1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand |
---|
19 | */ |
---|
20 | |
---|
21 | package weka.classifiers.misc; |
---|
22 | |
---|
23 | import weka.classifiers.Classifier; |
---|
24 | import weka.classifiers.evaluation.EvaluationUtils; |
---|
25 | import weka.core.Attribute; |
---|
26 | import weka.core.CheckOptionHandler; |
---|
27 | import weka.core.FastVector; |
---|
28 | import weka.core.Instances; |
---|
29 | import weka.core.SerializationHelper; |
---|
30 | import weka.core.TestInstances; |
---|
31 | import weka.test.Regression; |
---|
32 | |
---|
33 | import java.io.File; |
---|
34 | |
---|
35 | import junit.framework.Test; |
---|
36 | import junit.framework.TestCase; |
---|
37 | import junit.framework.TestSuite; |
---|
38 | |
---|
39 | /** |
---|
40 | * Tests SerializedClassifier. Run from the command line with:<p> |
---|
41 | * java weka.classifiers.misc.SerializedClassifierTest |
---|
42 | * |
---|
43 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
44 | * @version $Revision: 1.1 $ |
---|
45 | */ |
---|
46 | public class SerializedClassifierTest |
---|
47 | extends TestCase { |
---|
48 | |
---|
49 | /** the filename for temporary serialized models */ |
---|
50 | public final static String MODEL_FILENAME = System.getProperty("user.dir") + "/" + "temp.model"; |
---|
51 | |
---|
52 | /** the setup classifier */ |
---|
53 | protected SerializedClassifier m_Classifier; |
---|
54 | |
---|
55 | /** the OptionHandler tester */ |
---|
56 | protected CheckOptionHandler m_OptionTester; |
---|
57 | |
---|
58 | /** |
---|
59 | * initializes the test |
---|
60 | * |
---|
61 | * @param name the name of the test |
---|
62 | */ |
---|
63 | public SerializedClassifierTest(String name) { |
---|
64 | super(name); |
---|
65 | } |
---|
66 | |
---|
67 | /** |
---|
68 | * Called by JUnit before each test method. |
---|
69 | * |
---|
70 | * @throws Exception if an error occurs reading the example instances. |
---|
71 | */ |
---|
72 | protected void setUp() throws Exception { |
---|
73 | m_Classifier = null; |
---|
74 | m_OptionTester = new CheckOptionHandler(); |
---|
75 | m_OptionTester.setSilent(true); |
---|
76 | |
---|
77 | // delete temp file |
---|
78 | File file = new File(MODEL_FILENAME); |
---|
79 | if (file.exists()) |
---|
80 | file.delete(); |
---|
81 | } |
---|
82 | |
---|
83 | /** |
---|
84 | * Called by JUnit after each test method |
---|
85 | */ |
---|
86 | protected void tearDown() { |
---|
87 | m_Classifier = null; |
---|
88 | m_OptionTester = null; |
---|
89 | |
---|
90 | // delete temp file |
---|
91 | File file = new File(MODEL_FILENAME); |
---|
92 | if (file.exists()) |
---|
93 | file.delete(); |
---|
94 | } |
---|
95 | |
---|
96 | /** |
---|
97 | * creates a classifier, trains and serializes it |
---|
98 | * |
---|
99 | * @param data the data to use (J48 with nominal class, M5P with |
---|
100 | * numeric class) |
---|
101 | * @return the results for the data |
---|
102 | */ |
---|
103 | protected double[] trainAndSerializeClassifier(Instances data) { |
---|
104 | Classifier classifier; |
---|
105 | double[] result; |
---|
106 | int i; |
---|
107 | |
---|
108 | try { |
---|
109 | // build |
---|
110 | if (data.classAttribute().isNominal()) |
---|
111 | classifier = new weka.classifiers.trees.J48(); |
---|
112 | else |
---|
113 | classifier = new weka.classifiers.trees.M5P(); |
---|
114 | classifier.buildClassifier(data); |
---|
115 | |
---|
116 | // record predictions |
---|
117 | result = new double[data.numInstances()]; |
---|
118 | for (i = 0; i < result.length; i++) |
---|
119 | result[i] = classifier.classifyInstance(data.instance(i)); |
---|
120 | |
---|
121 | // save |
---|
122 | SerializationHelper.write(MODEL_FILENAME, classifier); |
---|
123 | } |
---|
124 | catch (Exception e) { |
---|
125 | fail("Training base classifier failed: " + e); |
---|
126 | return null; |
---|
127 | } |
---|
128 | |
---|
129 | return result; |
---|
130 | } |
---|
131 | |
---|
132 | /** |
---|
133 | * performs the actual test |
---|
134 | * |
---|
