[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * BoundaryPanel.java |
---|
| 19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.gui.boundaryvisualizer; |
---|
| 24 | |
---|
| 25 | import weka.classifiers.Classifier; |
---|
| 26 | import weka.classifiers.AbstractClassifier; |
---|
| 27 | import weka.core.FastVector; |
---|
| 28 | import weka.core.Instance; |
---|
| 29 | import weka.core.DenseInstance; |
---|
| 30 | import weka.core.Instances; |
---|
| 31 | import weka.core.Utils; |
---|
| 32 | import weka.gui.visualize.JPEGWriter; |
---|
| 33 | |
---|
| 34 | import java.awt.BorderLayout; |
---|
| 35 | import java.awt.Color; |
---|
| 36 | import java.awt.Dimension; |
---|
| 37 | import java.awt.Graphics; |
---|
| 38 | import java.awt.Graphics2D; |
---|
| 39 | import java.awt.Image; |
---|
| 40 | import java.awt.RenderingHints; |
---|
| 41 | import java.awt.event.ActionEvent; |
---|
| 42 | import java.awt.event.ActionListener; |
---|
| 43 | import java.awt.event.MouseEvent; |
---|
| 44 | import java.awt.event.MouseListener; |
---|
| 45 | import java.awt.image.BufferedImage; |
---|
| 46 | import java.io.File; |
---|
| 47 | import java.io.FileInputStream; |
---|
| 48 | import java.io.ObjectInputStream; |
---|
| 49 | import java.util.Iterator; |
---|
| 50 | import java.util.Locale; |
---|
| 51 | import java.util.Random; |
---|
| 52 | import java.util.Vector; |
---|
| 53 | |
---|
| 54 | import javax.imageio.IIOImage; |
---|
| 55 | import javax.imageio.ImageIO; |
---|
| 56 | import javax.imageio.ImageWriteParam; |
---|
| 57 | import javax.imageio.ImageWriter; |
---|
| 58 | import javax.imageio.plugins.jpeg.JPEGImageWriteParam; |
---|
| 59 | import javax.imageio.stream.ImageOutputStream; |
---|
| 60 | import javax.swing.JOptionPane; |
---|
| 61 | import javax.swing.JPanel; |
---|
| 62 | import javax.swing.ToolTipManager; |
---|
| 63 | |
---|
| 64 | /** |
---|
| 65 | * BoundaryPanel. A class to handle the plotting operations |
---|
| 66 | * associated with generating a 2D picture of a classifier's decision |
---|
| 67 | * boundaries. |
---|
| 68 | * |
---|
| 69 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
| 70 | * @version $Revision: 5987 $ |
---|
| 71 | * @since 1.0 |
---|
| 72 | * @see JPanel |
---|
| 73 | */ |
---|
| 74 | public class BoundaryPanel |
---|
| 75 | extends JPanel { |
---|
| 76 | |
---|
| 77 | /** for serialization */ |
---|
| 78 | private static final long serialVersionUID = -8499445518744770458L; |
---|
| 79 | |
---|
| 80 | /** default colours for classes */ |
---|
| 81 | public static final Color [] DEFAULT_COLORS = { |
---|
| 82 | Color.red, |
---|
| 83 | Color.green, |
---|
| 84 | Color.blue, |
---|
| 85 | new Color(0, 255, 255), // cyan |
---|
| 86 | new Color(255, 0, 255), // pink |
---|
| 87 | new Color(255, 255, 0), // yellow |
---|
| 88 | new Color(255, 255, 255), //white |
---|
| 89 | new Color(0, 0, 0)}; |
---|
| 90 | |
---|
| 91 | /** The distance we can click away from a point in the GUI and still remove it. */ |
---|
| 92 | public static final double REMOVE_POINT_RADIUS = 7.0; |
---|
| 93 | |
---|
| 94 | protected FastVector m_Colors = new FastVector(); |
---|
| 95 | |
---|
| 96 | /** training data */ |
---|
| 97 | protected Instances m_trainingData; |
---|
| 98 | |
---|
| 99 | /** distribution classifier to use */ |
---|
| 100 | protected Classifier m_classifier; |
---|
| 101 | |
---|
| 102 | /** data generator to use */ |
---|
| 103 | protected DataGenerator m_dataGenerator; |
---|
| 104 | |
---|
| 105 | /** index of the class attribute */ |
---|
| 106 | private int m_classIndex = -1; |
---|
| 107 | |
---|
| 108 | // attributes for visualizing on |
---|
| 109 | protected int m_xAttribute; |
---|
| 110 | protected int m_yAttribute; |
---|
| 111 | |
---|
| 112 | // min, max and ranges of these attributes |
---|
| 113 | protected double m_minX; |
---|
| 114 | protected double m_minY; |
---|
| 115 | protected double m_maxX; |
---|
| 116 | protected double m_maxY; |
---|
| 117 | private double m_rangeX; |
---|
| 118 | private double m_rangeY; |
---|
| 119 | |
---|
| 120 | // pixel width and height in terms of attribute values |
---|
| 121 | protected double m_pixHeight; |
---|
| 122 | protected double m_pixWidth; |
---|
| 123 | |
---|
| 124 | /** used for offscreen drawing */ |
---|
| 125 | protected Image m_osi = null; |
---|
| 126 | |
---|
| 127 | // width and height of the display area |
---|
| 128 | protected int m_panelWidth; |
---|
| 129 | protected int m_panelHeight; |
---|
| 130 | |
---|
| 131 | // number of samples to take from each region in the fixed dimensions |
---|
| 132 | protected int m_numOfSamplesPerRegion = 2; |
---|
| 133 | |
---|
| 134 | // number of samples per kernel = base ^ (# non-fixed dimensions) |
---|
| 135 | protected int m_numOfSamplesPerGenerator; |
---|
| 136 | protected double m_samplesBase = 2.0; |
---|
| 137 | |
---|
| 138 | /** listeners to be notified when plot is complete */ |
---|
| 139 | private Vector m_listeners = new Vector(); |
---|
| 140 | |
---|
| 141 | /** |
---|
| 142 | * small inner class for rendering the bitmap on to |
---|
| 143 | */ |
---|
| 144 | private class PlotPanel |
---|
| 145 | extends JPanel { |
---|
| 146 | |
---|
| 147 | /** for serialization */ |
---|
| 148 | private static final long serialVersionUID = 743629498352235060L; |
---|
| 149 | |
---|
| 150 | public PlotPanel() { |
---|
| 151 | this.setToolTipText(""); |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | public void paintComponent(Graphics g) { |
---|
| 155 | super.paintComponent(g); |
---|
| 156 | if (m_osi != null) { |
---|
| 157 | g.drawImage(m_osi,0,0,this); |
---|
| 158 | } |
---|
| 159 | } |
---|
| 160 | |
---|
| 161 | public String getToolTipText(MouseEvent event) { |
