| 1 | # This props file contains default values for the Weka Explorer. |
|---|
| 2 | # |
|---|
| 3 | # Notes: |
|---|
| 4 | # - backslashes within options, e.g., for the default "Classifier", need |
|---|
| 5 | # to be doubled (the backslashes get interpreted already when a property |
|---|
| 6 | # is read). |
|---|
| 7 | # |
|---|
| 8 | # Author FracPete (fracpete at waikato dot ac dot nz) |
|---|
| 9 | # Version $Revision: 6103 $ |
|---|
| 10 | |
|---|
| 11 | # if set to true the Capabilities filters in the GOE will be initialized |
|---|
| 12 | # based on the full dataset that has been loaded into the Explorer |
|---|
| 13 | # otherwise only the header (true|false) |
|---|
| 14 | # Note: The tabs in the Explorer have their own class combobox, which means |
|---|
| 15 | # that the data has to be inspected several times (changing the class |
|---|
| 16 | # combobox only leads to an inspection of the data in the current tab), |
|---|
| 17 | # which can be slow on big datasets. |
|---|
| 18 | InitGenericObjectEditorFilter=True |
|---|
| 19 | |
|---|
| 20 | # The tabs to display apart from the PreprocessPanel. |
|---|
| 21 | # |
|---|
| 22 | # The classes listed here must import the weka.gui.explorer.Explorer.ExplorerPanel |
|---|
| 23 | # interface. Optionally, they can also import the |
|---|
| 24 | # weka.gui.explorer.Explorer.LogHandler interface if they want to use the logging |
|---|
| 25 | # functionality of the Explorer and the |
|---|
| 26 | # weka.gui.exporer.Explorer.CapabilitiesFilterChangeListener interface |
|---|
| 27 | # in case they need to know when the Capabilities have changed, e.g., when a |
|---|
| 28 | # new dataset has been loaded into the Explorer. |
|---|
| 29 | # |
|---|
| 30 | # Additional options follow the classname after a colon. |
|---|
| 31 | # Currently supported options are: |
|---|
| 32 | # standalone - the tab does not depend on the PreprocessPanel to load the data first |
|---|
| 33 | # |
|---|
| 34 | Tabs=weka.gui.explorer.ClassifierPanel,\ |
|---|
| 35 | weka.gui.explorer.ClustererPanel,\ |
|---|
| 36 | weka.gui.explorer.AssociationsPanel,\ |
|---|
| 37 | weka.gui.explorer.AttributeSelectionPanel,\ |
|---|
| 38 | weka.gui.explorer.VisualizePanel |
|---|
| 39 | |
|---|
| 40 | # the initial directory for opening datasets. |
|---|
| 41 | # the following placeholders are recognized |
|---|
| 42 | # %t - the temp directory |
|---|
| 43 | # %h - the user's home directory |
|---|
| 44 | # %c - the current directory |
|---|
| 45 | # %% - gets replaced by a single percentage sign |
|---|
| 46 | InitialDirectory=%c |
|---|
| 47 | |
|---|
| 48 | # the default filter, including options (can be left empty) |
|---|
| 49 | Filter= |
|---|
| 50 | |
|---|
| 51 | # the default classifier in the classify tab, including options |
|---|
| 52 | # (default is ZeroR) |
|---|
| 53 | Classifier=weka.classifiers.rules.ZeroR |
|---|
| 54 | |
|---|
| 55 | # the default test mode in the classify tab |
|---|
| 56 | # (according to "testMode" variable in startClassifier method) |
|---|
| 57 | # 1 - cross-validation |
|---|
| 58 | # 2 - percentage split |
|---|
| 59 | # 3 - use training set |
|---|
| 60 | # 4 - supplied test set |
|---|
| 61 | # (default is 1 - CV) |
|---|
| 62 | ClassifierTestMode=1 |
|---|
| 63 | |
|---|
| 64 | # the default number of folds for CV in the classify tab |
|---|
| 65 | # (default is 10) |
|---|
| 66 | ClassifierCrossvalidationFolds=10 |
|---|
| 67 | |
|---|
| 68 | # the default percentage split % in the classify tab (integer: 1-99) |
|---|
| 69 | # (default is 66) |
|---|
| 70 | ClassifierPercentageSplit=66 |
|---|
| 71 | |
|---|
| 72 | # whether the classifier model is output (true|false) |
|---|
| 73 | # (default is true) |
|---|
| 74 | ClassifierOutputModel=true |
|---|
| 75 | |
|---|
| 76 | # whether additional per-class stats of the classifier model are |
|---|
| 77 | # output (true|false) |
|---|
| 78 | # (default is true) |
|---|
| 79 | ClassifierOutputPerClassStats=true |
|---|
| 80 | |
|---|
| 81 | # whether the entropy based evaluation measures of the classifier model are |
|---|
| 82 | # output (true|false) |
|---|
| 83 | # (default is false) |
|---|
| 84 | ClassifierOutputEntropyEvalMeasures=false |
|---|
| 85 | |
|---|
| 86 | # whether the confusion matrix is output for the classifier (true|false) |
|---|
| 87 | # (default is true) |
|---|
| 88 | ClassifierOutputConfusionMatrix=true |
|---|
| 89 | |
|---|
| 90 | # whether the predictions of the classifier are stored for visulization |