135 | * @param nomClass whether to use a nominal class with J48 (TRUE) or |
---|
136 | * a numeric one with M5P (FALSE) |
---|
137 | */ |
---|
138 | protected void performTest(boolean nomClass) { |
---|
139 | TestInstances test; |
---|
140 | Instances data; |
---|
141 | double[] originalResults; |
---|
142 | double[] testResults; |
---|
143 | int i; |
---|
144 | |
---|
145 | // generate data |
---|
146 | try { |
---|
147 | test = new TestInstances(); |
---|
148 | if (nomClass) { |
---|
149 | test.setClassType(Attribute.NOMINAL); |
---|
150 | test.setNumNominal(5); |
---|
151 | test.setNumNominalValues(4); |
---|
152 | test.setNumNumeric(0); |
---|
153 | } |
---|
154 | else { |
---|
155 | test.setClassType(Attribute.NUMERIC); |
---|
156 | test.setNumNominal(0); |
---|
157 | test.setNumNumeric(5); |
---|
158 | } |
---|
159 | test.setNumDate(0); |
---|
160 | test.setNumString(0); |
---|
161 | test.setNumRelational(0); |
---|
162 | test.setNumInstances(100); |
---|
163 | data = test.generate(); |
---|
164 | } |
---|
165 | catch (Exception e) { |
---|
166 | fail("Generating test data failed: " + e); |
---|
167 | return; |
---|
168 | } |
---|
169 | |
---|
170 | // train and save base classifier |
---|
171 | try { |
---|
172 | originalResults = trainAndSerializeClassifier(data); |
---|
173 | } |
---|
174 | catch (Exception e) { |
---|
175 | fail("Training base classifier failed: " + e); |
---|
176 | return; |
---|
177 | } |
---|
178 | |
---|
179 | // test loading |
---|
180 | try { |
---|
181 | m_Classifier = new SerializedClassifier(); |
---|
182 | m_Classifier.setModelFile(new File(MODEL_FILENAME)); |
---|
183 | m_Classifier.buildClassifier(data); |
---|
184 | } |
---|
185 | catch (Exception e) { |
---|
186 | fail("Loading/testing of classifier failed: " + e); |
---|
187 | } |
---|
188 | |
---|
189 | // compare results |
---|
190 | try { |
---|
191 | // get results from serialized model |
---|
192 | testResults = new double[data.numInstances()]; |
---|
193 | for (i = 0; i < testResults.length; i++) |
---|
194 | testResults[i] = m_Classifier.classifyInstance(data.instance(i)); |
---|
195 | |
---|
196 | // compare |
---|
197 | for (i = 0; i < originalResults.length; i++) { |
---|
198 | if (originalResults[i] != testResults[i]) |
---|
199 | throw new Exception("Result #" + (i+1) + " differs!"); |
---|
200 | } |
---|
201 | } |
---|
202 | catch (Exception e) { |
---|
203 | fail("Comparing results failed: " + e); |
---|
204 | } |
---|
205 | } |
---|
206 | |
---|
207 | /** |
---|
208 | * tests a serialized classifier (J48) handling nominal classes |
---|
209 | */ |
---|
210 | public void testNominalClass() { |
---|
211 | performTest(true); |
---|
212 | } |
---|
213 | |
---|
214 | /** |
---|
215 | * tests a serialized classifier (M5P) handling numeric classes |
---|
216 | */ |
---|
217 | public void testNumericClass() { |
---|
218 | performTest(true); |
---|
219 | } |
---|
220 | |
---|
221 | /** |
---|
222 | * Returns a string containing all the predictions. |
---|
223 | * |
---|
224 | * @param predictions a <code>FastVector</code> containing the predictions |
---|
225 | * @return a <code>String</code> representing the vector of predictions. |
---|
226 | */ |
---|
227 | protected String predictionsToString(FastVector predictions) { |
---|
228 | StringBuffer sb = new StringBuffer(); |
---|
229 | sb.append(predictions.size()).append(" predictions\n"); |
---|
230 | for (int i = 0; i < predictions.size(); i++) { |
---|
231 | sb.append(predictions.elementAt(i)).append('\n'); |
---|
232 | } |
---|
233 | return sb.toString(); |
---|
234 | } |
---|
235 | |
---|
236 | /** |
---|
237 | * Runs a regression test -- this checks that the output of the tested |
---|
238 | * object matches that in a reference version. When this test is |
---|
239 | * run without any pre-existing reference output, the reference version |
---|
240 | * is created. Uses J48 for this purpose. |
---|
241 | */ |
---|
242 | public void testRegression() { |
---|
243 | Regression reg; |
---|
244 | Instances train; |
---|
245 | Instances test; |
---|
246 | Instances data; |
---|
