[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * Copyright (C) 2002-2006 University of Waikato |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | package weka.classifiers; |
---|
| 22 | |
---|
| 23 | import weka.classifiers.evaluation.EvaluationUtils; |
---|
| 24 | import weka.core.Attribute; |
---|
| 25 | import weka.core.CheckGOE; |
---|
| 26 | import weka.core.CheckOptionHandler; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.OptionHandler; |
---|
| 30 | import weka.core.CheckScheme.PostProcessor; |
---|
| 31 | import weka.test.Regression; |
---|
| 32 | |
---|
| 33 | import junit.framework.TestCase; |
---|
| 34 | |
---|
| 35 | /** |
---|
| 36 | * Abstract Test class for Classifiers. Internally it uses the class |
---|
| 37 | * <code>CheckClassifier</code> to determine success or failure of the |
---|
| 38 | * tests. It follows basically the <code>testsPerClassType</code> method. |
---|
| 39 | * |
---|
| 40 | * @author <a href="mailto:len@reeltwo.com">Len Trigg</a> |
---|
| 41 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
| 42 | * @version $Revision: 1.23 $ |
---|
| 43 | * |
---|
| 44 | * @see CheckClassifier |
---|
| 45 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 46 | * @see PostProcessor |
---|
| 47 | */ |
---|
| 48 | public abstract class AbstractClassifierTest |
---|
| 49 | extends TestCase { |
---|
| 50 | |
---|
| 51 | /** a class for postprocessing the test-data: all values of numeric attributs |
---|
| 52 | * are replaced with their absolute value */ |
---|
| 53 | public static class AbsPostProcessor |
---|
| 54 | extends PostProcessor { |
---|
| 55 | |
---|
| 56 | /** |
---|
| 57 | * initializes the PostProcessor |
---|
| 58 | */ |
---|
| 59 | public AbsPostProcessor() { |
---|
| 60 | super(); |
---|
| 61 | } |
---|
| 62 | |
---|
| 63 | /** |
---|
| 64 | * Provides a hook for derived classes to further modify the data. Currently, |
---|
| 65 | * the data is just passed through. |
---|
| 66 | * |
---|
| 67 | * @param data the data to process |
---|
| 68 | * @return the processed data |
---|
| 69 | */ |
---|
| 70 | public Instances process(Instances data) { |
---|
| 71 | Instances result; |
---|
| 72 | int i; |
---|
| 73 | int n; |
---|
| 74 | |
---|
| 75 | result = super.process(data); |
---|
| 76 | |
---|
| 77 | for (i = 0; i < result.numAttributes(); i++) { |
---|
| 78 | if (i == result.classIndex()) |
---|
| 79 | continue; |
---|
| 80 | if (!result.attribute(i).isNumeric()) |
---|
| 81 | continue; |
---|
| 82 | |
---|
| 83 | for (n = 0; n < result.numInstances(); n++) |
---|
| 84 | result.instance(n).setValue(i, Math.abs(result.instance(n).value(i))); |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | return result; |
---|
| 88 | } |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | /** The classifier to be tested */ |
---|
| 92 | protected Classifier m_Classifier; |
---|
| 93 | |
---|
| 94 | /** For testing the classifier */ |
---|
| 95 | protected CheckClassifier m_Tester; |
---|
| 96 | |
---|
| 97 | /** whether classifier is updateable */ |
---|
| 98 | protected boolean m_updateableClassifier; |
---|
| 99 | |
---|
| 100 | /** whether classifier handles weighted instances */ |
---|
| 101 | protected boolean m_weightedInstancesHandler; |
---|
| 102 | |
---|
| 103 | /** whether classifier handles multi-instance data */ |
---|
| 104 | protected boolean m_multiInstanceHandler; |
---|
| 105 | |
---|
| 106 | /** the number of classes to test with testNClasses() |
---|
| 107 | * @see #testNClasses() */ |
---|
| 108 | protected int m_NClasses; |
---|
| 109 | |
---|
| 110 | /** whether to run CheckClassifier in DEBUG mode */ |
---|
| 111 | protected boolean DEBUG = false; |
---|
| 112 | |
---|
| 113 | /** the attribute type with the lowest value */ |
---|
| 114 | protected final static int FIRST_CLASSTYPE = Attribute.NUMERIC; |
---|
| 115 | |
---|
| 116 | /** the attribute type with the highest value */ |
---|
| 117 | protected final static int LAST_CLASSTYPE = Attribute.RELATIONAL; |
---|
| 118 | |
---|
| 119 | /** wether classifier can predict nominal attributes (array index is attribute type of class) */ |
---|
| 120 | protected boolean[] m_NominalPredictors; |
---|
| 121 | |
---|
| 122 | /** wether classifier can predict numeric attributes (array index is attribute type of class) */ |
---|
| 123 | protected boolean[] m_NumericPredictors; |
---|
| 124 | |
---|
| 125 | /** wether classifier can predict string attributes (array index is attribute type of class) */ |
---|
| 126 | protected boolean[] m_StringPredictors; |
---|
| 127 | |
---|
| 128 | /** wether classifier can predict date attributes (array index is attribute type of class) */ |
---|
| 129 | protected boolean[] m_DatePredictors; |
---|
| 130 | |
---|
| 131 | /** wether classifier can predict relational attributes (array index is attribute type of class) */ |
---|
| 132 | protected boolean[] m_RelationalPredictors; |
---|
| 133 | |
---|
| 134 | /** whether classifier handles missing values */ |
---|
| 135 | protected boolean[] m_handleMissingPredictors; |
---|
| 136 | |
---|
| 137 | /** whether classifier handles class with only missing values */ |
---|
| 138 | protected boolean[] m_handleMissingClass; |
---|
| 139 | |
---|
| 140 | /** whether classifier handles class as first attribute */ |
