1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * ThresholdVisualizePanel.java |
---|
19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.gui.visualize; |
---|
24 | |
---|
25 | import weka.classifiers.Classifier; |
---|
26 | import weka.classifiers.AbstractClassifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.classifiers.evaluation.EvaluationUtils; |
---|
29 | import weka.classifiers.evaluation.ThresholdCurve; |
---|
30 | import weka.core.FastVector; |
---|
31 | import weka.core.Instances; |
---|
32 | import weka.core.SingleIndex; |
---|
33 | import weka.core.Utils; |
---|
34 | |
---|
35 | import java.awt.BorderLayout; |
---|
36 | import java.awt.event.ActionEvent; |
---|
37 | import java.awt.event.ActionListener; |
---|
38 | import java.awt.event.WindowAdapter; |
---|
39 | import java.awt.event.WindowEvent; |
---|
40 | import java.io.BufferedReader; |
---|
41 | import java.io.FileReader; |
---|
42 | |
---|
43 | import javax.swing.BorderFactory; |
---|
44 | import javax.swing.JFrame; |
---|
45 | import javax.swing.border.TitledBorder; |
---|
46 | |
---|
47 | /** |
---|
48 | * This panel is a VisualizePanel, with the added ablility to display the |
---|
49 | * area under the ROC curve if an ROC curve is chosen. |
---|
50 | * |
---|
51 | * @author Dale Fletcher (dale@cs.waikato.ac.nz) |
---|
52 | * @author FracPete (fracpete at waikato dot ac dot nz) |
---|
53 | * @version $Revision: 5928 $ |
---|
54 | */ |
---|
55 | public class ThresholdVisualizePanel |
---|
56 | extends VisualizePanel { |
---|
57 | |
---|
58 | /** for serialization */ |
---|
59 | private static final long serialVersionUID = 3070002211779443890L; |
---|
60 | |
---|
61 | /** The string to add to the Plot Border. */ |
---|
62 | private String m_ROCString=""; |
---|
63 | |
---|
64 | /** Original border text */ |
---|
65 | private String m_savePanelBorderText; |
---|
66 | |
---|
67 | /** |
---|
68 | * default constructor |
---|
69 | */ |
---|
70 | public ThresholdVisualizePanel() { |
---|
71 | super(); |
---|
72 | |
---|
73 | // Save the current border text |
---|
74 | TitledBorder tb=(TitledBorder) m_plotSurround.getBorder(); |
---|
75 | m_savePanelBorderText = tb.getTitle(); |
---|
76 | } |
---|
77 | |
---|
78 | /** |
---|
79 | * Set the string with ROC area |
---|
80 | * @param str ROC area string to add to border |
---|
81 | */ |
---|
82 | public void setROCString(String str) { |
---|
83 | m_ROCString=str; |
---|
84 | } |
---|
85 | |
---|
86 | /** |
---|
87 | * This extracts the ROC area string |
---|
88 | * @return ROC area string |
---|
89 | */ |
---|
90 | public String getROCString() { |
---|
91 | return m_ROCString; |
---|
92 | } |
---|
93 | |
---|
94 | /** |
---|
95 | * This overloads VisualizePanel's setUpComboBoxes to add |
---|
96 | * ActionListeners to watch for when the X/Y Axis comboboxes |
---|
97 | * are changed. |
---|
98 | * @param inst a set of instances with data for plotting |
---|
99 | */ |
---|
100 | public void setUpComboBoxes(Instances inst) { |
---|
101 | super.setUpComboBoxes(inst); |
---|
102 | |
---|
103 | m_XCombo.addActionListener(new ActionListener() { |
---|
104 | public void actionPerformed(ActionEvent e) { |
---|
105 | setBorderText(); |
---|
106 | } |
---|
107 | }); |
---|
108 | m_YCombo.addActionListener(new ActionListener() { |
---|
109 | public void actionPerformed(ActionEvent e) { |
---|
110 | setBorderText(); |
---|
111 | } |
---|
112 | }); |
---|
113 | |
---|
114 | // Just in case the default is ROC |
---|
115 | setBorderText(); |
---|
116 | } |
---|
117 | |
---|
118 | /** |
---|
119 | * This checks the current selected X/Y Axis comboBoxes to see if |
---|
120 | * an ROC graph is selected. If so, add the ROC area string to the |
---|
121 | * plot border, otherwise display the original border text. |
---|
122 | */ |
---|
123 | private void setBorderText() { |
---|
124 | |
---|
125 | String xs = m_XCombo.getSelectedItem().toString(); |
---|
126 | String ys = m_YCombo.getSelectedItem().toString(); |
---|
127 | |
---|
128 | if (xs.equals("X: False Positive Rate (Num)") && ys.equals("Y: True Positive Rate (Num)")) { |
