected boolean m_StringPredictors; /** wether clusterer can predict date attributes (array index is attribute type of class) */ protected boolean m_DatePredictors; /** wether clusterer can predict relational attributes (array index is attribute type of class) */ protected boolean m_RelationalPredictors; /** whether clusterer handles missing values */ protected boolean m_handleMissingPredictors; /** the result of the regression test */ protected String m_RegressionResults; /** the OptionHandler tester */ protected CheckOptionHandler m_OptionTester; /** for testing GOE stuff */ protected CheckGOE m_GOETester; /** * Constructs the AbstractClustererTest. Called by subclasses. * * @param name the name of the test class */ public AbstractClustererTest(String name) { super(name); } /** * Called by JUnit before each test method. This implementation creates * the default clusterer to test and loads a test set of Instances. * * @exception Exception if an error occurs reading the example instances. */ protected void setUp() throws Exception { m_Clusterer = getClusterer(); m_Tester = new CheckClusterer(); m_Tester.setSilent(true); m_Tester.setClusterer(m_Clusterer); m_Tester.setNumInstances(20); m_Tester.setDebug(DEBUG); m_OptionTester = getOptionTester(); m_GOETester = getGOETester(); m_updateableClusterer = m_Tester.updateableClusterer()[0]; m_weightedInstancesHandler = m_Tester.weightedInstancesHandler()[0]; m_multiInstanceHandler = m_Tester.multiInstanceHandler()[0]; m_NominalPredictors = false; m_NumericPredictors = false; m_StringPredictors = false; m_DatePredictors = false; m_RelationalPredictors = false; m_handleMissingPredictors = false; m_RegressionResults = ""; // initialize attributes checkAttributes(true, false, false, false, false, false); checkAttributes(false, true, false, false, false, false); checkAttributes(false, false, true, false, false, false); checkAttributes(false, false, false, true, false, false); checkAttributes(false, false, false, false, true, false); // 20% missing values m_handleMissingPredictors = checkMissingPredictors(20, false); } /** Called by JUnit after each test method */ protected void tearDown() { m_Clusterer = null; m_Tester = null; m_OptionTester = null; m_GOETester = null; m_updateableClusterer = false; m_weightedInstancesHandler = false; m_NominalPredictors = false; m_NumericPredictors = false; m_StringPredictors = false; m_DatePredictors = false; m_RelationalPredictors = false; m_handleMissingPredictors = false; m_RegressionResults = ""; } /** * Configures the CheckOptionHandler uses for testing the optionhandling. * Sets the scheme to test. * * @return the fully configured CheckOptionHandler */ protected CheckOptionHandler getOptionTester() { CheckOptionHandler result; result = new CheckOptionHandler(); if (getClusterer() instanceof OptionHandler) result.setOptionHandler((OptionHandler) getClusterer()); else result.setOptionHandler(null); result.setUserOptions(new String[0]); result.setSilent(true); return result; } /** * Configures the CheckGOE used for testing GOE stuff. * Sets the Clusterer returned from the getClusterer() method. * * @return the fully configured CheckGOE * @see #getClusterer() */ protected CheckGOE getGOETester() { CheckGOE result; result = new CheckGOE(); result.setObject(getClusterer()); result.setSilent(true); return result; } /** * Used to create an instance of a specific clusterer. * * @return a suitably configured Clusterer value */ public abstract Clusterer getClusterer(); /** * checks whether at least one attribute type can be handled * * @return true if at least one attribute type can be handled */ protected boolean canPredict() { return m_NominalPredictors || m_NumericPredictors || m_StringPredictors || m_DatePredictors || m_RelationalPredictors; } /** * tests whether the clusterer can handle certain attributes and if not, * if the exception is OK * * @param nom to check for nominal attributes * @param num to check for numeric attributes * @param str to check for string attributes * @param dat to check for date attributes * @param rel to check for relational attributes * @param allowFail whether a junit fail can be executed * @see CheckClusterer#canPredict(boolean, boolean, boolean, boolean, boolean, boolean) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ protected void checkAttributes(boolean nom, boolean num, boolean str, boolean dat, boolean rel, boolean allowFail) { boolean[] result; String att; // determine text for type of attributes att = ""; if (nom) att = "nominal"; else if (num) att = "numeric"; else if (str) att = "string"; else if (dat) att = "date"; else if (rel) att = "relational"; result = m_Tester.canPredict(nom, num, str, dat, rel, m_multiInstanceHandler); if (nom) m_NominalPredictors = result[0]; else if (num) m_NumericPredictors = result[0]; else if (str) m_StringPredictors = result[0]; else if (dat) m_DatePredictors = result[0]; else if (rel) m_RelationalPredictors = result[0]; if (!result[0] && !result[1] && allowFail) fail("Error handling " + att + " attributes!"); } /** * tests whether the clusterer can handle different types of attributes and * if not, if the exception is OK * * @see #checkAttributes(boolean, boolean, boolean, boolean, boolean, boolean) */ public void testAttributes() { // nominal checkAttributes(true, false, false, false, false, true); // numeric checkAttributes(false, true, false, false, false, true); // string checkAttributes(false, false, true, false, false, true); // date checkAttributes(false, false, false, true, false, true); // relational if (!m_multiInstanceHandler) checkAttributes(false, false, false, false, true, true); } /** * tests whether the scheme declares a serialVersionUID. */ public void testSerialVersionUID() { boolean[] result; result = m_Tester.declaresSerialVersionUID(); if (!result[0]) fail("Doesn't declare serialVersionUID!"); } /** * tests whether the clusterer handles instance weights correctly * * @see CheckClusterer#instanceWeights(boolean, boolean, boolean, boolean, boolean, boolean) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public void testInstanceWeights() { boolean[] result; if (m_weightedInstancesHandler) { if (!canPredict()) return; result = m_Tester.instanceWeights( m_NominalPredictors, m_NumericPredictors, m_StringPredictors, m_DatePredictors, m_RelationalPredictors, m_multiInstanceHandler); if (!result[0]) System.err.println("Error handling instance weights!"); } } /** * tests whether the clusterer can handle zero training instances * * @see CheckClusterer#canHandleZeroTraining(boolean, boolean, boolean, boolean, boolean, boolean) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public void testZeroTraining() { boolean[] result; if (!canPredict()) return; result = m_Tester.canHandleZeroTraining( m_NominalPredictors, m_NumericPredictors, m_StringPredictors, m_DatePredictors, m_RelationalPredictors, m_multiInstanceHandler); if (!result[0] && !result[1]) fail("Error handling zero training instances!"); } /** * checks whether the clusterer can handle the given percentage of * missing predictors * * @param percent the percentage of missing predictors * @param allowFail if true a fail statement may be executed * @return true if the clusterer can handle it */ protected boolean checkMissingPredictors(int percent, boolean allowFail) { boolean[] result; result = m_Tester.canHandleMissing( m_NominalPredictors, m_NumericPredictors, m_StringPredictors, m_DatePredictors, m_RelationalPredictors, m_multiInstanceHandler, true, percent); if (allowFail) { if (!result[0] && !result[1]) fail("Error handling " + percent + "% missing predictors!"); } return result[0]; } /** * tests whether the clusterer can handle missing predictors (20% and 100%) * * @see CheckClusterer#canHandleMissing(boolean, boolean, boolean, boolean, boolean, boolean, boolean, int) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public void testMissingPredictors() { if (!canPredict()) return; // 20% missing checkMissingPredictors(20, true); // 100% missing if (m_handleMissingPredictors) checkMissingPredictors(100, true); } /** * tests whether the clusterer correctly initializes in the * buildClusterer method * * @see CheckClusterer#correctBuildInitialisation(boolean, boolean, boolean, boolean, boolean, boolean) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public void testBuildInitialization() { boolean[] result; if (!canPredict()) return; result = m_Tester.correctBuildInitialisation( m_NominalPredictors, m_NumericPredictors, m_StringPredictors, m_DatePredictors, m_RelationalPredictors, m_multiInstanceHandler); if (!result[0] && !result[1]) fail("Incorrect build initialization!"); } /** * tests whether the clusterer alters the training set during training. * * @see CheckClusterer#datasetIntegrity(boolean, boolean, boolean, boolean, boolean, boolean, boolean) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public void testDatasetIntegrity() { boolean[] result; if (!canPredict()) return; result = m_Tester.datasetIntegrity( m_NominalPredictors, m_NumericPredictors, m_StringPredictors, m_DatePredictors, m_RelationalPredictors, m_multiInstanceHandler, m_handleMissingPredictors); if (!result[0] && !result[1]) fail("Training