---|
| 141 | protected boolean[] m_handleClassAsFirstAttribute; |
---|
| 142 | |
---|
| 143 | /** whether classifier handles class as second attribute */ |
---|
| 144 | protected boolean[] m_handleClassAsSecondAttribute; |
---|
| 145 | |
---|
| 146 | /** the results of the regression tests */ |
---|
| 147 | protected FastVector[] m_RegressionResults; |
---|
| 148 | |
---|
| 149 | /** the OptionHandler tester */ |
---|
| 150 | protected CheckOptionHandler m_OptionTester; |
---|
| 151 | |
---|
| 152 | /** for testing GOE stuff */ |
---|
| 153 | protected CheckGOE m_GOETester; |
---|
| 154 | |
---|
| 155 | /** |
---|
| 156 | * Constructs the <code>AbstractClassifierTest</code>. Called by subclasses. |
---|
| 157 | * |
---|
| 158 | * @param name the name of the test class |
---|
| 159 | */ |
---|
| 160 | public AbstractClassifierTest(String name) { |
---|
| 161 | super(name); |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * returns a custom PostProcessor for the CheckClassifier datasets, currently |
---|
| 166 | * only null. |
---|
| 167 | * |
---|
| 168 | * @return a custom PostProcessor, if necessary |
---|
| 169 | * @see PostProcessor |
---|
| 170 | */ |
---|
| 171 | protected PostProcessor getPostProcessor() { |
---|
| 172 | return null; |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | /** |
---|
| 176 | * configures the CheckClassifier instance used throughout the tests |
---|
| 177 | * |
---|
| 178 | * @return the fully configured CheckClassifier instance used for testing |
---|
| 179 | */ |
---|
| 180 | protected CheckClassifier getTester() { |
---|
| 181 | CheckClassifier result; |
---|
| 182 | |
---|
| 183 | result = new CheckClassifier(); |
---|
| 184 | result.setSilent(true); |
---|
| 185 | result.setClassifier(m_Classifier); |
---|
| 186 | result.setNumInstances(20); |
---|
| 187 | result.setDebug(DEBUG); |
---|
| 188 | result.setPostProcessor(getPostProcessor()); |
---|
| 189 | |
---|
| 190 | return result; |
---|
| 191 | } |
---|
| 192 | |
---|
| 193 | /** |
---|
| 194 | * Configures the CheckOptionHandler uses for testing the optionhandling. |
---|
| 195 | * Sets the classifier return from the getClassifier() method. |
---|
| 196 | * |
---|
| 197 | * @return the fully configured CheckOptionHandler |
---|
| 198 | * @see #getClassifier() |
---|
| 199 | */ |
---|
| 200 | protected CheckOptionHandler getOptionTester() { |
---|
| 201 | CheckOptionHandler result; |
---|
| 202 | |
---|
| 203 | result = new CheckOptionHandler(); |
---|
| 204 | result.setOptionHandler((OptionHandler) getClassifier()); |
---|
| 205 | result.setUserOptions(new String[0]); |
---|
| 206 | result.setSilent(true); |
---|
| 207 | |
---|
| 208 | return result; |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | /** |
---|
| 212 | * Configures the CheckGOE used for testing GOE stuff. |
---|
| 213 | * Sets the Classifier returned from the getClassifier() method. |
---|
| 214 | * |
---|
| 215 | * @return the fully configured CheckGOE |
---|
| 216 | * @see #getClassifier() |
---|
| 217 | */ |
---|
| 218 | protected CheckGOE getGOETester() { |
---|
| 219 | CheckGOE result; |
---|
| 220 | |
---|
| 221 | result = new CheckGOE(); |
---|
| 222 | result.setObject(getClassifier()); |
---|
| 223 | result.setSilent(true); |
---|
| 224 | |
---|
| 225 | return result; |
---|
| 226 | } |
---|
| 227 | |
---|
| 228 | /** |
---|
| 229 | * Called by JUnit before each test method. This implementation creates |
---|
| 230 | * the default classifier to test and loads a test set of Instances. |
---|
| 231 | * |
---|
| 232 | * @exception Exception if an error occurs reading the example instances. |
---|
| 233 | */ |
---|
| 234 | protected void setUp() throws Exception { |
---|
| 235 | m_Classifier = getClassifier(); |
---|
| 236 | m_Tester = getTester(); |
---|
| 237 | m_OptionTester = getOptionTester(); |
---|
| 238 | m_GOETester = getGOETester(); |
---|
| 239 | |
---|
| 240 | m_updateableClassifier = m_Tester.updateableClassifier()[0]; |
---|
| 241 | m_weightedInstancesHandler = m_Tester.weightedInstancesHandler()[0]; |
---|
| 242 | m_multiInstanceHandler = m_Tester.multiInstanceHandler()[0]; |
---|
| 243 | m_NominalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 244 | m_NumericPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 245 | m_StringPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 246 | m_DatePredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 247 | m_RelationalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 248 | m_handleMissingPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 249 | m_handleMissingClass = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 250 | m_handleClassAsFirstAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 251 | m_handleClassAsSecondAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 252 | m_RegressionResults = new FastVector[LAST_CLASSTYPE + 1]; |
---|
| 253 | m_NClasses = 4; |
---|
| 254 | |
---|
| 255 | // initialize attributes |
---|
| 256 | checkAttributes(true, false, false, false, false, false); |
---|
| 257 | checkAttributes(false, true, false, false, false, false); |
---|
| 258 | checkAttributes(false, false, true, false, false, false); |
---|
| 259 | checkAttributes(false, false, false, true, false, false); |