---|
| 162 | if (m_probabilityCache == null) { |
---|
| 163 | return null; |
---|
| 164 | } |
---|
| 165 | |
---|
| 166 | if (m_probabilityCache[event.getY()][event.getX()] == null) { |
---|
| 167 | return null; |
---|
| 168 | } |
---|
| 169 | |
---|
| 170 | String pVec = "(X: " |
---|
| 171 | +Utils.doubleToString(convertFromPanelX((double)event.getX()), 2) |
---|
| 172 | +" Y: " |
---|
| 173 | +Utils.doubleToString(convertFromPanelY((double)event.getY()), 2)+") "; |
---|
| 174 | // construct a string holding the probability vector |
---|
| 175 | for (int i = 0; i < m_trainingData.classAttribute().numValues(); i++) { |
---|
| 176 | pVec += |
---|
| 177 | Utils. |
---|
| 178 | doubleToString(m_probabilityCache[event.getY()][event.getX()][i], |
---|
| 179 | 3)+" "; |
---|
| 180 | } |
---|
| 181 | return pVec; |
---|
| 182 | } |
---|
| 183 | } |
---|
| 184 | |
---|
| 185 | /** the actual plotting area */ |
---|
| 186 | private PlotPanel m_plotPanel = new PlotPanel(); |
---|
| 187 | |
---|
| 188 | /** thread for running the plotting operation in */ |
---|
| 189 | private Thread m_plotThread = null; |
---|
| 190 | |
---|
| 191 | /** Stop the plotting thread */ |
---|
| 192 | protected boolean m_stopPlotting = false; |
---|
| 193 | |
---|
| 194 | /** Stop any replotting threads */ |
---|
| 195 | protected boolean m_stopReplotting = false; |
---|
| 196 | |
---|
| 197 | // Used by replotting threads to pause and resume the main plot thread |
---|
| 198 | private Double m_dummy = new Double(1.0); |
---|
| 199 | private boolean m_pausePlotting = false; |
---|
| 200 | /** what size of tile is currently being plotted */ |
---|
| 201 | private int m_size = 1; |
---|
| 202 | /** is the main plot thread performing the initial coarse tiling */ |
---|
| 203 | private boolean m_initialTiling; |
---|
| 204 | |
---|
| 205 | /** A random number generator */ |
---|
| 206 | private Random m_random = null; |
---|
| 207 | |
---|
| 208 | /** cache of probabilities for fast replotting */ |
---|
| 209 | protected double [][][] m_probabilityCache; |
---|
| 210 | |
---|
| 211 | /** plot the training data */ |
---|
| 212 | protected boolean m_plotTrainingData = true; |
---|
| 213 | |
---|
| 214 | /** |
---|
| 215 | * Creates a new <code>BoundaryPanel</code> instance. |
---|
| 216 | * |
---|
| 217 | * @param panelWidth the width in pixels of the panel |
---|
| 218 | * @param panelHeight the height in pixels of the panel |
---|
| 219 | */ |
---|
| 220 | public BoundaryPanel(int panelWidth, int panelHeight) { |
---|
| 221 | ToolTipManager.sharedInstance().setDismissDelay(Integer.MAX_VALUE); |
---|
| 222 | m_panelWidth = panelWidth; |
---|
| 223 | m_panelHeight = panelHeight; |
---|
| 224 | setLayout(new BorderLayout()); |
---|
| 225 | m_plotPanel.setMinimumSize(new Dimension(m_panelWidth, m_panelHeight)); |
---|
| 226 | m_plotPanel.setPreferredSize(new Dimension(m_panelWidth, m_panelHeight)); |
---|
| 227 | m_plotPanel.setMaximumSize(new Dimension(m_panelWidth, m_panelHeight)); |
---|
| 228 | add(m_plotPanel, BorderLayout.CENTER); |
---|
| 229 | setPreferredSize(m_plotPanel.getPreferredSize()); |
---|
| 230 | setMaximumSize(m_plotPanel.getMaximumSize()); |
---|
| 231 | setMinimumSize(m_plotPanel.getMinimumSize()); |
---|
| 232 | |
---|
| 233 | m_random = new Random(1); |
---|
| 234 | for (int i = 0; i < DEFAULT_COLORS.length; i++) { |
---|
| 235 | m_Colors.addElement(new Color(DEFAULT_COLORS[i].getRed(), |
---|
| 236 | DEFAULT_COLORS[i].getGreen(), |
---|
| 237 | DEFAULT_COLORS[i].getBlue())); |
---|
| 238 | } |
---|
| 239 | m_probabilityCache = new double[m_panelHeight][m_panelWidth][]; |
---|
| 240 | |
---|
| 241 | } |
---|
| 242 | |
---|
| 243 | /** |
---|
| 244 | * Set the number of points to uniformly sample from a region (fixed |
---|
| 245 | * dimensions). |
---|
| 246 | * |
---|
| 247 | * @param num an <code>int</code> value |
---|
| 248 | */ |
---|
| 249 | public void setNumSamplesPerRegion(int num) { |
---|
| 250 | m_numOfSamplesPerRegion = num; |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /** |
---|
| 254 | * Get the number of points to sample from a region (fixed dimensions). |
---|
| 255 | * |
---|
| 256 | * @return an <code>int</code> value |
---|
| 257 | */ |
---|
| 258 | public int getNumSamplesPerRegion() { |
---|
| 259 | return m_numOfSamplesPerRegion; |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | /** |
---|
| 263 | * Set the base for computing the number of samples to obtain from each |
---|
| 264 | * generator. number of samples = base ^ (# non fixed dimensions) |
---|
| 265 | * |
---|
| 266 | * @param ksb a <code>double</code> value |
---|
| 267 | */ |
---|
| 268 | public void setGeneratorSamplesBase(double ksb) { |
---|
| 269 | m_samplesBase = ksb; |
---|
| 270 | } |
---|
| 271 | |
---|
| 272 | /** |
---|
| 273 | * Get the base used for computing the number of samples to obtain from |
---|
| 274 | * each generator |
---|
| 275 | * |
---|
| 276 | * @return a <code>double</code> value |
---|
| 277 | */ |
---|
| 278 | public double getGeneratorSamplesBase() { |
---|
| 279 | return m_samplesBase; |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | /** |
---|
| 283 | * Set up the off screen bitmap for rendering to |
---|
| 284 | */ |
---|
| 285 | protected void initialize() { |
---|
| 286 | int iwidth = m_plotPanel.getWidth(); |
---|
| 287 | int iheight = m_plotPanel.getHeight(); |
---|
| 288 | // System.err.println(iwidth+" "+iheight); |
---|
| 289 | m_osi = m_plotPanel.createImage(iwidth, iheight); |
---|
| 290 | Graphics m = m_osi.getGraphics(); |
---|
| 291 | m.fillRect(0,0,iwidth,iheight); |
---|
| 292 | } |
---|
| 293 | |
---|
| 294 | /** |
---|
| 295 | * Stop the plotting thread |
---|
| 296 | */ |