---|
129 | m_plotSurround.setBorder((BorderFactory.createTitledBorder(m_savePanelBorderText+" "+m_ROCString))); |
---|
130 | } else |
---|
131 | m_plotSurround.setBorder((BorderFactory.createTitledBorder(m_savePanelBorderText))); |
---|
132 | } |
---|
133 | |
---|
134 | /** |
---|
135 | * displays the previously saved instances |
---|
136 | * |
---|
137 | * @param insts the instances to display |
---|
138 | * @throws Exception if display is not possible |
---|
139 | */ |
---|
140 | protected void openVisibleInstances(Instances insts) throws Exception { |
---|
141 | super.openVisibleInstances(insts); |
---|
142 | |
---|
143 | setROCString( |
---|
144 | "(Area under ROC = " |
---|
145 | + Utils.doubleToString(ThresholdCurve.getROCArea(insts), 4) + ")"); |
---|
146 | |
---|
147 | setBorderText(); |
---|
148 | } |
---|
149 | |
---|
150 | /** |
---|
151 | * Starts the ThresholdVisualizationPanel with parameters from the command line. <p/> |
---|
152 | * |
---|
153 | * Valid options are: <p/> |
---|
154 | * -h <br/> |
---|
155 | * lists all the commandline parameters <p/> |
---|
156 | * |
---|
157 | * -t file <br/> |
---|
158 | * Dataset to process with given classifier. <p/> |
---|
159 | * |
---|
160 | * -W classname <br/> |
---|
161 | * Full classname of classifier to run.<br/> |
---|
162 | * Options after '--' are passed to the classifier. <br/> |
---|
163 | * (default weka.classifiers.functions.Logistic) <p/> |
---|
164 | * |
---|
165 | * -r number <br/> |
---|
166 | * The number of runs to perform (default 2). <p/> |
---|
167 | * |
---|
168 | * -x number <br/> |
---|
169 | * The number of Cross-validation folds (default 10). <p/> |
---|
170 | * |
---|
171 | * -l file <br/> |
---|
172 | * Previously saved threshold curve ARFF file. <p/> |
---|
173 | * |
---|
174 | * @param args optional commandline parameters |
---|
175 | */ |
---|
176 | public static void main(String [] args) { |
---|
177 | Instances inst; |
---|
178 | Classifier classifier; |
---|
179 | int runs; |
---|
180 | int folds; |
---|
181 | String tmpStr; |
---|
182 | boolean compute; |
---|
183 | Instances result; |
---|
184 | String[] options; |
---|
185 | SingleIndex classIndex; |
---|
186 | SingleIndex valueIndex; |
---|
187 | int seed; |
---|
188 | |
---|
189 | inst = null; |
---|
190 | classifier = null; |
---|
191 | runs = 2; |
---|
192 | folds = 10; |
---|
193 | compute = true; |
---|
194 | result = null; |
---|
195 | classIndex = null; |
---|
196 | valueIndex = null; |
---|
197 | seed = 1; |
---|
198 | |
---|
199 | try { |
---|
200 | // help? |
---|
201 | if (Utils.getFlag('h', args)) { |
---|
202 | System.out.println("\nOptions for " + ThresholdVisualizePanel.class.getName() + ":\n"); |
---|
203 | System.out.println("-h\n\tThis help."); |
---|
204 | System.out.println("-t <file>\n\tDataset to process with given classifier."); |
---|
205 | System.out.println("-c <num>\n\tThe class index. first and last are valid, too (default: last)."); |
---|
206 | System.out.println("-C <num>\n\tThe index of the class value to get the the curve for (default: first)."); |
---|
207 | System.out.println("-W <classname>\n\tFull classname of classifier to run.\n\tOptions after '--' are passed to the classifier.\n\t(default: weka.classifiers.functions.Logistic)"); |
---|
208 | System.out.println("-r <number>\n\tThe number of runs to perform (default: 1)."); |
---|
209 | System.out.println("-x <number>\n\tThe number of Cross-validation folds (default: 10)."); |
---|
210 | System.out.println("-S <number>\n\tThe seed value for randomizing the data (default: 1)."); |
---|
211 | System.out.println("-l <file>\n\tPreviously saved threshold curve ARFF file."); |
---|
212 | return; |
---|
213 | } |
---|
214 | |
---|
215 | // regular options |
---|
216 | tmpStr = Utils.getOption('l', args); |
---|
217 | if (tmpStr.length() != 0) { |
---|
218 | result = new Instances(new BufferedReader(new FileReader(tmpStr))); |
---|
219 | compute = false; |
---|
220 | } |
---|
221 | |
---|
222 | if (compute) { |
---|
223 | tmpStr = Utils.getOption('r', args); |
---|
224 | if (tmpStr.length() != 0) |
---|