---|
| 260 | checkAttributes(false, false, false, false, true, false); |
---|
| 261 | |
---|
| 262 | // initialize missing values handling |
---|
| 263 | for (int i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 264 | // does the scheme support this type of class at all? |
---|
| 265 | if (!canPredict(i)) |
---|
| 266 | continue; |
---|
| 267 | |
---|
| 268 | // 20% missing |
---|
| 269 | m_handleMissingPredictors[i] = checkMissingPredictors(i, 20, false); |
---|
| 270 | m_handleMissingClass[i] = checkMissingClass(i, 20, false); |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | /** Called by JUnit after each test method */ |
---|
| 275 | protected void tearDown() { |
---|
| 276 | m_Classifier = null; |
---|
| 277 | m_Tester = null; |
---|
| 278 | m_OptionTester = null; |
---|
| 279 | m_GOETester = null; |
---|
| 280 | |
---|
| 281 | m_updateableClassifier = false; |
---|
| 282 | m_weightedInstancesHandler = false; |
---|
| 283 | m_NominalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 284 | m_NumericPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 285 | m_StringPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 286 | m_DatePredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 287 | m_RelationalPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 288 | m_handleMissingPredictors = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 289 | m_handleMissingClass = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 290 | m_handleClassAsFirstAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 291 | m_handleClassAsSecondAttribute = new boolean[LAST_CLASSTYPE + 1]; |
---|
| 292 | m_RegressionResults = new FastVector[LAST_CLASSTYPE + 1]; |
---|
| 293 | m_NClasses = 4; |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | /** |
---|
| 297 | * Used to create an instance of a specific classifier. |
---|
| 298 | * |
---|
| 299 | * @return a suitably configured <code>Classifier</code> value |
---|
| 300 | */ |
---|
| 301 | public abstract Classifier getClassifier(); |
---|
| 302 | |
---|
| 303 | /** |
---|
| 304 | * checks whether at least one attribute type can be handled with the |
---|
| 305 | * given class type |
---|
| 306 | * |
---|
| 307 | * @param type the class type to check for |
---|
| 308 | * @return true if at least one attribute type can be predicted with |
---|
| 309 | * the given class |
---|
| 310 | */ |
---|
| 311 | protected boolean canPredict(int type) { |
---|
| 312 | return m_NominalPredictors[type] |
---|
| 313 | || m_NumericPredictors[type] |
---|
| 314 | || m_StringPredictors[type] |
---|
| 315 | || m_DatePredictors[type] |
---|
| 316 | || m_RelationalPredictors[type]; |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | /** |
---|
| 320 | * returns a string for the class type |
---|
| 321 | * |
---|
| 322 | * @param type the class type |
---|
| 323 | * @return the class type as string |
---|
| 324 | */ |
---|
| 325 | protected String getClassTypeString(int type) { |
---|
| 326 | return CheckClassifier.attributeTypeToString(type); |
---|
| 327 | } |
---|
| 328 | |
---|
| 329 | /** |
---|
| 330 | * tests whether the classifier can handle certain attributes and if not, |
---|
| 331 | * if the exception is OK |
---|
| 332 | * |
---|
| 333 | * @param nom to check for nominal attributes |
---|
| 334 | * @param num to check for numeric attributes |
---|
| 335 | * @param str to check for string attributes |
---|
| 336 | * @param dat to check for date attributes |
---|
| 337 | * @param rel to check for relational attributes |
---|
| 338 | * @param allowFail whether a junit fail can be executed |
---|
| 339 | * @see CheckClassifier#canPredict(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 340 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 341 | */ |
---|
| 342 | protected void checkAttributes(boolean nom, boolean num, boolean str, |
---|
| 343 | boolean dat, boolean rel, |
---|
| 344 | boolean allowFail) { |
---|
| 345 | boolean[] result; |
---|
| 346 | String att; |
---|
| 347 | int i; |
---|
| 348 | |
---|
| 349 | // determine text for type of attributes |
---|
| 350 | att = ""; |
---|
| 351 | if (nom) |
---|
| 352 | att = "nominal"; |
---|
| 353 | else if (num) |
---|
| 354 | att = "numeric"; |
---|
| 355 | else if (str) |
---|
| 356 | att = "string"; |
---|
| 357 | else if (dat) |
---|
| 358 | att = "date"; |
---|
| 359 | else if (rel) |
---|
| 360 | att = "relational"; |
---|
| 361 | |
---|
| 362 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 363 | result = m_Tester.canPredict(nom, num, str, dat, rel, m_multiInstanceHandler, i); |
---|
| 364 | if (nom) |
---|
| 365 | m_NominalPredictors[i] = result[0]; |
---|
| 366 | else if (num) |
---|
| 367 | m_NumericPredictors[i] = result[0]; |
---|
| 368 | else if (str) |
---|
| 369 | m_StringPredictors[i] = result[0]; |
---|
| 370 | else if (dat) |
---|
| 371 | m_DatePredictors[i] = result[0]; |
---|
| 372 | else if (rel) |
---|
| 373 | m_RelationalPredictors[i] = result[0]; |
---|
| 374 | |
---|
| 375 | if (!result[0] && !result[1] && allowFail) |
---|
| 376 | fail("Error handling " + att + " attributes (" + getClassTypeString(i) |
---|
| 377 | + " class)!"); |
---|
| 378 | } |
---|
| 379 | } |
---|
| 380 | |
---|
| 381 | /** |
---|