---|
| 297 | public void stopPlotting() { |
---|
| 298 | m_stopPlotting = true; |
---|
| 299 | try { |
---|
| 300 | m_plotThread.join(100); |
---|
| 301 | } catch (Exception e){}; |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | /** Set up the bounds of our graphic based by finding the smallest reasonable |
---|
| 305 | area in the instance space to surround our data points. |
---|
| 306 | */ |
---|
| 307 | public void computeMinMaxAtts() { |
---|
| 308 | m_minX = Double.MAX_VALUE; |
---|
| 309 | m_minY = Double.MAX_VALUE; |
---|
| 310 | m_maxX = Double.MIN_VALUE; |
---|
| 311 | m_maxY = Double.MIN_VALUE; |
---|
| 312 | |
---|
| 313 | boolean allPointsLessThanOne = true; |
---|
| 314 | |
---|
| 315 | if (m_trainingData.numInstances() == 0) { |
---|
| 316 | m_minX = m_minY = 0.0; |
---|
| 317 | m_maxX = m_maxY = 1.0; |
---|
| 318 | } |
---|
| 319 | else |
---|
| 320 | { |
---|
| 321 | for (int i = 0; i < m_trainingData.numInstances(); i++) { |
---|
| 322 | Instance inst = m_trainingData.instance(i); |
---|
| 323 | double x = inst.value(m_xAttribute); |
---|
| 324 | double y = inst.value(m_yAttribute); |
---|
| 325 | if (!Utils.isMissingValue(x) && !Utils.isMissingValue(y)) { |
---|
| 326 | if (x < m_minX) { |
---|
| 327 | m_minX = x; |
---|
| 328 | } |
---|
| 329 | if (x > m_maxX) { |
---|
| 330 | m_maxX = x; |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | if (y < m_minY) { |
---|
| 334 | m_minY = y; |
---|
| 335 | } |
---|
| 336 | if (y > m_maxY) { |
---|
| 337 | m_maxY = y; |
---|
| 338 | } |
---|
| 339 | if (x > 1.0 || y > 1.0) |
---|
| 340 | allPointsLessThanOne = false; |
---|
| 341 | } |
---|
| 342 | } |
---|
| 343 | } |
---|
| 344 | |
---|
| 345 | if (m_minX == m_maxX) |
---|
| 346 | m_minX = 0; |
---|
| 347 | if (m_minY == m_maxY) |
---|
| 348 | m_minY = 0; |
---|
| 349 | if (m_minX == Double.MAX_VALUE) |
---|
| 350 | m_minX = 0; |
---|
| 351 | if (m_minY == Double.MAX_VALUE) |
---|
| 352 | m_minY = 0; |
---|
| 353 | if (m_maxX == Double.MIN_VALUE) |
---|
| 354 | m_maxX = 1; |
---|
| 355 | if (m_maxY == Double.MIN_VALUE) |
---|
| 356 | m_maxY = 1; |
---|
| 357 | if (allPointsLessThanOne) { |
---|
| 358 | m_minX = m_minY = 0.0; |
---|
| 359 | m_maxX = m_maxY = 1.0; |
---|
| 360 | } |
---|
| 361 | |
---|
| 362 | |
---|
| 363 | |
---|
| 364 | m_rangeX = (m_maxX - m_minX); |
---|
| 365 | m_rangeY = (m_maxY - m_minY); |
---|
| 366 | |
---|
| 367 | m_pixWidth = m_rangeX / (double)m_panelWidth; |
---|
| 368 | m_pixHeight = m_rangeY / (double) m_panelHeight; |
---|
| 369 | } |
---|
| 370 | |
---|
| 371 | /** |
---|
| 372 | * Return a random x attribute value contained within |
---|
| 373 | * the pix'th horizontal pixel |
---|
| 374 | * |
---|
| 375 | * @param pix the horizontal pixel number |
---|
| 376 | * @return a value in attribute space |
---|
| 377 | */ |
---|
| 378 | private double getRandomX(int pix) { |
---|
| 379 | |
---|
| 380 | double minPix = m_minX + (pix * m_pixWidth); |
---|
| 381 | |
---|
| 382 | return minPix + m_random.nextDouble() * m_pixWidth; |
---|
| 383 | } |
---|
| 384 | |
---|
| 385 | /** |
---|
| 386 | * Return a random y attribute value contained within |
---|
| 387 | * the pix'th vertical pixel |
---|
| 388 | * |
---|
| 389 | * @param pix the vertical pixel number |
---|
| 390 | * @return a value in attribute space |
---|
| 391 | */ |
---|
| 392 | private double getRandomY(int pix) { |
---|
| 393 | |
---|
| 394 | double minPix = m_minY + (pix * m_pixHeight); |
---|
| 395 | |
---|
| 396 | return minPix + m_random.nextDouble() * m_pixHeight; |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | /** |
---|
| 400 | * Start the plotting thread |
---|
| 401 | * |
---|
| 402 | * @exception Exception if an error occurs |
---|
| 403 | */ |
---|
| 404 | public void start() throws Exception { |
---|
| 405 | m_numOfSamplesPerGenerator = |
---|
| 406 | (int)Math.pow(m_samplesBase, m_trainingData.numAttributes()-3); |
---|
| 407 | |
---|
| 408 | m_stopReplotting = true; |
---|
| 409 | if (m_trainingData == null) { |
---|
| 410 | throw new Exception("No training data set (BoundaryPanel)"); |
---|
| 411 | } |
---|
| 412 | if (m_classifier == null) { |
---|
| 413 | throw new Exception("No classifier set (BoundaryPanel)"); |
---|
| 414 | } |
---|
| 415 | if (m_dataGenerator == null) { |
---|
| 416 | throw new Exception("No data generator set (BoundaryPanel)"); |
---|
| 417 | } |
---|
| 418 | if (m_trainingData.attribute(m_xAttribute).isNominal() || |
---|
| 419 | m_trainingData.attribute(m_yAttribute).isNominal()) { |
---|
| 420 | throw new Exception("Visualization dimensions must be numeric " |
---|
| 421 | +"(BoundaryPanel)"); |
---|
| 422 | } |
---|
| 423 | |
---|
| 424 | computeMinMaxAtts(); |
---|
| 425 | |
---|
| 426 | startPlotThread(); |
---|
| 427 | /*if (m_plotThread == null) { |
---|
| 428 | m_plotThread = new PlotThread(); |
---|
| 429 | m_plotThread.setPriority(Thread.MIN_PRIORITY); |
---|
| 430 | m_plotThread.start(); |
---|
| 431 | }*/ |
---|
| 432 | } |
---|
| 433 | |
---|
| 434 | // Thread for main plotting operation |
---|
| 435 | protected class PlotThread extends Thread { |
---|
| 436 | double [] m_weightingAttsValues; |
---|
| 437 | boolean [] m_attsToWeightOn; |
---|
| 438 | double [] m_vals; |
---|
| 439 | double [] m_dist; |
---|
| 440 | Instance m_predInst; |
---|
| 441 | public void run() { |
---|
| 442 | |
---|
| 443 | m_stopPlotting = false; |
---|
| 444 | try { |
---|
| 445 | initialize(); |
---|
| 446 | repaint(); |
---|
| 447 | |
---|
| 448 | // train the classifier |
---|
| 449 | m_probabilityCache = new double[m_panelHeight][m_panelWidth][]; |
---|
| 450 | m_classifier.buildClassifier(m_trainingData); |
---|
| 451 | |
---|
| 452 | // build DataGenerator |
---|