|---|
| 91 | # purposes (true|false) |
|---|
| 92 | # (default is true) |
|---|
| 93 | ClassifierStorePredictionsForVis=true |
|---|
| 94 | |
|---|
| 95 | # whether the predictions of the classifier output as well (true|false) |
|---|
| 96 | # (default is false) |
|---|
| 97 | ClassifierOutputPredictions=false |
|---|
| 98 | |
|---|
| 99 | # lists the attributes indices to output in addition to the predictions |
|---|
| 100 | # (default is "") |
|---|
| 101 | ClassifierOutputAdditionalAttributes= |
|---|
| 102 | |
|---|
| 103 | # whether the evaluation of the classifier is done cost-sensitively (true|false) |
|---|
| 104 | # (default is false) |
|---|
| 105 | # Note: a cost matrix still has to be provided! |
|---|
| 106 | ClassifierCostSensitiveEval=false |
|---|
| 107 | |
|---|
| 108 | # the default random seed in the classify tab |
|---|
| 109 | # (default is 1) |
|---|
| 110 | ClassifierRandomSeed=1 |
|---|
| 111 | |
|---|
| 112 | # whether the order is preserved in case of percentage split in the classifier |
|---|
| 113 | # tab |
|---|
| 114 | # (default is false) |
|---|
| 115 | ClassifierPreserveOrder=false |
|---|
| 116 | |
|---|
| 117 | # whether the source code of a Sourcable classifier is output as well in the |
|---|
| 118 | # classifier tab |
|---|
| 119 | # (default is false) |
|---|
| 120 | ClassifierOutputSourceCode=false |
|---|
| 121 | |
|---|
| 122 | # the default classname of a Sourcable classifier in the classifier tab |
|---|
| 123 | # (default is Foobar) |
|---|
| 124 | ClassifierSourceCodeClass=WekaClassifier |
|---|
| 125 | |
|---|
| 126 | # the class (incl. options) for collecting the predictions and turning them |
|---|
| 127 | # into plotable instances for displaying the classifier errors. |
|---|
| 128 | ClassifierErrorsPlotInstances=weka.gui.explorer.ClassifierErrorsPlotInstances |
|---|
| 129 | |
|---|
| 130 | # The minimum plot size for numeric attributes (when visualizing classifier errors) |
|---|
| 131 | ClassifierErrorsMinimumPlotSizeNumeric=1 |
|---|
| 132 | |
|---|
| 133 | # The maximum plot size for numeric attributes (when visualizing classifier errors) |
|---|
| 134 | ClassifierErrorsMaximumPlotSizeNumeric=20 |
|---|
| 135 | |
|---|
| 136 | # the default clusterer, including options |
|---|
| 137 | # (default is EM) |
|---|
| 138 | Clusterer=weka.clusterers.EM |
|---|
| 139 | |
|---|
| 140 | # the default test mode in the cluster tab |
|---|
| 141 | # (according to "testMode" variable in startClusterer method) |
|---|
| 142 | # 2 - percentage split |
|---|
| 143 | # 3 - use training set |
|---|
| 144 | # 4 - supplied test set |
|---|
| 145 | # 5 - classes to clusters evaluation |
|---|
| 146 | # (default is 3 - training set) |
|---|
| 147 | ClustererTestMode=3 |
|---|
| 148 | |
|---|
| 149 | # whether the clusters are stored for visualization purposes (true|false) |
|---|
| 150 | # (default is true) |
|---|
| 151 | ClustererStoreClustersForVis=true |
|---|
| 152 | |
|---|
| 153 | # the class (incl. options) for collecting the predictions and turning them |
|---|
| 154 | # into plotable instances for displaying the cluster assignments. |
|---|
| 155 | ClustererAssignmentsPlotInstances=weka.gui.explorer.ClustererAssignmentsPlotInstances |
|---|
| 156 | |
|---|
| 157 | # the default associator, including options |
|---|
| 158 | # (default is Apriori) |
|---|
| 159 | Associator=weka.associations.Apriori |
|---|
| 160 | |
|---|
| 161 | # the default attribute evaluator, including options |
|---|
| 162 | # (default is CfsSubsetEval) |
|---|
| 163 | ASEvaluation=weka.attributeSelection.CfsSubsetEval |
|---|
| 164 | |
|---|
| 165 | # the default attribute selection search scheme, including options |
|---|
| 166 | # (default is BestFirst) |
|---|
| 167 | ASSearch=weka.attributeSelection.BestFirst |
|---|
| 168 | |
|---|
| 169 | # the default test mode in the attribute selection tab |
|---|
| 170 | # (according to "testMode" variable in startAttributeSelection method) |
|---|
| 171 | # 0 - use full training set |
|---|
| 172 | # 1 - cross-validation |
|---|
| 173 | # (default is 0 - full training set) |
|---|
| 174 | ASTestMode=0 |
|---|
| 175 | |
|---|
| 176 | # the default number of folds for CV in the attribute selection tab |
|---|
| 177 | # (default is 10) |
|---|
| 178 | ASCrossvalidationFolds=10 |
|---|
| 179 | |
|---|
| 180 | # the default random seed in the attribute selection tab |
|---|
| 181 | # (default is 1) |
|---|
| 182 | ASRandomSeed=1 |
|---|