| 382 | * tests whether the toString method of the classifier works even though the |
---|
| 383 | * classifier hasn't been built yet. |
---|
| 384 | */ |
---|
| 385 | public void testToString() { |
---|
| 386 | boolean[] result; |
---|
| 387 | |
---|
| 388 | result = m_Tester.testToString(); |
---|
| 389 | |
---|
| 390 | if (!result[0]) |
---|
| 391 | fail("Error in toString() method!"); |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | /** |
---|
| 395 | * tests whether the scheme declares a serialVersionUID. |
---|
| 396 | */ |
---|
| 397 | public void testSerialVersionUID() { |
---|
| 398 | boolean[] result; |
---|
| 399 | |
---|
| 400 | result = m_Tester.declaresSerialVersionUID(); |
---|
| 401 | |
---|
| 402 | if (!result[0]) |
---|
| 403 | fail("Doesn't declare serialVersionUID!"); |
---|
| 404 | } |
---|
| 405 | |
---|
| 406 | /** |
---|
| 407 | * tests whether the classifier can handle different types of attributes and |
---|
| 408 | * if not, if the exception is OK |
---|
| 409 | * |
---|
| 410 | * @see #checkAttributes(boolean, boolean, boolean, boolean, boolean, boolean, boolean) |
---|
| 411 | */ |
---|
| 412 | public void testAttributes() { |
---|
| 413 | // nominal |
---|
| 414 | checkAttributes(true, false, false, false, false, true); |
---|
| 415 | // numeric |
---|
| 416 | checkAttributes(false, true, false, false, false, true); |
---|
| 417 | // string |
---|
| 418 | checkAttributes(false, false, true, false, false, true); |
---|
| 419 | // date |
---|
| 420 | checkAttributes(false, false, false, true, false, true); |
---|
| 421 | // relational |
---|
| 422 | if (!m_multiInstanceHandler) |
---|
| 423 | checkAttributes(false, false, false, false, true, true); |
---|
| 424 | } |
---|
| 425 | |
---|
| 426 | /** |
---|
| 427 | * tests whether the classifier handles instance weights correctly |
---|
| 428 | * |
---|
| 429 | * @see CheckClassifier#instanceWeights(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 430 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 431 | */ |
---|
| 432 | public void testInstanceWeights() { |
---|
| 433 | boolean[] result; |
---|
| 434 | int i; |
---|
| 435 | |
---|
| 436 | if (m_weightedInstancesHandler) { |
---|
| 437 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 438 | // does the classifier support this type of class at all? |
---|
| 439 | if (!canPredict(i)) |
---|
| 440 | continue; |
---|
| 441 | |
---|
| 442 | result = m_Tester.instanceWeights( |
---|
| 443 | m_NominalPredictors[i], |
---|
| 444 | m_NumericPredictors[i], |
---|
| 445 | m_StringPredictors[i], |
---|
| 446 | m_DatePredictors[i], |
---|
| 447 | m_RelationalPredictors[i], |
---|
| 448 | m_multiInstanceHandler, |
---|
| 449 | i); |
---|
| 450 | |
---|
| 451 | if (!result[0]) |
---|
| 452 | System.err.println("Error handling instance weights (" + getClassTypeString(i) |
---|
| 453 | + " class)!"); |
---|
| 454 | } |
---|
| 455 | } |
---|
| 456 | } |
---|
| 457 | |
---|
| 458 | /** |
---|
| 459 | * tests whether classifier handles data containing only a class attribute |
---|
| 460 | * |
---|
| 461 | * @see CheckClassifier#canHandleOnlyClass(boolean, boolean, boolean, boolean, boolean, int) |
---|
| 462 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 463 | */ |
---|
| 464 | public void testOnlyClass() { |
---|
| 465 | boolean[] result; |
---|
| 466 | int i; |
---|
| 467 | |
---|
| 468 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 469 | // does the classifier support this type of class at all? |
---|
| 470 | if (!canPredict(i)) |
---|
| 471 | continue; |
---|
| 472 | |
---|
| 473 | result = m_Tester.canHandleOnlyClass( |
---|
| 474 | m_NominalPredictors[i], |
---|
| 475 | m_NumericPredictors[i], |
---|
| 476 | m_StringPredictors[i], |
---|
| 477 | m_DatePredictors[i], |
---|
| 478 | m_RelationalPredictors[i], |
---|
| 479 | i); |
---|
| 480 | |
---|
| 481 | if (!result[0] && !result[1]) |
---|
| 482 | fail("Error handling data containing only the class!"); |
---|
| 483 | } |
---|
| 484 | } |
---|
| 485 | |
---|
| 486 | /** |
---|
| 487 | * tests whether classifier handles N classes |
---|
| 488 | * |
---|
| 489 | * @see CheckClassifier#canHandleNClasses(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 490 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 491 | * @see #m_NClasses |
---|
| 492 | */ |
---|
| 493 | public void testNClasses() { |
---|
| 494 | boolean[] result; |
---|
| 495 | |
---|
| 496 | if (!canPredict(Attribute.NOMINAL)) |
---|
| 497 | return; |
---|
| 498 | |
---|
| 499 | result = m_Tester.canHandleNClasses( |
---|
| 500 | m_NominalPredictors[Attribute.NOMINAL], |
---|
| 501 | m_NumericPredictors[Attribute.NOMINAL], |
---|
| 502 | m_StringPredictors[Attribute.NOMINAL], |
---|
| 503 | m_DatePredictors[Attribute.NOMINAL], |
---|
| 504 | m_RelationalPredictors[Attribute.NOMINAL], |
---|
| 505 | m_multiInstanceHandler, |
---|
| 506 | m_NClasses); |
---|
| 507 | |
---|
| 508 | if (!result[0] && !result[1]) |
---|
| 509 | fail("Error handling " + m_NClasses + " classes!"); |
---|
| 510 | } |
---|
| 511 | |
---|
| 512 | /** |
---|
| 513 | * checks whether the classifier can handle the class attribute at a given |
---|
| 514 | * position (0-based index, -1 means last). |
---|
| 515 | * |
---|