| 453 | m_attsToWeightOn = new boolean[m_trainingData.numAttributes()]; |
---|
| 454 | m_attsToWeightOn[m_xAttribute] = true; |
---|
| 455 | m_attsToWeightOn[m_yAttribute] = true; |
---|
| 456 | |
---|
| 457 | m_dataGenerator.setWeightingDimensions(m_attsToWeightOn); |
---|
| 458 | |
---|
| 459 | m_dataGenerator.buildGenerator(m_trainingData); |
---|
| 460 | |
---|
| 461 | // generate samples |
---|
| 462 | m_weightingAttsValues = new double [m_attsToWeightOn.length]; |
---|
| 463 | m_vals = new double[m_trainingData.numAttributes()]; |
---|
| 464 | m_predInst = new DenseInstance(1.0, m_vals); |
---|
| 465 | m_predInst.setDataset(m_trainingData); |
---|
| 466 | |
---|
| 467 | |
---|
| 468 | m_size = 1 << 4; // Current sample region size |
---|
| 469 | |
---|
| 470 | m_initialTiling = true; |
---|
| 471 | // Display the initial coarse image tiling. |
---|
| 472 | abortInitial: |
---|
| 473 | for (int i = 0; i <= m_panelHeight; i += m_size) { |
---|
| 474 | for (int j = 0; j <= m_panelWidth; j += m_size) { |
---|
| 475 | if (m_stopPlotting) { |
---|
| 476 | break abortInitial; |
---|
| 477 | } |
---|
| 478 | if (m_pausePlotting) { |
---|
| 479 | synchronized (m_dummy) { |
---|
| 480 | try { |
---|
| 481 | m_dummy.wait(); |
---|
| 482 | } catch (InterruptedException ex) { |
---|
| 483 | m_pausePlotting = false; |
---|
| 484 | } |
---|
| 485 | } |
---|
| 486 | } |
---|
| 487 | plotPoint(j, i, m_size, m_size, |
---|
| 488 | calculateRegionProbs(j, i), (j == 0)); |
---|
| 489 | } |
---|
| 490 | } |
---|
| 491 | if (!m_stopPlotting) { |
---|
| 492 | m_initialTiling = false; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | // Sampling and gridding loop |
---|
| 496 | int size2 = m_size / 2; |
---|
| 497 | abortPlot: |
---|
| 498 | while (m_size > 1) { // Subdivide down to the pixel level |
---|
| 499 | for (int i = 0; i <= m_panelHeight; i += m_size) { |
---|
| 500 | for (int j = 0; j <= m_panelWidth; j += m_size) { |
---|
| 501 | if (m_stopPlotting) { |
---|
| 502 | break abortPlot; |
---|
| 503 | } |
---|
| 504 | if (m_pausePlotting) { |
---|
| 505 | synchronized (m_dummy) { |
---|
| 506 | try { |
---|
| 507 | m_dummy.wait(); |
---|
| 508 | } catch (InterruptedException ex) { |
---|
| 509 | m_pausePlotting = false; |
---|
| 510 | } |
---|
| 511 | } |
---|
| 512 | } |
---|
| 513 | boolean update = (j == 0 && i % 2 == 0); |
---|
| 514 | // Draw the three new subpixel regions |
---|
| 515 | plotPoint(j, i + size2, size2, size2, |
---|
| 516 | calculateRegionProbs(j, i + size2), update); |
---|
| 517 | plotPoint(j + size2, i + size2, size2, size2, |
---|
| 518 | calculateRegionProbs(j + size2, i + size2), update); |
---|
| 519 | plotPoint(j + size2, i, size2, size2, |
---|
| 520 | calculateRegionProbs(j + size2, i), update); |
---|
| 521 | } |
---|
| 522 | } |
---|
| 523 | // The new region edge length is half the old edge length |
---|
| 524 | m_size = size2; |
---|
| 525 | size2 = size2 / 2; |
---|
| 526 | } |
---|
| 527 | update(); |
---|
| 528 | |
---|
| 529 | |
---|
| 530 | /* |
---|
| 531 | // Old method without sampling. |
---|
| 532 | abortPlot: |
---|
| 533 | for (int i = 0; i < m_panelHeight; i++) { |
---|
| 534 | for (int j = 0; j < m_panelWidth; j++) { |
---|
| 535 | if (m_stopPlotting) { |
---|
| 536 | break abortPlot; |
---|
| 537 | } |
---|
| 538 | plotPoint(j, i, calculateRegionProbs(j, i), (j == 0)); |
---|
| 539 | } |
---|
| 540 | } |
---|
| 541 | */ |
---|
| 542 | |
---|
| 543 | |
---|
| 544 | if (m_plotTrainingData) { |
---|
| 545 | plotTrainingData(); |
---|
| 546 | } |
---|
| 547 | |
---|
| 548 | } catch (Exception ex) { |
---|
| 549 | ex.printStackTrace(); |
---|
| 550 | JOptionPane.showMessageDialog(null,"Error while plotting: \"" + ex.getMessage() + "\""); |
---|
| 551 | } finally { |
---|
| 552 | m_plotThread = null; |
---|
| 553 | // notify any listeners that we are finished |
---|
| 554 | Vector l; |
---|
| 555 | ActionEvent e = new ActionEvent(this, 0, ""); |
---|
| 556 | synchronized(this) { |
---|
| 557 | l = (Vector)m_listeners.clone(); |
---|
| 558 | } |
---|
| 559 | for (int i = 0; i < l.size(); i++) { |
---|
| 560 | ActionListener al = (ActionListener)l.elementAt(i); |
---|
| 561 | al.actionPerformed(e); |
---|
| 562 | } |
---|
| 563 | } |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | private double [] calculateRegionProbs(int j, int i) throws Exception { |
---|
| 567 | double [] sumOfProbsForRegion = |
---|
| 568 | new double [m_trainingData.classAttribute().numValues()]; |
---|
| 569 | |
---|
| 570 | for (int u = 0; u < m_numOfSamplesPerRegion; u++) { |
---|
| 571 | |
---|
| 572 | double [] sumOfProbsForLocation = |
---|
| 573 | new double [m_trainingData.classAttribute().numValues()]; |
---|
| 574 | |
---|
| 575 | m_weightingAttsValues[m_xAttribute] = getRandomX(j); |
---|
| 576 | m_weightingAttsValues[m_yAttribute] = getRandomY(m_panelHeight-i-1); |
---|
| 577 | |
---|
| 578 | m_dataGenerator.setWeightingValues(m_weightingAttsValues); |
---|
| 579 | |
---|
| 580 | double [] weights = m_dataGenerator.getWeights(); |
---|
| 581 | double sumOfWeights = Utils.sum(weights); |
---|
| 582 | int [] indices = Utils.sort(weights); |
---|
| 583 | |
---|
| 584 | // Prune 1% of weight mass |
---|
| 585 | int [] newIndices = new int[indices.length]; |
---|
| 586 | double sumSoFar = 0; |
---|
| 587 | double criticalMass = 0.99 * sumOfWeights; |
---|
| 588 | int index = weights.length - 1; int counter = 0; |
---|
| 589 | for (int z = weights.length - 1; z >= 0; z--) { |
---|
| 590 | newIndices[index--] = indices[z]; |
---|
| 591 | sumSoFar += weights[indices[z]]; |
---|
| 592 | counter++; |
---|
| 593 | if (sumSoFar > criticalMass) { |
---|
| 594 | break; |
---|
| 595 | } |
---|
| 596 | } |
---|