225 | runs = Integer.parseInt(tmpStr); |
---|
226 | else |
---|
227 | runs = 1; |
---|
228 | |
---|
229 | tmpStr = Utils.getOption('x', args); |
---|
230 | if (tmpStr.length() != 0) |
---|
231 | folds = Integer.parseInt(tmpStr); |
---|
232 | else |
---|
233 | folds = 10; |
---|
234 | |
---|
235 | tmpStr = Utils.getOption('S', args); |
---|
236 | if (tmpStr.length() != 0) |
---|
237 | seed = Integer.parseInt(tmpStr); |
---|
238 | else |
---|
239 | seed = 1; |
---|
240 | |
---|
241 | tmpStr = Utils.getOption('t', args); |
---|
242 | if (tmpStr.length() != 0) { |
---|
243 | inst = new Instances(new BufferedReader(new FileReader(tmpStr))); |
---|
244 | inst.setClassIndex(inst.numAttributes() - 1); |
---|
245 | } |
---|
246 | |
---|
247 | tmpStr = Utils.getOption('W', args); |
---|
248 | if (tmpStr.length() != 0) { |
---|
249 | options = Utils.partitionOptions(args); |
---|
250 | } |
---|
251 | else { |
---|
252 | tmpStr = weka.classifiers.functions.Logistic.class.getName(); |
---|
253 | options = new String[0]; |
---|
254 | } |
---|
255 | classifier = AbstractClassifier.forName(tmpStr, options); |
---|
256 | |
---|
257 | tmpStr = Utils.getOption('c', args); |
---|
258 | if (tmpStr.length() != 0) |
---|
259 | classIndex = new SingleIndex(tmpStr); |
---|
260 | else |
---|
261 | classIndex = new SingleIndex("last"); |
---|
262 | |
---|
263 | tmpStr = Utils.getOption('C', args); |
---|
264 | if (tmpStr.length() != 0) |
---|
265 | valueIndex = new SingleIndex(tmpStr); |
---|
266 | else |
---|
267 | valueIndex = new SingleIndex("first"); |
---|
268 | } |
---|
269 | |
---|
270 | // compute if necessary |
---|
271 | if (compute) { |
---|
272 | if (classIndex != null) { |
---|
273 | classIndex.setUpper(inst.numAttributes() - 1); |
---|
274 | inst.setClassIndex(classIndex.getIndex()); |
---|
275 | } |
---|
276 | else { |
---|
277 | inst.setClassIndex(inst.numAttributes() - 1); |
---|
278 | } |
---|
279 | |
---|
280 | if (valueIndex != null) { |
---|
281 | valueIndex.setUpper(inst.classAttribute().numValues() - 1); |
---|
282 | } |
---|
283 | |
---|
284 | ThresholdCurve tc = new ThresholdCurve(); |
---|
285 | EvaluationUtils eu = new EvaluationUtils(); |
---|
286 | FastVector predictions = new FastVector(); |
---|
287 | for (int i = 0; i < runs; i++) { |
---|
288 | eu.setSeed(seed + i); |
---|
289 | predictions.appendElements(eu.getCVPredictions(classifier, inst, folds)); |
---|
290 | } |
---|
291 | |
---|
292 | if (valueIndex != null) |
---|
293 | result = tc.getCurve(predictions, valueIndex.getIndex()); |
---|
294 | else |
---|
295 | result = tc.getCurve(predictions); |
---|
296 | } |
---|
297 | |
---|
298 | // setup GUI |
---|
299 | ThresholdVisualizePanel vmc = new ThresholdVisualizePanel(); |
---|
300 | vmc.setROCString("(Area under ROC = " + |
---|
301 | Utils.doubleToString(ThresholdCurve.getROCArea(result), 4) + ")"); |
---|
302 | if (compute) |
---|
303 | vmc.setName( |
---|
304 | result.relationName() |
---|
305 | + ". (Class value " + inst.classAttribute().value(valueIndex.getIndex()) + ")"); |
---|
306 | else |
---|
307 | vmc.setName( |
---|
308 | result.relationName() |
---|
309 | + " (display only)"); |
---|
310 | PlotData2D tempd = new PlotData2D(result); |
---|
311 | tempd.setPlotName(result.relationName()); |
---|
312 | tempd.addInstanceNumberAttribute(); |
---|
313 | vmc.addPlot(tempd); |
---|
314 | |
---|
315 | String plotName = vmc.getName(); |
---|
316 | final JFrame jf = new JFrame("Weka Classifier Visualize: "+plotName); |
---|
317 | jf.setSize(500,400); |
---|
318 | jf.getContentPane().setLayout(new BorderLayout()); |
---|
319 | |
---|
320 | jf.getContentPane().add(vmc, BorderLayout.CENTER); |
---|
321 | jf.addWindowListener(new WindowAdapter() { |
---|
322 | public void windowClosing(WindowEvent e) { |
---|
323 | jf.dispose(); |
---|
324 | } |
---|
325 | }); |
---|
326 | |
---|
327 | jf.setVisible(true); |
---|
328 | } |
---|
329 | catch (Exception e) { |
---|
330 | e.printStackTrace(); |
---|
331 | } |
---|
332 | } |
---|
333 | } |
---|
334 | |
---|
335 | |
---|
336 | |
---|
337 | |
---|
338 | |
---|
339 | |
---|
340 | |
---|
341 | |
---|