247 | TestInstances testInst; |
---|
248 | int tot; |
---|
249 | int mid; |
---|
250 | EvaluationUtils evaluation; |
---|
251 | FastVector regressionResults; |
---|
252 | |
---|
253 | reg = new Regression(this.getClass()); |
---|
254 | |
---|
255 | // generate test data |
---|
256 | try { |
---|
257 | testInst = new TestInstances(); |
---|
258 | testInst.setClassType(Attribute.NOMINAL); |
---|
259 | testInst.setNumNominal(5); |
---|
260 | testInst.setNumNominalValues(4); |
---|
261 | testInst.setNumNumeric(0); |
---|
262 | testInst.setNumDate(0); |
---|
263 | testInst.setNumString(0); |
---|
264 | testInst.setNumRelational(0); |
---|
265 | testInst.setNumInstances(100); |
---|
266 | data = testInst.generate(); |
---|
267 | } |
---|
268 | catch (Exception e) { |
---|
269 | fail("Failed generating data: " + e); |
---|
270 | return; |
---|
271 | } |
---|
272 | |
---|
273 | // split data into train/test |
---|
274 | tot = data.numInstances(); |
---|
275 | mid = tot / 2; |
---|
276 | train = null; |
---|
277 | test = null; |
---|
278 | |
---|
279 | try { |
---|
280 | train = new Instances(data, 0, mid); |
---|
281 | test = new Instances(data, mid, tot - mid); |
---|
282 | m_Classifier = new SerializedClassifier(); |
---|
283 | m_Classifier.setModelFile(new File(MODEL_FILENAME)); |
---|
284 | } |
---|
285 | catch (Exception e) { |
---|
286 | e.printStackTrace(); |
---|
287 | fail("Problem setting up to use classifier: " + e); |
---|
288 | } |
---|
289 | |
---|
290 | evaluation = new EvaluationUtils(); |
---|
291 | try { |
---|
292 | trainAndSerializeClassifier(train); |
---|
293 | regressionResults = evaluation.getTrainTestPredictions(m_Classifier, train, test); |
---|
294 | reg.println(predictionsToString(regressionResults)); |
---|
295 | } |
---|
296 | catch (Exception e) { |
---|
297 | fail("Failed obtaining classifier predictions: " + e); |
---|
298 | } |
---|
299 | |
---|
300 | try { |
---|
301 | String diff = reg.diff(); |
---|
302 | if (diff == null) { |
---|
303 | System.err.println("Warning: No reference available, creating."); |
---|
304 | } else if (!diff.equals("")) { |
---|
305 | fail("Regression test failed. Difference:\n" + diff); |
---|
306 | } |
---|
307 | } |
---|
308 | catch (java.io.IOException ex) { |
---|
309 | fail("Problem during regression testing.\n" + ex); |
---|
310 | } |
---|
311 | } |
---|
312 | |
---|
313 | /** |
---|
314 | * tests the listing of the options |
---|
315 | */ |
---|
316 | public void testListOptions() { |
---|
317 | if (!m_OptionTester.checkListOptions()) |
---|
318 | fail("Options cannot be listed via listOptions."); |
---|
319 | } |
---|
320 | |
---|
321 | /** |
---|
322 | * tests the setting of the options |
---|
323 | */ |
---|
324 | public void testSetOptions() { |
---|
325 | if (!m_OptionTester.checkSetOptions()) |
---|
326 | fail("setOptions method failed."); |
---|
327 | } |
---|
328 | |
---|
329 | /** |
---|
330 | * tests whether there are any remaining options |
---|
331 | */ |
---|
332 | public void testRemainingOptions() { |
---|
333 | if (!m_OptionTester.checkRemainingOptions()) |
---|
334 | fail("There were 'left-over' options."); |
---|
335 | } |
---|
336 | |
---|
337 | /** |
---|
338 | * tests the whether the user-supplied options stay the same after setting. |
---|
339 | * getting, and re-setting again. |
---|
340 | */ |
---|
341 | public void testCanonicalUserOptions() { |
---|
342 | if (!m_OptionTester.checkCanonicalUserOptions()) |
---|
343 | fail("setOptions method failed"); |
---|
344 | } |
---|
345 | |
---|
346 | /** |
---|
347 | * tests the resetting of the options to the default ones |
---|
348 | */ |
---|
349 | public void testResettingOptions() { |
---|
350 | if (!m_OptionTester.checkSetOptions()) |
---|
351 | fail("Resetting of options failed"); |
---|
352 | } |
---|
353 | |
---|
354 | public static Test suite() { |
---|
355 | return new TestSuite(SerializedClassifierTest.class); |
---|
356 | } |
---|
357 | |
---|
358 | public static void main(String[] args){ |
---|
359 | junit.textui.TestRunner.run(suite()); |
---|
360 | } |
---|
361 | } |
---|