| 597 | indices = new int[counter]; |
---|
| 598 | System.arraycopy(newIndices, index + 1, indices, 0, counter); |
---|
| 599 | |
---|
| 600 | for (int z = 0; z < m_numOfSamplesPerGenerator; z++) { |
---|
| 601 | |
---|
| 602 | m_dataGenerator.setWeightingValues(m_weightingAttsValues); |
---|
| 603 | double [][] values = m_dataGenerator.generateInstances(indices); |
---|
| 604 | |
---|
| 605 | for (int q = 0; q < values.length; q++) { |
---|
| 606 | if (values[q] != null) { |
---|
| 607 | System.arraycopy(values[q], 0, m_vals, 0, m_vals.length); |
---|
| 608 | m_vals[m_xAttribute] = m_weightingAttsValues[m_xAttribute]; |
---|
| 609 | m_vals[m_yAttribute] = m_weightingAttsValues[m_yAttribute]; |
---|
| 610 | |
---|
| 611 | // classify the instance |
---|
| 612 | m_dist = m_classifier.distributionForInstance(m_predInst); |
---|
| 613 | for (int k = 0; k < sumOfProbsForLocation.length; k++) { |
---|
| 614 | sumOfProbsForLocation[k] += (m_dist[k] * weights[q]); |
---|
| 615 | } |
---|
| 616 | } |
---|
| 617 | } |
---|
| 618 | } |
---|
| 619 | |
---|
| 620 | for (int k = 0; k < sumOfProbsForRegion.length; k++) { |
---|
| 621 | sumOfProbsForRegion[k] += (sumOfProbsForLocation[k] * |
---|
| 622 | sumOfWeights); |
---|
| 623 | } |
---|
| 624 | } |
---|
| 625 | |
---|
| 626 | // average |
---|
| 627 | Utils.normalize(sumOfProbsForRegion); |
---|
| 628 | |
---|
| 629 | // cache |
---|
| 630 | if ((i < m_panelHeight) && (j < m_panelWidth)) { |
---|
| 631 | m_probabilityCache[i][j] = new double[sumOfProbsForRegion.length]; |
---|
| 632 | System.arraycopy(sumOfProbsForRegion, 0, m_probabilityCache[i][j], |
---|
| 633 | 0, sumOfProbsForRegion.length); |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | return sumOfProbsForRegion; |
---|
| 637 | } |
---|
| 638 | } |
---|
| 639 | |
---|
| 640 | /** Render the training points on-screen. |
---|
| 641 | */ |
---|
| 642 | public void plotTrainingData() { |
---|
| 643 | |
---|
| 644 | Graphics2D osg = (Graphics2D)m_osi.getGraphics(); |
---|
| 645 | Graphics g = m_plotPanel.getGraphics(); |
---|
| 646 | osg.setRenderingHint(RenderingHints.KEY_ANTIALIASING, |
---|
| 647 | RenderingHints.VALUE_ANTIALIAS_ON); |
---|
| 648 | double xval = 0; double yval = 0; |
---|
| 649 | |
---|
| 650 | for (int i = 0; i < m_trainingData.numInstances(); i++) { |
---|
| 651 | if (!m_trainingData.instance(i).isMissing(m_xAttribute) && |
---|
| 652 | !m_trainingData.instance(i).isMissing(m_yAttribute)) { |
---|
| 653 | |
---|
| 654 | if (m_trainingData.instance(i).isMissing(m_classIndex)) //jimmy. |
---|
| 655 | continue; //don't plot if class is missing. TODO could we plot it differently instead? |
---|
| 656 | |
---|
| 657 | xval = m_trainingData.instance(i).value(m_xAttribute); |
---|
| 658 | yval = m_trainingData.instance(i).value(m_yAttribute); |
---|
| 659 | |
---|
| 660 | int panelX = convertToPanelX(xval); |
---|
| 661 | int panelY = convertToPanelY(yval); |
---|
| 662 | Color ColorToPlotWith = |
---|
| 663 | ((Color)m_Colors.elementAt((int)m_trainingData.instance(i). |
---|
| 664 | value(m_classIndex) % m_Colors.size())); |
---|
| 665 | |
---|
| 666 | if (ColorToPlotWith.equals(Color.white)) { |
---|
| 667 | osg.setColor(Color.black); |
---|
| 668 | } else { |
---|
| 669 | osg.setColor(Color.white); |
---|
| 670 | } |
---|
| 671 | osg.fillOval(panelX-3, panelY-3, 7, 7); |
---|
| 672 | osg.setColor(ColorToPlotWith); |
---|
| 673 | osg.fillOval(panelX-2, panelY-2, 5, 5); |
---|
| 674 | } |
---|
| 675 | } |
---|
| 676 | g.drawImage(m_osi,0,0,m_plotPanel); |
---|
| 677 | } |
---|
| 678 | |
---|
| 679 | /** Convert an X coordinate from the instance space to the panel space. |
---|
| 680 | */ |
---|
| 681 | private int convertToPanelX(double xval) { |
---|
| 682 | double temp = (xval - m_minX) / m_rangeX; |
---|
| 683 | temp = temp * (double) m_panelWidth; |
---|
| 684 | |
---|
| 685 | return (int)temp; |
---|
| 686 | } |
---|
| 687 | |
---|
| 688 | /** Convert a Y coordinate from the instance space to the panel space. |
---|
| 689 | */ |
---|
| 690 | private int convertToPanelY(double yval) { |
---|
| 691 | double temp = (yval - m_minY) / m_rangeY; |
---|
| 692 | temp = temp * (double) m_panelHeight; |
---|
| 693 | temp = m_panelHeight - temp; |
---|
| 694 | |
---|
| 695 | return (int)temp; |
---|
| 696 | } |
---|
| 697 | |
---|
| 698 | /** Convert an X coordinate from the panel space to the instance space. |
---|
| 699 | */ |
---|
| 700 | private double convertFromPanelX(double pX) { |
---|
| 701 | pX /= (double) m_panelWidth; |
---|
| 702 | pX *= m_rangeX; |
---|
| 703 | return pX + m_minX; |
---|
| 704 | } |
---|
| 705 | |
---|
| 706 | /** Convert a Y coordinate from the panel space to the instance space. |
---|
| 707 | */ |
---|
| 708 | private double convertFromPanelY(double pY) { |
---|
| 709 | pY = m_panelHeight - pY; |
---|
| 710 | pY /= (double) m_panelHeight; |
---|
| 711 | pY *= m_rangeY; |
---|
| 712 | |
---|
| 713 | return pY + m_minY; |
---|
| 714 | } |
---|
| 715 | |
---|
| 716 | |
---|
| 717 | /** Plot a point in our visualization on-screen. |
---|
| 718 | */ |
---|
| 719 | protected void plotPoint(int x, int y, double [] probs, boolean update) { |
---|
| 720 | plotPoint(x, y, 1, 1, probs, update); |
---|
| 721 | } |
---|
| 722 | |
---|
| 723 | /** Plot a point in our visualization on-screen. |
---|
| 724 | */ |
---|
| 725 | private void plotPoint(int x, int y, int width, int height, |
---|
| 726 | double [] probs, boolean update) { |
---|
| 727 | |
---|
| 728 | // draw a progress line |
---|
| 729 | Graphics osg = m_osi.getGraphics(); |
---|
| 730 | if (update) { |
---|
| 731 | osg.setXORMode(Color.white); |
---|
| 732 | osg.drawLine(0, y, m_panelWidth-1, y); |
---|
| 733 | update(); |
---|
