1 | # This props file contains default values for the Weka Explorer. |
---|
2 | # |
---|
3 | # Notes: |
---|
4 | # - backslashes within options, e.g., for the default "Classifier", need |
---|
5 | # to be doubled (the backslashes get interpreted already when a property |
---|
6 | # is read). |
---|
7 | # |
---|
8 | # Author FracPete (fracpete at waikato dot ac dot nz) |
---|
9 | # Version $Revision: 6103 $ |
---|
10 | |
---|
11 | # if set to true the Capabilities filters in the GOE will be initialized |
---|
12 | # based on the full dataset that has been loaded into the Explorer |
---|
13 | # otherwise only the header (true|false) |
---|
14 | # Note: The tabs in the Explorer have their own class combobox, which means |
---|
15 | # that the data has to be inspected several times (changing the class |
---|
16 | # combobox only leads to an inspection of the data in the current tab), |
---|
17 | # which can be slow on big datasets. |
---|
18 | InitGenericObjectEditorFilter=True |
---|
19 | |
---|
20 | # The tabs to display apart from the PreprocessPanel. |
---|
21 | # |
---|
22 | # The classes listed here must import the weka.gui.explorer.Explorer.ExplorerPanel |
---|
23 | # interface. Optionally, they can also import the |
---|
24 | # weka.gui.explorer.Explorer.LogHandler interface if they want to use the logging |
---|
25 | # functionality of the Explorer and the |
---|
26 | # weka.gui.exporer.Explorer.CapabilitiesFilterChangeListener interface |
---|
27 | # in case they need to know when the Capabilities have changed, e.g., when a |
---|
28 | # new dataset has been loaded into the Explorer. |
---|
29 | # |
---|
30 | # Additional options follow the classname after a colon. |
---|
31 | # Currently supported options are: |
---|
32 | # standalone - the tab does not depend on the PreprocessPanel to load the data first |
---|
33 | # |
---|
34 | Tabs=weka.gui.explorer.ClassifierPanel,\ |
---|
35 | weka.gui.explorer.ClustererPanel,\ |
---|
36 | weka.gui.explorer.AssociationsPanel,\ |
---|
37 | weka.gui.explorer.AttributeSelectionPanel,\ |
---|
38 | weka.gui.explorer.VisualizePanel |
---|
39 | |
---|
40 | # the initial directory for opening datasets. |
---|
41 | # the following placeholders are recognized |
---|
42 | # %t - the temp directory |
---|
43 | # %h - the user's home directory |
---|
44 | # %c - the current directory |
---|
45 | # %% - gets replaced by a single percentage sign |
---|
46 | InitialDirectory=%c |
---|
47 | |
---|
48 | # the default filter, including options (can be left empty) |
---|
49 | Filter= |
---|
50 | |
---|
51 | # the default classifier in the classify tab, including options |
---|
52 | # (default is ZeroR) |
---|
53 | Classifier=weka.classifiers.rules.ZeroR |
---|
54 | |
---|
55 | # the default test mode in the classify tab |
---|
56 | # (according to "testMode" variable in startClassifier method) |
---|
57 | # 1 - cross-validation |
---|
58 | # 2 - percentage split |
---|
59 | # 3 - use training set |
---|
60 | # 4 - supplied test set |
---|
61 | # (default is 1 - CV) |
---|
62 | ClassifierTestMode=1 |
---|
63 | |
---|
64 | # the default number of folds for CV in the classify tab |
---|
65 | # (default is 10) |
---|
66 | ClassifierCrossvalidationFolds=10 |
---|
67 | |
---|
68 | # the default percentage split % in the classify tab (integer: 1-99) |
---|
69 | # (default is 66) |
---|
70 | ClassifierPercentageSplit=66 |
---|
71 | |
---|
72 | # whether the classifier model is output (true|false) |
---|
73 | # (default is true) |
---|
74 | ClassifierOutputModel=true |
---|
75 | |
---|
76 | # whether additional per-class stats of the classifier model are |
---|
77 | # output (true|false) |
---|
78 | # (default is true) |
---|
79 | ClassifierOutputPerClassStats=true |
---|
80 | |
---|
81 | # whether the entropy based evaluation measures of the classifier model are |
---|
82 | # output (true|false) |
---|
83 | # (default is false) |
---|
84 | ClassifierOutputEntropyEvalMeasures=false |
---|
85 | |
---|
86 | # whether the confusion matrix is output for the classifier (true|false) |
---|
87 | # (default is true) |
---|
88 | ClassifierOutputConfusionMatrix=true |
---|
89 | |
---|
90 | # whether the predictions of the classifier are stored for visulization |
