1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Copyright (C) 2002 University of Waikato |
---|
19 | */ |
---|
20 | |
---|
21 | package weka.classifiers.meta; |
---|
22 | |
---|
23 | import weka.core.Capabilities; |
---|
24 | import weka.core.Capabilities.Capability; |
---|
25 | import weka.core.Instance; |
---|
26 | import weka.core.Instances; |
---|
27 | import weka.core.RevisionUtils; |
---|
28 | import weka.classifiers.Classifier; |
---|
29 | import weka.classifiers.AbstractClassifier; |
---|
30 | |
---|
31 | /** |
---|
32 | * Dummy classifier - used in ThresholdSelectorTest. |
---|
33 | * |
---|
34 | * @author <a href="mailto:len@reeltwo.com">Len Trigg</a> |
---|
35 | * @author FracPete (fracpet at waikato dor ac dot nz) |
---|
36 | * @version $Revision: 5928 $ |
---|
37 | * @see ThresholdSelectorTest |
---|
38 | */ |
---|
39 | public class ThresholdSelectorDummyClassifier |
---|
40 | extends AbstractClassifier { |
---|
41 | |
---|
42 | /** for serialization */ |
---|
43 | private static final long serialVersionUID = -2040984810834943903L; |
---|
44 | |
---|
45 | private double[] m_Preds; |
---|
46 | private int m_Pos; |
---|
47 | |
---|
48 | public ThresholdSelectorDummyClassifier(double[] preds) { |
---|
49 | m_Preds = new double[preds.length]; |
---|
50 | for (int i = 0; i < preds.length; i++) |
---|
51 | m_Preds[i] = preds[i]; |
---|
52 | } |
---|
53 | |
---|
54 | /** |
---|
55 | * Returns default capabilities of the classifier. |
---|
56 | * |
---|
57 | * @return the capabilities of this classifier |
---|
58 | */ |
---|
59 | public Capabilities getCapabilities() { |
---|
60 | Capabilities result = super.getCapabilities(); |
---|
61 | |
---|
62 | // attribute |
---|
63 | result.enableAllAttributes(); |
---|
64 | result.disable(Capability.STRING_ATTRIBUTES); |
---|
65 | result.disable(Capability.RELATIONAL_ATTRIBUTES); |
---|
66 | |
---|
67 | // class |
---|
68 | result.enable(Capability.NOMINAL_CLASS); |
---|
69 | |
---|
70 | return result; |
---|
71 | } |
---|
72 | |
---|
73 | public void buildClassifier(Instances train) { |
---|
74 | } |
---|
75 | |
---|
76 | public double[] distributionForInstance(Instance test) throws Exception { |
---|
77 | double[] result = new double[test.numClasses()]; |
---|
78 | int pred = 0; |
---|
79 | result[pred] = m_Preds[m_Pos]; |
---|
80 | double residual = (1.0 - result[pred]) / (result.length - 1); |
---|
81 | for (int i = 0; i < result.length; i++) { |
---|
82 | if (i != pred) { |
---|
83 | result[i] = residual; |
---|
84 | } |
---|
85 | } |
---|
86 | m_Pos = (m_Pos + 1) % m_Preds.length; |
---|
87 | return result; |
---|
88 | } |
---|
89 | |
---|
90 | /** |
---|
91 | * Returns the revision string. |
---|
92 | * |
---|
93 | * @return the revision |
---|
94 | */ |
---|
95 | public String getRevision() { |
---|
96 | return RevisionUtils.extract("$Revision: 5928 $"); |
---|
97 | } |
---|
98 | } |
---|
99 | |
---|