| 734 | osg.drawLine(0, y, m_panelWidth-1, y); |
---|
| 735 | } |
---|
| 736 | |
---|
| 737 | // plot the point |
---|
| 738 | osg.setPaintMode(); |
---|
| 739 | float [] colVal = new float[3]; |
---|
| 740 | |
---|
| 741 | float [] tempCols = new float[3]; |
---|
| 742 | for (int k = 0; k < probs.length; k++) { |
---|
| 743 | Color curr = (Color)m_Colors.elementAt(k % m_Colors.size()); |
---|
| 744 | |
---|
| 745 | curr.getRGBColorComponents(tempCols); |
---|
| 746 | for (int z = 0 ; z < 3; z++) { |
---|
| 747 | colVal[z] += probs[k] * tempCols[z]; |
---|
| 748 | } |
---|
| 749 | } |
---|
| 750 | |
---|
| 751 | for (int z = 0; z < 3; z++) { |
---|
| 752 | if (colVal[z] < 0) { |
---|
| 753 | colVal[z] = 0; |
---|
| 754 | } else if (colVal[z] > 1) { |
---|
| 755 | colVal[z] = 1; |
---|
| 756 | } |
---|
| 757 | } |
---|
| 758 | |
---|
| 759 | osg.setColor(new Color(colVal[0], |
---|
| 760 | colVal[1], |
---|
| 761 | colVal[2])); |
---|
| 762 | osg.fillRect(x, y, width, height); |
---|
| 763 | } |
---|
| 764 | |
---|
| 765 | /** Update the rendered image. |
---|
| 766 | */ |
---|
| 767 | private void update() { |
---|
| 768 | Graphics g = m_plotPanel.getGraphics(); |
---|
| 769 | g.drawImage(m_osi, 0, 0, m_plotPanel); |
---|
| 770 | } |
---|
| 771 | |
---|
| 772 | /** |
---|
| 773 | * Set the training data to use |
---|
| 774 | * |
---|
| 775 | * @param trainingData the training data |
---|
| 776 | * @exception Exception if an error occurs |
---|
| 777 | */ |
---|
| 778 | public void setTrainingData(Instances trainingData) throws Exception { |
---|
| 779 | |
---|
| 780 | m_trainingData = trainingData; |
---|
| 781 | if (m_trainingData.classIndex() < 0) { |
---|
| 782 | throw new Exception("No class attribute set (BoundaryPanel)"); |
---|
| 783 | } |
---|
| 784 | m_classIndex = m_trainingData.classIndex(); |
---|
| 785 | } |
---|
| 786 | |
---|
| 787 | /** Adds a training instance to the visualization dataset. |
---|
| 788 | */ |
---|
| 789 | public void addTrainingInstance(Instance instance) { |
---|
| 790 | |
---|
| 791 | if (m_trainingData == null) { |
---|
| 792 | //TODO |
---|
| 793 | System.err.println("Trying to add to a null training set (BoundaryPanel)"); |
---|
| 794 | } |
---|
| 795 | |
---|
| 796 | m_trainingData.add(instance); |
---|
| 797 | } |
---|
| 798 | |
---|
| 799 | /** |
---|
| 800 | * Register a listener to be notified when plotting completes |
---|
| 801 | * |
---|
| 802 | * @param newListener the listener to add |
---|
| 803 | */ |
---|
| 804 | public void addActionListener(ActionListener newListener) { |
---|
| 805 | m_listeners.add(newListener); |
---|
| 806 | } |
---|
| 807 | |
---|
| 808 | /** |
---|
| 809 | * Remove a listener |
---|
| 810 | * |
---|
| 811 | * @param removeListener the listener to remove |
---|
| 812 | */ |
---|
| 813 | public void removeActionListener(ActionListener removeListener) { |
---|
| 814 | m_listeners.removeElement(removeListener); |
---|
| 815 | } |
---|
| 816 | |
---|
| 817 | /** |
---|
| 818 | * Set the classifier to use. |
---|
| 819 | * |
---|
| 820 | * @param classifier the classifier to use |
---|
| 821 | */ |
---|
| 822 | public void setClassifier(Classifier classifier) { |
---|
| 823 | m_classifier = classifier; |
---|
| 824 | } |
---|
| 825 | |
---|
| 826 | /** |
---|
| 827 | * Set the data generator to use for generating new instances |
---|
| 828 | * |
---|
| 829 | * @param dataGenerator the data generator to use |
---|
| 830 | */ |
---|
| 831 | public void setDataGenerator(DataGenerator dataGenerator) { |
---|
| 832 | m_dataGenerator = dataGenerator; |
---|
| 833 | } |
---|
| 834 | |
---|
| 835 | /** |
---|
| 836 | * Set the x attribute index |
---|
| 837 | * |
---|
| 838 | * @param xatt index of the attribute to use on the x axis |
---|
| 839 | * @exception Exception if an error occurs |
---|
| 840 | */ |
---|
| 841 | public void setXAttribute(int xatt) throws Exception { |
---|
| 842 | if (m_trainingData == null) { |
---|
| 843 | throw new Exception("No training data set (BoundaryPanel)"); |
---|
| 844 | } |
---|
| 845 | if (xatt < 0 || |
---|
| 846 | xatt > m_trainingData.numAttributes()) { |
---|
| 847 | throw new Exception("X attribute out of range (BoundaryPanel)"); |
---|
| 848 | } |
---|
| 849 | if (m_trainingData.attribute(xatt).isNominal()) { |
---|
| 850 | throw new Exception("Visualization dimensions must be numeric " |
---|
| 851 | +"(BoundaryPanel)"); |
---|
| 852 | } |
---|
| 853 | /*if (m_trainingData.numDistinctValues(xatt) < 2) { |
---|
| 854 | throw new Exception("Too few distinct values for X attribute " |
---|
| 855 | +"(BoundaryPanel)"); |
---|
| 856 | }*/ //removed by jimmy. TESTING! |
---|
| 857 | m_xAttribute = xatt; |
---|
| 858 | } |
---|
| 859 | |
---|
| 860 | /** |
---|
| 861 | * Set the y attribute index |
---|
| 862 | * |
---|
| 863 | * @param yatt index of the attribute to use on the y axis |
---|
| 864 | * @exception Exception if an error occurs |
---|
| 865 | */ |
---|
| 866 | public void setYAttribute(int yatt) throws Exception { |
---|
| 867 | if (m_trainingData == null) { |
---|
| 868 | throw new Exception("No training data set (BoundaryPanel)"); |
---|
| 869 | } |
---|
| 870 | if (yatt < 0 || |
---|
| 871 | yatt > m_trainingData.numAttributes()) { |
---|
| 872 | throw new Exception("X attribute out of range (BoundaryPanel)"); |
---|
| 873 | } |
---|
| 874 | if (m_trainingData.attribute(yatt).isNominal()) { |
---|
| 875 | throw new Exception("Visualization dimensions must be numeric " |
---|
| 876 | +"(BoundaryPanel)"); |
---|
| 877 | } |
---|
| 878 | /*if (m_trainingData.numDistinctValues(yatt) < 2) { |
---|
| 879 | throw new Exception("Too few distinct values for Y attribute " |
---|
| 880 | +"(BoundaryPanel)"); |
---|
| 881 | }*/ //removed by jimmy. TESTING! |