| 516 | * @param type the class type |
---|
| 517 | * @param position the position of the class attribute (0-based, -1 means last) |
---|
| 518 | * @return true if the classifier can handle it |
---|
| 519 | */ |
---|
| 520 | protected boolean checkClassAsNthAttribute(int type, int position) { |
---|
| 521 | boolean[] result; |
---|
| 522 | String indexStr; |
---|
| 523 | |
---|
| 524 | result = m_Tester.canHandleClassAsNthAttribute( |
---|
| 525 | m_NominalPredictors[type], |
---|
| 526 | m_NumericPredictors[type], |
---|
| 527 | m_StringPredictors[type], |
---|
| 528 | m_DatePredictors[type], |
---|
| 529 | m_RelationalPredictors[type], |
---|
| 530 | m_multiInstanceHandler, |
---|
| 531 | type, |
---|
| 532 | position); |
---|
| 533 | |
---|
| 534 | if (position == -1) |
---|
| 535 | indexStr = "last"; |
---|
| 536 | else |
---|
| 537 | indexStr = (position + 1) + "."; |
---|
| 538 | |
---|
| 539 | if (!result[0] && !result[1]) |
---|
| 540 | fail("Error handling class as " + indexStr + " attribute (" |
---|
| 541 | + getClassTypeString(type) + " class)!"); |
---|
| 542 | |
---|
| 543 | return result[0]; |
---|
| 544 | } |
---|
| 545 | |
---|
| 546 | /** |
---|
| 547 | * Tests whether the classifier can handle class attributes as Nth |
---|
| 548 | * attribute. In case of multi-instance classifiers it performs no tests, |
---|
| 549 | * since the multi-instance data has a fixed format (bagID,bag,class). |
---|
| 550 | * |
---|
| 551 | * @see CheckClassifier#canHandleClassAsNthAttribute(boolean, boolean, boolean, boolean, boolean, boolean, int, int) |
---|
| 552 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 553 | */ |
---|
| 554 | public void testClassAsNthAttribute() { |
---|
| 555 | int i; |
---|
| 556 | |
---|
| 557 | // multi-Instance data has fixed format! |
---|
| 558 | if (m_multiInstanceHandler) |
---|
| 559 | return; |
---|
| 560 | |
---|
| 561 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 562 | // does the classifier support this type of class at all? |
---|
| 563 | if (!canPredict(i)) |
---|
| 564 | continue; |
---|
| 565 | |
---|
| 566 | // first attribute |
---|
| 567 | m_handleClassAsFirstAttribute[i] = checkClassAsNthAttribute(i, 0); |
---|
| 568 | |
---|
| 569 | // second attribute |
---|
| 570 | m_handleClassAsSecondAttribute[i] = checkClassAsNthAttribute(i, 1); |
---|
| 571 | } |
---|
| 572 | } |
---|
| 573 | |
---|
| 574 | /** |
---|
| 575 | * tests whether the classifier can handle zero training instances |
---|
| 576 | * |
---|
| 577 | * @see CheckClassifier#canHandleZeroTraining(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 578 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 579 | */ |
---|
| 580 | public void testZeroTraining() { |
---|
| 581 | boolean[] result; |
---|
| 582 | int i; |
---|
| 583 | |
---|
| 584 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 585 | // does the classifier support this type of class at all? |
---|
| 586 | if (!canPredict(i)) |
---|
| 587 | continue; |
---|
| 588 | |
---|
| 589 | result = m_Tester.canHandleZeroTraining( |
---|
| 590 | m_NominalPredictors[i], |
---|
| 591 | m_NumericPredictors[i], |
---|
| 592 | m_StringPredictors[i], |
---|
| 593 | m_DatePredictors[i], |
---|
| 594 | m_RelationalPredictors[i], |
---|
| 595 | m_multiInstanceHandler, |
---|
| 596 | i); |
---|
| 597 | |
---|
| 598 | if (!result[0] && !result[1]) |
---|
| 599 | fail("Error handling zero training instances (" + getClassTypeString(i) |
---|
| 600 | + " class)!"); |
---|
| 601 | } |
---|
| 602 | } |
---|
| 603 | |
---|
| 604 | /** |
---|
| 605 | * checks whether the classifier can handle the given percentage of |
---|
| 606 | * missing predictors |
---|
| 607 | * |
---|
| 608 | * @param type the class type |
---|
| 609 | * @param percent the percentage of missing predictors |
---|
| 610 | * @param allowFail if true a fail statement may be executed |
---|
| 611 | * @return true if the classifier can handle it |
---|
| 612 | */ |
---|
| 613 | protected boolean checkMissingPredictors(int type, int percent, boolean allowFail) { |
---|
| 614 | boolean[] result; |
---|
| 615 | |
---|
| 616 | result = m_Tester.canHandleMissing( |
---|
| 617 | m_NominalPredictors[type], |
---|
| 618 | m_NumericPredictors[type], |
---|
| 619 | m_StringPredictors[type], |
---|
| 620 | m_DatePredictors[type], |
---|
| 621 | m_RelationalPredictors[type], |
---|
| 622 | m_multiInstanceHandler, |
---|
| 623 | type, |
---|
| 624 | true, |
---|
| 625 | false, |
---|
| 626 | percent); |
---|
| 627 | |
---|
| 628 | if (allowFail) { |
---|
| 629 | if (!result[0] && !result[1]) |
---|
| 630 | fail("Error handling " + percent + "% missing predictors (" |
---|
| 631 | + getClassTypeString(type) + " class)!"); |
---|
| 632 | } |
---|
| 633 | |
---|
| 634 | return result[0]; |
---|
| 635 | } |
---|
| 636 | |
---|
| 637 | /** |
---|
| 638 | * tests whether the classifier can handle missing predictors (20% and 100%) |
---|
| 639 | * |
---|
| 640 | * @see CheckClassifier#canHandleMissing(boolean, boolean, boolean, boolean, boolean, boolean, int, boolean, boolean, int) |
---|
| 641 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 642 | */ |
---|
| 643 | public void testMissingPredictors() { |
---|
| 644 | int i; |
---|
| 645 | |
---|