---|
91 | # purposes (true|false) |
---|
92 | # (default is true) |
---|
93 | ClassifierStorePredictionsForVis=true |
---|
94 | |
---|
95 | # whether the predictions of the classifier output as well (true|false) |
---|
96 | # (default is false) |
---|
97 | ClassifierOutputPredictions=false |
---|
98 | |
---|
99 | # lists the attributes indices to output in addition to the predictions |
---|
100 | # (default is "") |
---|
101 | ClassifierOutputAdditionalAttributes= |
---|
102 | |
---|
103 | # whether the evaluation of the classifier is done cost-sensitively (true|false) |
---|
104 | # (default is false) |
---|
105 | # Note: a cost matrix still has to be provided! |
---|
106 | ClassifierCostSensitiveEval=false |
---|
107 | |
---|
108 | # the default random seed in the classify tab |
---|
109 | # (default is 1) |
---|
110 | ClassifierRandomSeed=1 |
---|
111 | |
---|
112 | # whether the order is preserved in case of percentage split in the classifier |
---|
113 | # tab |
---|
114 | # (default is false) |
---|
115 | ClassifierPreserveOrder=false |
---|
116 | |
---|
117 | # whether the source code of a Sourcable classifier is output as well in the |
---|
118 | # classifier tab |
---|
119 | # (default is false) |
---|
120 | ClassifierOutputSourceCode=false |
---|
121 | |
---|
122 | # the default classname of a Sourcable classifier in the classifier tab |
---|
123 | # (default is Foobar) |
---|
124 | ClassifierSourceCodeClass=WekaClassifier |
---|
125 | |
---|
126 | # the class (incl. options) for collecting the predictions and turning them |
---|
127 | # into plotable instances for displaying the classifier errors. |
---|
128 | ClassifierErrorsPlotInstances=weka.gui.explorer.ClassifierErrorsPlotInstances |
---|
129 | |
---|
130 | # The minimum plot size for numeric attributes (when visualizing classifier errors) |
---|
131 | ClassifierErrorsMinimumPlotSizeNumeric=1 |
---|
132 | |
---|
133 | # The maximum plot size for numeric attributes (when visualizing classifier errors) |
---|
134 | ClassifierErrorsMaximumPlotSizeNumeric=20 |
---|
135 | |
---|
136 | # the default clusterer, including options |
---|
137 | # (default is EM) |
---|
138 | Clusterer=weka.clusterers.EM |
---|
139 | |
---|
140 | # the default test mode in the cluster tab |
---|
141 | # (according to "testMode" variable in startClusterer method) |
---|
142 | # 2 - percentage split |
---|
143 | # 3 - use training set |
---|
144 | # 4 - supplied test set |
---|
145 | # 5 - classes to clusters evaluation |
---|
146 | # (default is 3 - training set) |
---|
147 | ClustererTestMode=3 |
---|
148 | |
---|
149 | # whether the clusters are stored for visualization purposes (true|false) |
---|
150 | # (default is true) |
---|
151 | ClustererStoreClustersForVis=true |
---|
152 | |
---|
153 | # the class (incl. options) for collecting the predictions and turning them |
---|
154 | # into plotable instances for displaying the cluster assignments. |
---|
155 | ClustererAssignmentsPlotInstances=weka.gui.explorer.ClustererAssignmentsPlotInstances |
---|
156 | |
---|
157 | # the default associator, including options |
---|
158 | # (default is Apriori) |
---|
159 | Associator=weka.associations.Apriori |
---|
160 | |
---|
161 | # the default attribute evaluator, including options |
---|
162 | # (default is CfsSubsetEval) |
---|
163 | ASEvaluation=weka.attributeSelection.CfsSubsetEval |
---|
164 | |
---|
165 | # the default attribute selection search scheme, including options |
---|
166 | # (default is BestFirst) |
---|
167 | ASSearch=weka.attributeSelection.BestFirst |
---|
168 | |
---|
169 | # the default test mode in the attribute selection tab |
---|
170 | # (according to "testMode" variable in startAttributeSelection method) |
---|
171 | # 0 - use full training set |
---|
172 | # 1 - cross-validation |
---|
173 | # (default is 0 - full training set) |
---|
174 | ASTestMode=0 |
---|
175 | |
---|
176 | # the default number of folds for CV in the attribute selection tab |
---|
177 | # (default is 10) |
---|
178 | ASCrossvalidationFolds=10 |
---|
179 | |
---|
180 | # the default random seed in the attribute selection tab |
---|
181 | # (default is 1) |
---|
182 | ASRandomSeed=1 |
---|