set is altered during training!"); } /** * tests whether the classifier produces the same model when trained * incrementally as when batch trained. * * @see CheckClusterer#updatingEquality(boolean, boolean, boolean, boolean, boolean, boolean) * @see CheckClusterer#runTests(boolean, boolean, boolean) */ public void testUpdatingEquality() { boolean[] result; if (m_updateableClusterer) { result = m_Tester.updatingEquality( m_NominalPredictors, m_NumericPredictors, m_StringPredictors, m_DatePredictors, m_RelationalPredictors, m_multiInstanceHandler); if (!result[0]) System.err.println( "Incremental training does not produce same result as batch training!"); } } /** * Builds a model using the current Clusterer using the given data and * returns the produced cluster assignments. * * @param data the instances to test the Clusterer on * @return a String containing the cluster assignments. */ protected String useClusterer(Instances data) throws Exception { String result; Clusterer clusterer; int i; double cluster; try { clusterer = AbstractClusterer.makeCopy(m_Clusterer); } catch (Exception e) { clusterer = null; e.printStackTrace(); fail("Problem setting up to use Clusterer: " + e); } clusterer.buildClusterer(data); // generate result result = ""; for (i = 0; i < data.numInstances(); i++) { if (i > 0) result += "\n"; try { cluster = clusterer.clusterInstance(data.instance(i)); result += "" + (i+1) + ": " + cluster; } catch (Exception e) { result += "" + (i+1) + ": " + e.toString(); } } return result; } /** * Runs a regression test -- this checks that the output of the tested * object matches that in a reference version. When this test is * run without any pre-existing reference output, the reference version * is created. */ public void testRegression() throws Exception { boolean succeeded; Regression reg; Instances train; // don't bother if not working correctly if (m_Tester.hasClasspathProblems()) return; reg = new Regression(this.getClass()); train = null; succeeded = false; train = m_Tester.makeTestDataset( 42, m_Tester.getNumInstances(), m_NominalPredictors ? 2 : 0, m_NumericPredictors ? 1 : 0, m_StringPredictors ? 1 : 0, m_DatePredictors ? 1 : 0, m_RelationalPredictors ? 1 : 0, m_multiInstanceHandler); try { m_RegressionResults = useClusterer(train); succeeded = true; reg.println(m_RegressionResults); } catch (Exception e) { String msg = e.getMessage().toLowerCase(); if (msg.indexOf("not in classpath") > -1) return; m_RegressionResults = null; } if (!succeeded) { fail("Problem during regression testing: no successful output generated"); } try { String diff = reg.diff(); if (diff == null) { System.err.println("Warning: No reference available, creating."); } else if (!diff.equals("")) { fail("Regression test failed. Difference:\n" + diff); } } catch (java.io.IOException ex) { fail("Problem during regression testing.\n" + ex); } } /** * tests the listing of the options */ public void testListOptions() { if (m_OptionTester.getOptionHandler() != null) { if (!m_OptionTester.checkListOptions()) fail("Options cannot be listed via listOptions."); } } /** * tests the setting of the options */ public void testSetOptions() { if (m_OptionTester.getOptionHandler() != null) { if (!m_OptionTester.checkSetOptions()) fail("setOptions method failed."); } } /** * tests whether the default settings are processed correctly */ public void testDefaultOptions() { if (m_OptionTester.getOptionHandler() != null) { if (!m_OptionTester.checkDefaultOptions()) fail("Default options were not processed correctly."); } } /** * tests whether there are any remaining options */ public void testRemainingOptions() { if (m_OptionTester.getOptionHandler() != null) { if (!m_OptionTester.checkRemainingOptions()) fail("There were 'left-over' options."); } } /** * tests the whether the user-supplied options stay the same after setting. * getting, and re-setting again. * * @see #getOptionTester() */ public void testCanonicalUserOptions() { if (m_OptionTester.getOptionHandler() != null) { if (!m_OptionTester.checkCanonicalUserOptions()) fail("setOptions method failed"); } } /** * tests the resetting of the options to the default ones */ public void testResettingOptions() { if (m_OptionTester.getOptionHandler() != null) { if (!m_OptionTester.checkSetOptions()) fail("Resetting of options failed"); } } /** * tests for a globalInfo method */ public void testGlobalInfo() { if (!m_GOETester.checkGlobalInfo()) fail("No globalInfo method"); } /** * tests the tool tips */ public void testToolTips() { if (!m_GOETester.checkToolTips()) fail("Tool tips inconsistent"); } }