| 646 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 647 | // does the classifier support this type of class at all? |
---|
| 648 | if (!canPredict(i)) |
---|
| 649 | continue; |
---|
| 650 | |
---|
| 651 | // 20% missing |
---|
| 652 | checkMissingPredictors(i, 20, true); |
---|
| 653 | |
---|
| 654 | // 100% missing |
---|
| 655 | if (m_handleMissingPredictors[i]) |
---|
| 656 | checkMissingPredictors(i, 100, true); |
---|
| 657 | } |
---|
| 658 | } |
---|
| 659 | |
---|
| 660 | /** |
---|
| 661 | * checks whether the classifier can handle the given percentage of |
---|
| 662 | * missing class labels |
---|
| 663 | * |
---|
| 664 | * @param type the class type |
---|
| 665 | * @param percent the percentage of missing class labels |
---|
| 666 | * @param allowFail if true a fail statement may be executed |
---|
| 667 | * @return true if the classifier can handle it |
---|
| 668 | */ |
---|
| 669 | protected boolean checkMissingClass(int type, int percent, boolean allowFail) { |
---|
| 670 | boolean[] result; |
---|
| 671 | |
---|
| 672 | result = m_Tester.canHandleMissing( |
---|
| 673 | m_NominalPredictors[type], |
---|
| 674 | m_NumericPredictors[type], |
---|
| 675 | m_StringPredictors[type], |
---|
| 676 | m_DatePredictors[type], |
---|
| 677 | m_RelationalPredictors[type], |
---|
| 678 | m_multiInstanceHandler, |
---|
| 679 | type, |
---|
| 680 | false, |
---|
| 681 | true, |
---|
| 682 | percent); |
---|
| 683 | |
---|
| 684 | if (allowFail) { |
---|
| 685 | if (!result[0] && !result[1]) |
---|
| 686 | fail("Error handling " + percent + "% missing class labels (" |
---|
| 687 | + getClassTypeString(type) + " class)!"); |
---|
| 688 | } |
---|
| 689 | |
---|
| 690 | return result[0]; |
---|
| 691 | } |
---|
| 692 | |
---|
| 693 | /** |
---|
| 694 | * tests whether the classifier can handle missing class values (20% and |
---|
| 695 | * 100%) |
---|
| 696 | * |
---|
| 697 | * @see CheckClassifier#canHandleMissing(boolean, boolean, boolean, boolean, boolean, boolean, int, boolean, boolean, int) |
---|
| 698 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 699 | */ |
---|
| 700 | public void testMissingClass() { |
---|
| 701 | int i; |
---|
| 702 | |
---|
| 703 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 704 | // does the classifier support this type of class at all? |
---|
| 705 | if (!canPredict(i)) |
---|
| 706 | continue; |
---|
| 707 | |
---|
| 708 | // 20% missing |
---|
| 709 | checkMissingClass(i, 20, true); |
---|
| 710 | |
---|
| 711 | // 100% missing |
---|
| 712 | if (m_handleMissingClass[i]) |
---|
| 713 | checkMissingClass(i, 100, true); |
---|
| 714 | } |
---|
| 715 | } |
---|
| 716 | |
---|
| 717 | /** |
---|
| 718 | * tests whether the classifier correctly initializes in the |
---|
| 719 | * buildClassifier method |
---|
| 720 | * |
---|
| 721 | * @see CheckClassifier#correctBuildInitialisation(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 722 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 723 | */ |
---|
| 724 | public void testBuildInitialization() { |
---|
| 725 | boolean[] result; |
---|
| 726 | int i; |
---|
| 727 | |
---|
| 728 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 729 | // does the classifier support this type of class at all? |
---|
| 730 | if (!canPredict(i)) |
---|
| 731 | continue; |
---|
| 732 | |
---|
| 733 | result = m_Tester.correctBuildInitialisation( |
---|
| 734 | m_NominalPredictors[i], |
---|
| 735 | m_NumericPredictors[i], |
---|
| 736 | m_StringPredictors[i], |
---|
| 737 | m_DatePredictors[i], |
---|
| 738 | m_RelationalPredictors[i], |
---|
| 739 | m_multiInstanceHandler, |
---|
| 740 | i); |
---|
| 741 | |
---|
| 742 | if (!result[0] && !result[1]) |
---|
| 743 | fail("Incorrect build initialization (" + getClassTypeString(i) |
---|
| 744 | + " class)!"); |
---|
| 745 | } |
---|
| 746 | } |
---|
| 747 | |
---|
| 748 | /** |
---|
| 749 | * tests whether the classifier alters the training set during training. |
---|
| 750 | * |
---|
| 751 | * @see CheckClassifier#datasetIntegrity(boolean, boolean, boolean, boolean, boolean, boolean, int, boolean, boolean) |
---|
| 752 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 753 | */ |
---|
| 754 | public void testDatasetIntegrity() { |
---|
| 755 | boolean[] result; |
---|
| 756 | int i; |
---|
| 757 | |
---|
| 758 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 759 | // does the classifier support this type of class at all? |
---|
| 760 | if (!canPredict(i)) |
---|
| 761 | continue; |
---|
| 762 | |
---|
| 763 | result = m_Tester.datasetIntegrity( |
---|
| 764 | m_NominalPredictors[i], |
---|
| 765 | m_NumericPredictors[i], |
---|
| 766 | m_StringPredictors[i], |
---|
| 767 | m_DatePredictors[i], |
---|
| 768 | m_RelationalPredictors[i], |
---|
| 769 | m_multiInstanceHandler, |
---|
| 770 | i, |
---|
| 771 | m_handleMissingPredictors[i], |
---|
| 772 | m_handleMissingClass[i]); |
---|
| 773 | |
---|
| 774 | if (!result[0] && !result[1]) |
---|
| 775 | fail("Training set is altered during training (" |
---|
| 776 | + getClassTypeString(i) + " class)!"); |
---|
| 777 | } |
---|
| 778 | } |
---|
| 779 | |
---|
| 780 | /** |
---|
| 781 | * tests whether the classifier erroneously uses the class value of test |
---|
| 782 | * instances (if provided) |
---|
