[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Copyright (C) 2007 University of Waikato, Hamilton, New Zealand |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | package weka.classifiers.misc; |
---|
| 22 | |
---|
| 23 | import weka.classifiers.Classifier; |
---|
| 24 | import weka.classifiers.evaluation.EvaluationUtils; |
---|
| 25 | import weka.core.Attribute; |
---|
| 26 | import weka.core.CheckOptionHandler; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.SerializationHelper; |
---|
| 30 | import weka.core.TestInstances; |
---|
| 31 | import weka.test.Regression; |
---|
| 32 | |
---|
| 33 | import java.io.File; |
---|
| 34 | |
---|
| 35 | import junit.framework.Test; |
---|
| 36 | import junit.framework.TestCase; |
---|
| 37 | import junit.framework.TestSuite; |
---|
| 38 | |
---|
| 39 | /** |
---|
| 40 | * Tests SerializedClassifier. Run from the command line with:<p> |
---|
| 41 | * java weka.classifiers.misc.SerializedClassifierTest |
---|
| 42 | * |
---|
| 43 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
| 44 | * @version $Revision: 1.1 $ |
---|
| 45 | */ |
---|
| 46 | public class SerializedClassifierTest |
---|
| 47 | extends TestCase { |
---|
| 48 | |
---|
| 49 | /** the filename for temporary serialized models */ |
---|
| 50 | public final static String MODEL_FILENAME = System.getProperty("user.dir") + "/" + "temp.model"; |
---|
| 51 | |
---|
| 52 | /** the setup classifier */ |
---|
| 53 | protected SerializedClassifier m_Classifier; |
---|
| 54 | |
---|
| 55 | /** the OptionHandler tester */ |
---|
| 56 | protected CheckOptionHandler m_OptionTester; |
---|
| 57 | |
---|
| 58 | /** |
---|
| 59 | * initializes the test |
---|
| 60 | * |
---|
| 61 | * @param name the name of the test |
---|
| 62 | */ |
---|
| 63 | public SerializedClassifierTest(String name) { |
---|
| 64 | super(name); |
---|
| 65 | } |
---|
| 66 | |
---|
| 67 | /** |
---|
| 68 | * Called by JUnit before each test method. |
---|
| 69 | * |
---|
| 70 | * @throws Exception if an error occurs reading the example instances. |
---|
| 71 | */ |
---|
| 72 | protected void setUp() throws Exception { |
---|
| 73 | m_Classifier = null; |
---|
| 74 | m_OptionTester = new CheckOptionHandler(); |
---|
| 75 | m_OptionTester.setSilent(true); |
---|
| 76 | |
---|
| 77 | // delete temp file |
---|
| 78 | File file = new File(MODEL_FILENAME); |
---|
| 79 | if (file.exists()) |
---|
| 80 | file.delete(); |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | /** |
---|
| 84 | * Called by JUnit after each test method |
---|
| 85 | */ |
---|
| 86 | protected void tearDown() { |
---|
| 87 | m_Classifier = null; |
---|
| 88 | m_OptionTester = null; |
---|
| 89 | |
---|
| 90 | // delete temp file |
---|
| 91 | File file = new File(MODEL_FILENAME); |
---|
| 92 | if (file.exists()) |
---|
| 93 | file.delete(); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | /** |
---|
| 97 | * creates a classifier, trains and serializes it |
---|
| 98 | * |
---|
| 99 | * @param data the data to use (J48 with nominal class, M5P with |
---|
| 100 | * numeric class) |
---|
| 101 | * @return the results for the data |
---|
| 102 | */ |
---|
| 103 | protected double[] trainAndSerializeClassifier(Instances data) { |
---|
| 104 | Classifier classifier; |
---|
| 105 | double[] result; |
---|
| 106 | int i; |
---|
| 107 | |
---|
| 108 | try { |
---|
| 109 | // build |
---|
| 110 | if (data.classAttribute().isNominal()) |
---|
| 111 | classifier = new weka.classifiers.trees.J48(); |
---|
| 112 | else |
---|
| 113 | classifier = new weka.classifiers.trees.M5P(); |
---|
| 114 | classifier.buildClassifier(data); |
---|
| 115 | |
---|
| 116 | // record predictions |
---|
| 117 | result = new double[data.numInstances()]; |
---|
| 118 | for (i = 0; i < result.length; i++) |
---|
| 119 | result[i] = classifier.classifyInstance(data.instance(i)); |
---|
| 120 | |
---|
| 121 | // save |
---|
| 122 | SerializationHelper.write(MODEL_FILENAME, classifier); |
---|
| 123 | } |
---|
| 124 | catch (Exception e) { |
---|
| 125 | fail("Training base classifier failed: " + e); |
---|
| 126 | return null; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | return result; |
---|
| 130 | } |
---|
| 131 | |
---|
| 132 | /** |
---|
| 133 | * performs the actual test |
---|
| 134 | * |
---|
