source: src/main/java/weka/gui/explorer/Explorer.props @ 27

Last change on this file since 27 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 6.1 KB
Line 
1# This props file contains default values for the Weka Explorer.
2#
3# Notes:
4# - backslashes within options, e.g., for the default "Classifier", need
5#   to be doubled (the backslashes get interpreted already when a property
6#   is read).
7#
8# Author  FracPete (fracpete at waikato dot ac dot nz)
9# Version $Revision: 6103 $
10
11# if set to true the Capabilities filters in the GOE will be initialized
12# based on the full dataset that has been loaded into the Explorer
13# otherwise only the header (true|false)
14# Note: The tabs in the Explorer have their own class combobox, which means
15#       that the data has to be inspected several times (changing the class
16#       combobox only leads to an inspection of the data in the current tab),
17#       which can be slow on big datasets.
18InitGenericObjectEditorFilter=True
19
20# The tabs to display apart from the PreprocessPanel.
21#
22# The classes listed here must import the weka.gui.explorer.Explorer.ExplorerPanel
23# interface. Optionally, they can also import the
24# weka.gui.explorer.Explorer.LogHandler interface if they want to use the logging
25# functionality of the Explorer and the
26# weka.gui.exporer.Explorer.CapabilitiesFilterChangeListener interface
27# in case they need to know when the Capabilities have changed, e.g., when a
28# new dataset has been loaded into the Explorer.
29#
30# Additional options follow the classname after a colon.
31# Currently supported options are:
32#   standalone - the tab does not depend on the PreprocessPanel to load the data first
33#
34Tabs=weka.gui.explorer.ClassifierPanel,\
35     weka.gui.explorer.ClustererPanel,\
36     weka.gui.explorer.AssociationsPanel,\
37     weka.gui.explorer.AttributeSelectionPanel,\
38     weka.gui.explorer.VisualizePanel
39
40# the initial directory for opening datasets.
41# the following placeholders are recognized
42#   %t - the temp directory
43#   %h - the user's home directory
44#   %c - the current directory
45#   %% - gets replaced by a single percentage sign
46InitialDirectory=%c
47
48# the default filter, including options (can be left empty)
49Filter=
50
51# the default classifier in the classify tab, including options
52# (default is ZeroR)
53Classifier=weka.classifiers.rules.ZeroR
54
55# the default test mode in the classify tab
56# (according to "testMode" variable in startClassifier method)
57# 1 - cross-validation
58# 2 - percentage split
59# 3 - use training set
60# 4 - supplied test set
61# (default is 1 - CV)
62ClassifierTestMode=1
63
64# the default number of folds for CV in the classify tab
65# (default is 10)
66ClassifierCrossvalidationFolds=10
67
68# the default percentage split % in the classify tab (integer: 1-99)
69# (default is 66)
70ClassifierPercentageSplit=66
71
72# whether the classifier model is output (true|false)
73# (default is true)
74ClassifierOutputModel=true
75
76# whether additional per-class stats of the classifier model are
77# output (true|false)
78# (default is true)
79ClassifierOutputPerClassStats=true
80
81# whether the entropy based evaluation measures of the classifier model are
82# output (true|false)
83# (default is false)
84ClassifierOutputEntropyEvalMeasures=false
85
86# whether the confusion matrix is output for the classifier (true|false)
87# (default is true)
88ClassifierOutputConfusionMatrix=true
89
90# whether the predictions of the classifier are stored for visulization
91# purposes (true|false)
92# (default is true)
93ClassifierStorePredictionsForVis=true
94
95# whether the predictions of the classifier output as well (true|false)
96# (default is false)
97ClassifierOutputPredictions=false
98
99# lists the attributes indices to output in addition to the predictions
100# (default is "")
101ClassifierOutputAdditionalAttributes=
102
103# whether the evaluation of the classifier is done cost-sensitively (true|false)
104# (default is false)
105# Note: a cost matrix still has to be provided!
106ClassifierCostSensitiveEval=false
107
108# the default random seed in the classify tab
109# (default is 1)
110ClassifierRandomSeed=1
111
112# whether the order is preserved in case of percentage split in the classifier
113# tab
114# (default is false)
115ClassifierPreserveOrder=false
116
117# whether the source code of a Sourcable classifier is output as well in the
118# classifier tab
119# (default is false)
120ClassifierOutputSourceCode=false
121
122# the default classname of a Sourcable classifier in the classifier tab
123# (default is Foobar)
124ClassifierSourceCodeClass=WekaClassifier
125
126# the class (incl. options) for collecting the predictions and turning them
127# into plotable instances for displaying the classifier errors.
128ClassifierErrorsPlotInstances=weka.gui.explorer.ClassifierErrorsPlotInstances
129
130# The minimum plot size for numeric attributes (when visualizing classifier errors)
131ClassifierErrorsMinimumPlotSizeNumeric=1
132
133# The maximum plot size for numeric attributes (when visualizing classifier errors)
134ClassifierErrorsMaximumPlotSizeNumeric=20
135
136# the default clusterer, including options
137# (default is EM)
138Clusterer=weka.clusterers.EM
139
140# the default test mode in the cluster tab
141# (according to "testMode" variable in startClusterer method)
142# 2 - percentage split
143# 3 - use training set
144# 4 - supplied test set
145# 5 - classes to clusters evaluation
146# (default is 3 - training set)
147ClustererTestMode=3
148
149# whether the clusters are stored for visualization purposes (true|false)
150# (default is true)
151ClustererStoreClustersForVis=true
152
153# the class (incl. options) for collecting the predictions and turning them
154# into plotable instances for displaying the cluster assignments.
155ClustererAssignmentsPlotInstances=weka.gui.explorer.ClustererAssignmentsPlotInstances
156
157# the default associator, including options
158# (default is Apriori)
159Associator=weka.associations.Apriori
160
161# the default attribute evaluator, including options
162# (default is CfsSubsetEval)
163ASEvaluation=weka.attributeSelection.CfsSubsetEval
164
165# the default attribute selection search scheme, including options
166# (default is BestFirst)
167ASSearch=weka.attributeSelection.BestFirst
168
169# the default test mode in the attribute selection tab
170# (according to "testMode" variable in startAttributeSelection method)
171# 0 - use full training set
172# 1 - cross-validation
173# (default is 0 - full training set)
174ASTestMode=0
175
176# the default number of folds for CV in the attribute selection tab
177# (default is 10)
178ASCrossvalidationFolds=10
179
180# the default random seed in the attribute selection tab
181# (default is 1)
182ASRandomSeed=1
Note: See TracBrowser for help on using the repository browser.