| 783 | * |
---|
| 784 | * @see CheckClassifier#doesntUseTestClassVal(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 785 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 786 | */ |
---|
| 787 | public void testUseOfTestClassValue() { |
---|
| 788 | boolean[] result; |
---|
| 789 | int i; |
---|
| 790 | |
---|
| 791 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 792 | // does the classifier support this type of class at all? |
---|
| 793 | if (!canPredict(i)) |
---|
| 794 | continue; |
---|
| 795 | |
---|
| 796 | result = m_Tester.doesntUseTestClassVal( |
---|
| 797 | m_NominalPredictors[i], |
---|
| 798 | m_NumericPredictors[i], |
---|
| 799 | m_StringPredictors[i], |
---|
| 800 | m_DatePredictors[i], |
---|
| 801 | m_RelationalPredictors[i], |
---|
| 802 | m_multiInstanceHandler, |
---|
| 803 | i); |
---|
| 804 | |
---|
| 805 | if (!result[0]) |
---|
| 806 | fail("Uses test class values (" + getClassTypeString(i) + " class)!"); |
---|
| 807 | } |
---|
| 808 | } |
---|
| 809 | |
---|
| 810 | /** |
---|
| 811 | * tests whether the classifier produces the same model when trained |
---|
| 812 | * incrementally as when batch trained. |
---|
| 813 | * |
---|
| 814 | * @see CheckClassifier#updatingEquality(boolean, boolean, boolean, boolean, boolean, boolean, int) |
---|
| 815 | * @see CheckClassifier#testsPerClassType(int, boolean, boolean, boolean) |
---|
| 816 | */ |
---|
| 817 | public void testUpdatingEquality() { |
---|
| 818 | boolean[] result; |
---|
| 819 | int i; |
---|
| 820 | |
---|
| 821 | if (m_updateableClassifier) { |
---|
| 822 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 823 | // does the classifier support this type of class at all? |
---|
| 824 | if (!canPredict(i)) |
---|
| 825 | continue; |
---|
| 826 | |
---|
| 827 | result = m_Tester.updatingEquality( |
---|
| 828 | m_NominalPredictors[i], |
---|
| 829 | m_NumericPredictors[i], |
---|
| 830 | m_StringPredictors[i], |
---|
| 831 | m_DatePredictors[i], |
---|
| 832 | m_RelationalPredictors[i], |
---|
| 833 | m_multiInstanceHandler, |
---|
| 834 | i); |
---|
| 835 | |
---|
| 836 | if (!result[0]) |
---|
| 837 | System.err.println("Incremental training does not produce same result as " |
---|
| 838 | + "batch training (" + getClassTypeString(i) + " class)!"); |
---|
| 839 | } |
---|
| 840 | } |
---|
| 841 | } |
---|
| 842 | |
---|
| 843 | /** |
---|
| 844 | * Builds a model using the current classifier using the first |
---|
| 845 | * half of the current data for training, and generates a bunch of |
---|
| 846 | * predictions using the remaining half of the data for testing. |
---|
| 847 | * |
---|
| 848 | * @param data the instances to test the classifier on |
---|
| 849 | * @return a <code>FastVector</code> containing the predictions. |
---|
| 850 | */ |
---|
| 851 | protected FastVector useClassifier(Instances data) throws Exception { |
---|
| 852 | Classifier dc = null; |
---|
| 853 | int tot = data.numInstances(); |
---|
| 854 | int mid = tot / 2; |
---|
| 855 | Instances train = null; |
---|
| 856 | Instances test = null; |
---|
| 857 | EvaluationUtils evaluation = new EvaluationUtils(); |
---|
| 858 | |
---|
| 859 | try { |
---|
| 860 | train = new Instances(data, 0, mid); |
---|
| 861 | test = new Instances(data, mid, tot - mid); |
---|
| 862 | dc = m_Classifier; |
---|
| 863 | } |
---|
| 864 | catch (Exception e) { |
---|
| 865 | e.printStackTrace(); |
---|
| 866 | fail("Problem setting up to use classifier: " + e); |
---|
| 867 | } |
---|
| 868 | |
---|
| 869 | do { |
---|
| 870 | try { |
---|
| 871 | return evaluation.getTrainTestPredictions(dc, train, test); |
---|
| 872 | } |
---|
| 873 | catch (IllegalArgumentException e) { |
---|
| 874 | String msg = e.getMessage(); |
---|
| 875 | if (msg.indexOf("Not enough instances") != -1) { |
---|
| 876 | System.err.println("\nInflating training data."); |
---|
| 877 | Instances trainNew = new Instances(train); |
---|
| 878 | for (int i = 0; i < train.numInstances(); i++) { |
---|
| 879 | trainNew.add(train.instance(i)); |
---|
| 880 | } |
---|
| 881 | train = trainNew; |
---|
| 882 | } |
---|
| 883 | else { |
---|
| 884 | throw e; |
---|
| 885 | } |
---|
| 886 | } |
---|
| 887 | } while (true); |
---|
| 888 | } |
---|
| 889 | |
---|
| 890 | /** |
---|
| 891 | * Returns a string containing all the predictions. |
---|
| 892 | * |
---|
| 893 | * @param predictions a <code>FastVector</code> containing the predictions |
---|
| 894 | * @return a <code>String</code> representing the vector of predictions. |
---|
| 895 | */ |
---|
| 896 | public static String predictionsToString(FastVector predictions) { |
---|
| 897 | StringBuffer sb = new StringBuffer(); |
---|
| 898 | sb.append(predictions.size()).append(" predictions\n"); |
---|
| 899 | for (int i = 0; i < predictions.size(); i++) { |
---|
| 900 | sb.append(predictions.elementAt(i)).append('\n'); |
---|
| 901 | } |
---|
| 902 | return sb.toString(); |
---|
| 903 | } |
---|
| 904 | |
---|
| 905 | /** |
---|
| 906 | * Provides a hook for derived classes to further modify the data. Currently, |
---|
| 907 | * the data is just passed through. |
---|
| 908 | * |
---|
| 909 | * @param data the data to process |
---|
| 910 | * @return the processed data |
---|
| 911 | */ |
---|