| 135 | * @param nomClass whether to use a nominal class with J48 (TRUE) or |
---|
| 136 | * a numeric one with M5P (FALSE) |
---|
| 137 | */ |
---|
| 138 | protected void performTest(boolean nomClass) { |
---|
| 139 | TestInstances test; |
---|
| 140 | Instances data; |
---|
| 141 | double[] originalResults; |
---|
| 142 | double[] testResults; |
---|
| 143 | int i; |
---|
| 144 | |
---|
| 145 | // generate data |
---|
| 146 | try { |
---|
| 147 | test = new TestInstances(); |
---|
| 148 | if (nomClass) { |
---|
| 149 | test.setClassType(Attribute.NOMINAL); |
---|
| 150 | test.setNumNominal(5); |
---|
| 151 | test.setNumNominalValues(4); |
---|
| 152 | test.setNumNumeric(0); |
---|
| 153 | } |
---|
| 154 | else { |
---|
| 155 | test.setClassType(Attribute.NUMERIC); |
---|
| 156 | test.setNumNominal(0); |
---|
| 157 | test.setNumNumeric(5); |
---|
| 158 | } |
---|
| 159 | test.setNumDate(0); |
---|
| 160 | test.setNumString(0); |
---|
| 161 | test.setNumRelational(0); |
---|
| 162 | test.setNumInstances(100); |
---|
| 163 | data = test.generate(); |
---|
| 164 | } |
---|
| 165 | catch (Exception e) { |
---|
| 166 | fail("Generating test data failed: " + e); |
---|
| 167 | return; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | // train and save base classifier |
---|
| 171 | try { |
---|
| 172 | originalResults = trainAndSerializeClassifier(data); |
---|
| 173 | } |
---|
| 174 | catch (Exception e) { |
---|
| 175 | fail("Training base classifier failed: " + e); |
---|
| 176 | return; |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | // test loading |
---|
| 180 | try { |
---|
| 181 | m_Classifier = new SerializedClassifier(); |
---|
| 182 | m_Classifier.setModelFile(new File(MODEL_FILENAME)); |
---|
| 183 | m_Classifier.buildClassifier(data); |
---|
| 184 | } |
---|
| 185 | catch (Exception e) { |
---|
| 186 | fail("Loading/testing of classifier failed: " + e); |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | // compare results |
---|
| 190 | try { |
---|
| 191 | // get results from serialized model |
---|
| 192 | testResults = new double[data.numInstances()]; |
---|
| 193 | for (i = 0; i < testResults.length; i++) |
---|
| 194 | testResults[i] = m_Classifier.classifyInstance(data.instance(i)); |
---|
| 195 | |
---|
| 196 | // compare |
---|
| 197 | for (i = 0; i < originalResults.length; i++) { |
---|
| 198 | if (originalResults[i] != testResults[i]) |
---|
| 199 | throw new Exception("Result #" + (i+1) + " differs!"); |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | catch (Exception e) { |
---|
| 203 | fail("Comparing results failed: " + e); |
---|
| 204 | } |
---|
| 205 | } |
---|
| 206 | |
---|
| 207 | /** |
---|
| 208 | * tests a serialized classifier (J48) handling nominal classes |
---|
| 209 | */ |
---|
| 210 | public void testNominalClass() { |
---|
| 211 | performTest(true); |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | /** |
---|
| 215 | * tests a serialized classifier (M5P) handling numeric classes |
---|
| 216 | */ |
---|
| 217 | public void testNumericClass() { |
---|
| 218 | performTest(true); |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | /** |
---|
| 222 | * Returns a string containing all the predictions. |
---|
| 223 | * |
---|
| 224 | * @param predictions a <code>FastVector</code> containing the predictions |
---|
| 225 | * @return a <code>String</code> representing the vector of predictions. |
---|
| 226 | */ |
---|
| 227 | protected String predictionsToString(FastVector predictions) { |
---|
| 228 | StringBuffer sb = new StringBuffer(); |
---|
| 229 | sb.append(predictions.size()).append(" predictions\n"); |
---|
| 230 | for (int i = 0; i < predictions.size(); i++) { |
---|
| 231 | sb.append(predictions.elementAt(i)).append('\n'); |
---|
| 232 | } |
---|
| 233 | return sb.toString(); |
---|
| 234 | } |
---|
| 235 | |
---|
| 236 | /** |
---|
| 237 | * Runs a regression test -- this checks that the output of the tested |
---|
| 238 | * object matches that in a reference version. When this test is |
---|
| 239 | * run without any pre-existing reference output, the reference version |
---|
| 240 | * is created. Uses J48 for this purpose. |
---|
| 241 | */ |
---|
| 242 | public void testRegression() { |
---|
| 243 | Regression reg; |
---|
| 244 | Instances train; |
---|
| 245 | Instances test; |
---|
| 246 | Instances data; |