---|
| 882 | m_yAttribute = yatt; |
---|
| 883 | } |
---|
| 884 | |
---|
| 885 | /** |
---|
| 886 | * Set a vector of Color objects for the classes |
---|
| 887 | * |
---|
| 888 | * @param colors a <code>FastVector</code> value |
---|
| 889 | */ |
---|
| 890 | public void setColors(FastVector colors) { |
---|
| 891 | synchronized (m_Colors) { |
---|
| 892 | m_Colors = colors; |
---|
| 893 | } |
---|
| 894 | //replot(); //commented by jimmy |
---|
| 895 | update(); //added by jimmy |
---|
| 896 | } |
---|
| 897 | |
---|
| 898 | /** |
---|
| 899 | * Set whether to superimpose the training data |
---|
| 900 | * plot |
---|
| 901 | * |
---|
| 902 | * @param pg a <code>boolean</code> value |
---|
| 903 | */ |
---|
| 904 | public void setPlotTrainingData(boolean pg) { |
---|
| 905 | m_plotTrainingData = pg; |
---|
| 906 | } |
---|
| 907 | |
---|
| 908 | /** |
---|
| 909 | * Returns true if training data is to be superimposed |
---|
| 910 | * |
---|
| 911 | * @return a <code>boolean</code> value |
---|
| 912 | */ |
---|
| 913 | public boolean getPlotTrainingData() { |
---|
| 914 | return m_plotTrainingData; |
---|
| 915 | } |
---|
| 916 | |
---|
| 917 | /** |
---|
| 918 | * Get the current vector of Color objects used for the classes |
---|
| 919 | * |
---|
| 920 | * @return a <code>FastVector</code> value |
---|
| 921 | */ |
---|
| 922 | public FastVector getColors() { |
---|
| 923 | return m_Colors; |
---|
| 924 | } |
---|
| 925 | |
---|
| 926 | /** |
---|
| 927 | * Quickly replot the display using cached probability estimates |
---|
| 928 | */ |
---|
| 929 | public void replot() { |
---|
| 930 | if (m_probabilityCache[0][0] == null) { |
---|
| 931 | return; |
---|
| 932 | } |
---|
| 933 | m_stopReplotting = true; |
---|
| 934 | m_pausePlotting = true; |
---|
| 935 | // wait 300 ms to give any other replot threads a chance to halt |
---|
| 936 | try { |
---|
| 937 | Thread.sleep(300); |
---|
| 938 | } catch (Exception ex) {} |
---|
| 939 | |
---|
| 940 | final Thread replotThread = new Thread() { |
---|
| 941 | public void run() { |
---|
| 942 | m_stopReplotting = false; |
---|
| 943 | int size2 = m_size / 2; |
---|
| 944 | finishedReplot: for (int i = 0; i < m_panelHeight; i += m_size) { |
---|
| 945 | for (int j = 0; j < m_panelWidth; j += m_size) { |
---|
| 946 | if (m_probabilityCache[i][j] == null || m_stopReplotting) { |
---|
| 947 | break finishedReplot; |
---|
| 948 | } |
---|
| 949 | |
---|
| 950 | boolean update = (j == 0 && i % 2 == 0); |
---|
| 951 | if (i < m_panelHeight && j < m_panelWidth) { |
---|
| 952 | // Draw the three new subpixel regions or single course tiling |
---|
| 953 | if (m_initialTiling || m_size == 1) { |
---|
| 954 | if (m_probabilityCache[i][j] == null) { |
---|
| 955 | break finishedReplot; |
---|
| 956 | } |
---|
| 957 | plotPoint(j, i, m_size, m_size, |
---|
| 958 | m_probabilityCache[i][j], update); |
---|
| 959 | } else { |
---|
| 960 | if (m_probabilityCache[i+size2][j] == null) { |
---|
| 961 | break finishedReplot; |
---|
| 962 | } |
---|
| 963 | plotPoint(j, i + size2, size2, size2, |
---|
| 964 | m_probabilityCache[i + size2][j], update); |
---|
| 965 | if (m_probabilityCache[i+size2][j+size2] == null) { |
---|
| 966 | break finishedReplot; |
---|
| 967 | } |
---|
| 968 | plotPoint(j + size2, i + size2, size2, size2, |
---|
| 969 | m_probabilityCache[i + size2][j + size2], update); |
---|
| 970 | if (m_probabilityCache[i][j+size2] == null) { |
---|
| 971 | break finishedReplot; |
---|
| 972 | } |
---|
| 973 | plotPoint(j + size2, i, size2, size2, |
---|
| 974 | m_probabilityCache[i + size2][j], update); |
---|
| 975 | } |
---|
| 976 | } |
---|
| 977 | } |
---|
| 978 | } |
---|
| 979 | update(); |
---|
| 980 | if (m_plotTrainingData) { |
---|
| 981 | plotTrainingData(); |
---|
| 982 | } |
---|
| 983 | m_pausePlotting = false; |
---|
| 984 | if (!m_stopPlotting) { |
---|
| 985 | synchronized (m_dummy) { |
---|
| 986 | m_dummy.notifyAll(); |
---|
| 987 | } |
---|
| 988 | } |
---|
| 989 | } |
---|
| 990 | }; |
---|
| 991 | |
---|
| 992 | replotThread.start(); |
---|
| 993 | } |
---|
| 994 | |
---|
| 995 | protected void saveImage(String fileName) { |
---|
| 996 | BufferedImage bi; |
---|
| 997 | Graphics2D gr2; |
---|
| 998 | ImageWriter writer; |
---|
| 999 | Iterator iter; |
---|
| 1000 | ImageOutputStream ios; |
---|
| 1001 | ImageWriteParam param; |
---|
| 1002 | |
---|
| 1003 | try { |
---|
| 1004 | // render image |
---|
| 1005 | bi = new BufferedImage(m_panelWidth, m_panelHeight, BufferedImage.TYPE_INT_RGB); |
---|
| 1006 | gr2 = bi.createGraphics(); |
---|
| 1007 | gr2.drawImage(m_osi, 0, 0, m_panelWidth, m_panelHeight, null); |
---|
| 1008 | |
---|
| 1009 | // get jpeg writer |
---|
| 1010 | writer = null; |
---|
| 1011 | iter = ImageIO.getImageWritersByFormatName("jpg"); |
---|
| 1012 | if (iter.hasNext()) |
---|
| 1013 | writer = (ImageWriter) iter.next(); |
---|
| 1014 | else |
---|
| 1015 | throw new Exception("No JPEG writer available!"); |
---|
| 1016 | |
---|
| 1017 | // prepare output file |
---|
| 1018 | ios = ImageIO.createImageOutputStream(new File(fileName)); |
---|
| 1019 | writer.setOutput(ios); |
---|
| 1020 | |
---|
| 1021 | // set the quality |
---|
| 1022 | param = new JPEGImageWriteParam(Locale.getDefault()); |
---|
| 1023 | param.setCompressionMode(ImageWriteParam.MODE_EXPLICIT) ; |
---|
| 1024 | param.setCompressionQuality(1.0f); |
---|
| 1025 | |
---|
| 1026 | // write the image |
---|
| 1027 | writer.write(null, new IIOImage(bi, null, null), param); |
---|
| 1028 | |
---|
| 1029 | // cleanup |
---|
| 1030 | ios.flush(); |
---|
| 1031 | writer.dispose(); |
---|
| 1032 | ios.close(); |
---|
| 1033 | } |
---|
| 1034 | catch (Exception e) { |