| 912 | protected Instances process(Instances data) { |
---|
| 913 | return data; |
---|
| 914 | } |
---|
| 915 | |
---|
| 916 | /** |
---|
| 917 | * Runs a regression test -- this checks that the output of the tested |
---|
| 918 | * object matches that in a reference version. When this test is |
---|
| 919 | * run without any pre-existing reference output, the reference version |
---|
| 920 | * is created. |
---|
| 921 | */ |
---|
| 922 | public void testRegression() throws Exception { |
---|
| 923 | int i; |
---|
| 924 | boolean succeeded; |
---|
| 925 | Regression reg; |
---|
| 926 | Instances train; |
---|
| 927 | |
---|
| 928 | // don't bother if not working correctly |
---|
| 929 | if (m_Tester.hasClasspathProblems()) |
---|
| 930 | return; |
---|
| 931 | |
---|
| 932 | reg = new Regression(this.getClass()); |
---|
| 933 | succeeded = false; |
---|
| 934 | train = null; |
---|
| 935 | |
---|
| 936 | for (i = FIRST_CLASSTYPE; i <= LAST_CLASSTYPE; i++) { |
---|
| 937 | // does the classifier support this type of class at all? |
---|
| 938 | if (!canPredict(i)) |
---|
| 939 | continue; |
---|
| 940 | |
---|
| 941 | train = m_Tester.makeTestDataset( |
---|
| 942 | 42, m_Tester.getNumInstances(), |
---|
| 943 | m_NominalPredictors[i] ? m_Tester.getNumNominal() : 0, |
---|
| 944 | m_NumericPredictors[i] ? m_Tester.getNumNumeric() : 0, |
---|
| 945 | m_StringPredictors[i] ? m_Tester.getNumString() : 0, |
---|
| 946 | m_DatePredictors[i] ? m_Tester.getNumDate() : 0, |
---|
| 947 | m_RelationalPredictors[i] ? m_Tester.getNumRelational() : 0, |
---|
| 948 | 2, |
---|
| 949 | i, |
---|
| 950 | m_multiInstanceHandler); |
---|
| 951 | |
---|
| 952 | try { |
---|
| 953 | m_RegressionResults[i] = useClassifier(train); |
---|
| 954 | succeeded = true; |
---|
| 955 | reg.println(predictionsToString(m_RegressionResults[i])); |
---|
| 956 | } |
---|
| 957 | catch (Exception e) { |
---|
| 958 | String msg = e.getMessage().toLowerCase(); |
---|
| 959 | if (msg.indexOf("not in classpath") > -1) |
---|
| 960 | return; |
---|
| 961 | |
---|
| 962 | m_RegressionResults[i] = null; |
---|
| 963 | } |
---|
| 964 | } |
---|
| 965 | |
---|
| 966 | if (!succeeded) { |
---|
| 967 | fail("Problem during regression testing: no successful predictions for any class type"); |
---|
| 968 | } |
---|
| 969 | |
---|
| 970 | try { |
---|
| 971 | String diff = reg.diff(); |
---|
| 972 | if (diff == null) { |
---|
| 973 | System.err.println("Warning: No reference available, creating."); |
---|
| 974 | } else if (!diff.equals("")) { |
---|
| 975 | fail("Regression test failed. Difference:\n" + diff); |
---|
| 976 | } |
---|
| 977 | } |
---|
| 978 | catch (java.io.IOException ex) { |
---|
| 979 | fail("Problem during regression testing.\n" + ex); |
---|
| 980 | } |
---|
| 981 | } |
---|
| 982 | |
---|
| 983 | /** |
---|
| 984 | * tests the listing of the options |
---|
| 985 | */ |
---|
| 986 | public void testListOptions() { |
---|
| 987 | if (!m_OptionTester.checkListOptions()) |
---|
| 988 | fail("Options cannot be listed via listOptions."); |
---|
| 989 | } |
---|
| 990 | |
---|
| 991 | /** |
---|
| 992 | * tests the setting of the options |
---|
| 993 | */ |
---|
| 994 | public void testSetOptions() { |
---|
| 995 | if (!m_OptionTester.checkSetOptions()) |
---|
| 996 | fail("setOptions method failed."); |
---|
| 997 | } |
---|
| 998 | |
---|
| 999 | /** |
---|
| 1000 | * tests whether the default settings are processed correctly |
---|
| 1001 | */ |
---|
| 1002 | public void testDefaultOptions() { |
---|
| 1003 | if (!m_OptionTester.checkDefaultOptions()) |
---|
| 1004 | fail("Default options were not processed correctly."); |
---|
| 1005 | } |
---|
| 1006 | |
---|
| 1007 | /** |
---|
| 1008 | * tests whether there are any remaining options |
---|
| 1009 | */ |
---|
| 1010 | public void testRemainingOptions() { |
---|
| 1011 | if (!m_OptionTester.checkRemainingOptions()) |
---|
| 1012 | fail("There were 'left-over' options."); |
---|
| 1013 | } |
---|
| 1014 | |
---|
| 1015 | /** |
---|
| 1016 | * tests the whether the user-supplied options stay the same after setting. |
---|
| 1017 | * getting, and re-setting again. |
---|
| 1018 | * |
---|
| 1019 | * @see #getOptionTester() |
---|
| 1020 | */ |
---|
| 1021 | public void testCanonicalUserOptions() { |
---|
| 1022 | if (!m_OptionTester.checkCanonicalUserOptions()) |
---|
| 1023 | fail("setOptions method failed"); |
---|
| 1024 | } |
---|
| 1025 | |
---|
| 1026 | /** |
---|
| 1027 | * tests the resetting of the options to the default ones |
---|
| 1028 | */ |
---|
| 1029 | public void testResettingOptions() { |
---|
| 1030 | if (!m_OptionTester.checkSetOptions()) |
---|
| 1031 | fail("Resetting of options failed"); |
---|
| 1032 | } |
---|
| 1033 | |
---|
| 1034 | /** |
---|
| 1035 | * tests for a globalInfo method |
---|
| 1036 | */ |
---|
| 1037 | public void testGlobalInfo() { |
---|
| 1038 | if (!m_GOETester.checkGlobalInfo()) |
---|
| 1039 | fail("No globalInfo method"); |
---|
| 1040 | } |
---|
| 1041 | |
---|
| 1042 | /** |
---|
| 1043 | * tests the tool tips |
---|
| 1044 | */ |
---|
| 1045 | public void testToolTips() { |
---|
| 1046 | if (!m_GOETester.checkToolTips()) |
---|
| 1047 | fail("Tool tips inconsistent"); |
---|
| 1048 | } |
---|
| 1049 | } |
---|