---|
| 247 | TestInstances testInst; |
---|
| 248 | int tot; |
---|
| 249 | int mid; |
---|
| 250 | EvaluationUtils evaluation; |
---|
| 251 | FastVector regressionResults; |
---|
| 252 | |
---|
| 253 | reg = new Regression(this.getClass()); |
---|
| 254 | |
---|
| 255 | // generate test data |
---|
| 256 | try { |
---|
| 257 | testInst = new TestInstances(); |
---|
| 258 | testInst.setClassType(Attribute.NOMINAL); |
---|
| 259 | testInst.setNumNominal(5); |
---|
| 260 | testInst.setNumNominalValues(4); |
---|
| 261 | testInst.setNumNumeric(0); |
---|
| 262 | testInst.setNumDate(0); |
---|
| 263 | testInst.setNumString(0); |
---|
| 264 | testInst.setNumRelational(0); |
---|
| 265 | testInst.setNumInstances(100); |
---|
| 266 | data = testInst.generate(); |
---|
| 267 | } |
---|
| 268 | catch (Exception e) { |
---|
| 269 | fail("Failed generating data: " + e); |
---|
| 270 | return; |
---|
| 271 | } |
---|
| 272 | |
---|
| 273 | // split data into train/test |
---|
| 274 | tot = data.numInstances(); |
---|
| 275 | mid = tot / 2; |
---|
| 276 | train = null; |
---|
| 277 | test = null; |
---|
| 278 | |
---|
| 279 | try { |
---|
| 280 | train = new Instances(data, 0, mid); |
---|
| 281 | test = new Instances(data, mid, tot - mid); |
---|
| 282 | m_Classifier = new SerializedClassifier(); |
---|
| 283 | m_Classifier.setModelFile(new File(MODEL_FILENAME)); |
---|
| 284 | } |
---|
| 285 | catch (Exception e) { |
---|
| 286 | e.printStackTrace(); |
---|
| 287 | fail("Problem setting up to use classifier: " + e); |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | evaluation = new EvaluationUtils(); |
---|
| 291 | try { |
---|
| 292 | trainAndSerializeClassifier(train); |
---|
| 293 | regressionResults = evaluation.getTrainTestPredictions(m_Classifier, train, test); |
---|
| 294 | reg.println(predictionsToString(regressionResults)); |
---|
| 295 | } |
---|
| 296 | catch (Exception e) { |
---|
| 297 | fail("Failed obtaining classifier predictions: " + e); |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | try { |
---|
| 301 | String diff = reg.diff(); |
---|
| 302 | if (diff == null) { |
---|
| 303 | System.err.println("Warning: No reference available, creating."); |
---|
| 304 | } else if (!diff.equals("")) { |
---|
| 305 | fail("Regression test failed. Difference:\n" + diff); |
---|
| 306 | } |
---|
| 307 | } |
---|
| 308 | catch (java.io.IOException ex) { |
---|
| 309 | fail("Problem during regression testing.\n" + ex); |
---|
| 310 | } |
---|
| 311 | } |
---|
| 312 | |
---|
| 313 | /** |
---|
| 314 | * tests the listing of the options |
---|
| 315 | */ |
---|
| 316 | public void testListOptions() { |
---|
| 317 | if (!m_OptionTester.checkListOptions()) |
---|
| 318 | fail("Options cannot be listed via listOptions."); |
---|
| 319 | } |
---|
| 320 | |
---|
| 321 | /** |
---|
| 322 | * tests the setting of the options |
---|
| 323 | */ |
---|
| 324 | public void testSetOptions() { |
---|
| 325 | if (!m_OptionTester.checkSetOptions()) |
---|
| 326 | fail("setOptions method failed."); |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * tests whether there are any remaining options |
---|
| 331 | */ |
---|
| 332 | public void testRemainingOptions() { |
---|
| 333 | if (!m_OptionTester.checkRemainingOptions()) |
---|
| 334 | fail("There were 'left-over' options."); |
---|
| 335 | } |
---|
| 336 | |
---|
| 337 | /** |
---|
| 338 | * tests the whether the user-supplied options stay the same after setting. |
---|
| 339 | * getting, and re-setting again. |
---|
| 340 | */ |
---|
| 341 | public void testCanonicalUserOptions() { |
---|
| 342 | if (!m_OptionTester.checkCanonicalUserOptions()) |
---|
| 343 | fail("setOptions method failed"); |
---|
| 344 | } |
---|
| 345 | |
---|
| 346 | /** |
---|
| 347 | * tests the resetting of the options to the default ones |
---|
| 348 | */ |
---|
| 349 | public void testResettingOptions() { |
---|
| 350 | if (!m_OptionTester.checkSetOptions()) |
---|
| 351 | fail("Resetting of options failed"); |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | public static Test suite() { |
---|
| 355 | return new TestSuite(SerializedClassifierTest.class); |
---|
| 356 | } |
---|
| 357 | |
---|
| 358 | public static void main(String[] args){ |
---|
| 359 | junit.textui.TestRunner.run(suite()); |
---|
| 360 | } |
---|
| 361 | } |
---|