---|
| 1035 | e.printStackTrace(); |
---|
| 1036 | } |
---|
| 1037 | } |
---|
| 1038 | |
---|
| 1039 | /** Adds a training instance to our dataset, based on the coordinates of the mouse on the panel. |
---|
| 1040 | This method sets the x and y attributes and the class (as defined by classAttIndex), and sets |
---|
| 1041 | all other values as Missing. |
---|
| 1042 | * @param mouseX the x coordinate of the mouse, in pixels. |
---|
| 1043 | * @param mouseY the y coordinate of the mouse, in pixels. |
---|
| 1044 | * @param classAttIndex the index of the attribute that is currently selected as the class attribute. |
---|
| 1045 | * @param classValue the value to set the class to in our new point. |
---|
| 1046 | */ |
---|
| 1047 | public void addTrainingInstanceFromMouseLocation(int mouseX, int mouseY, int classAttIndex, double classValue) { |
---|
| 1048 | //convert to coordinates in the training instance space. |
---|
| 1049 | double x = convertFromPanelX(mouseX); |
---|
| 1050 | double y = convertFromPanelY(mouseY); |
---|
| 1051 | |
---|
| 1052 | //build the training instance |
---|
| 1053 | Instance newInstance = new DenseInstance(m_trainingData.numAttributes()); |
---|
| 1054 | for (int i = 0; i < newInstance.numAttributes(); i++) { |
---|
| 1055 | if (i == classAttIndex) { |
---|
| 1056 | newInstance.setValue(i,classValue); |
---|
| 1057 | } |
---|
| 1058 | else if (i == m_xAttribute) |
---|
| 1059 | newInstance.setValue(i,x); |
---|
| 1060 | else if (i == m_yAttribute) |
---|
| 1061 | newInstance.setValue(i,y); |
---|
| 1062 | else newInstance.setMissing(i); |
---|
| 1063 | } |
---|
| 1064 | |
---|
| 1065 | //add it to our data set. |
---|
| 1066 | addTrainingInstance(newInstance); |
---|
| 1067 | } |
---|
| 1068 | |
---|
| 1069 | /** Deletes all training instances from our dataset. |
---|
| 1070 | */ |
---|
| 1071 | public void removeAllInstances() { |
---|
| 1072 | if (m_trainingData != null) |
---|
| 1073 | { |
---|
| 1074 | m_trainingData.delete(); |
---|
| 1075 | try { initialize();} catch (Exception e) {}; |
---|
| 1076 | } |
---|
| 1077 | |
---|
| 1078 | } |
---|
| 1079 | |
---|
| 1080 | /** Removes a single training instance from our dataset, if there is one that is close enough |
---|
| 1081 | to the specified mouse location. |
---|
| 1082 | */ |
---|
| 1083 | public void removeTrainingInstanceFromMouseLocation(int mouseX, int mouseY) { |
---|
| 1084 | |
---|
| 1085 | //convert to coordinates in the training instance space. |
---|
| 1086 | double x = convertFromPanelX(mouseX); |
---|
| 1087 | double y = convertFromPanelY(mouseY); |
---|
| 1088 | |
---|
| 1089 | int bestIndex = -1; |
---|
| 1090 | double bestDistanceBetween = Integer.MAX_VALUE; |
---|
| 1091 | |
---|
| 1092 | //find the closest point. |
---|
| 1093 | for (int i = 0; i < m_trainingData.numInstances(); i++) { |
---|
| 1094 | Instance current = m_trainingData.instance(i); |
---|
| 1095 | double distanceBetween = (current.value(m_xAttribute) - x) * (current.value(m_xAttribute) - x) + (current.value(m_yAttribute) - y) * (current.value(m_yAttribute) - y); // won't bother to sqrt, just used square values. |
---|
| 1096 | |
---|
| 1097 | if (distanceBetween < bestDistanceBetween) |
---|
| 1098 | { |
---|
| 1099 | bestIndex = i; |
---|
| 1100 | bestDistanceBetween = distanceBetween; |
---|
| 1101 | } |
---|
| 1102 | } |
---|
| 1103 | if (bestIndex == -1) |
---|
| 1104 | return; |
---|
| 1105 | Instance best = m_trainingData.instance(bestIndex); |
---|
| 1106 | double panelDistance = (convertToPanelX(best.value(m_xAttribute)) - mouseX) * (convertToPanelX(best.value(m_xAttribute)) - mouseX) |
---|
| 1107 | + (convertToPanelY(best.value(m_yAttribute)) - mouseY) * (convertToPanelY(best.value(m_yAttribute)) - mouseY); |
---|
| 1108 | if (panelDistance < REMOVE_POINT_RADIUS * REMOVE_POINT_RADIUS) {//the best point is close enough. (using squared distances) |
---|
| 1109 | m_trainingData.delete(bestIndex); |
---|
| 1110 | } |
---|
| 1111 | } |
---|
| 1112 | |
---|
| 1113 | /** Starts the plotting thread. Will also create it if necessary. |
---|
| 1114 | */ |
---|
| 1115 | public void startPlotThread() { |
---|
| 1116 | if (m_plotThread == null) { //jimmy |
---|
| 1117 | m_plotThread = new PlotThread(); |
---|
| 1118 | m_plotThread.setPriority(Thread.MIN_PRIORITY); |
---|
| 1119 | m_plotThread.start(); |
---|
| 1120 | } |
---|
| 1121 | } |
---|
| 1122 | |
---|
| 1123 | /** Adds a mouse listener. |
---|
| 1124 | */ |
---|
| 1125 | public void addMouseListener(MouseListener l) { |
---|
| 1126 | m_plotPanel.addMouseListener(l); |
---|
| 1127 | } |
---|
| 1128 | |
---|
| 1129 | /** Gets the minimum x-coordinate bound, in training-instance units (not mouse coordinates). |
---|
| 1130 | */ |
---|
| 1131 | public double getMinXBound() { |
---|
| 1132 | return m_minX; |
---|
| 1133 | } |
---|
| 1134 | |
---|
| 1135 | /** Gets the minimum y-coordinate bound, in training-instance units (not mouse coordinates). |
---|
| 1136 | */ |
---|
| 1137 | public double getMinYBound() { |
---|
| 1138 | return m_minY; |
---|
| 1139 | } |
---|
| 1140 | |
---|
| 1141 | /** Gets the maximum x-coordinate bound, in training-instance units (not mouse coordinates). |
---|
| 1142 | */ |
---|
| 1143 | public double getMaxXBound() { |
---|
| 1144 | return m_maxX; |
---|
| 1145 | } |
---|
| 1146 | |
---|
| 1147 | /** Gets the maximum x-coordinate bound, in training-instance units (not mouse coordinates). |
---|
| 1148 | */ |
---|
| 1149 | public double getMaxYBound() { |
---|
| 1150 | return m_maxY; |
---|
| 1151 | } |
---|
| 1152 | |
---|
| 1153 | /** |
---|
| 1154 | * Main method for testing this class |
---|
| 1155 | * |
---|
| 1156 | * @param args a <code>String[]</code> value |
---|
| 1157 | */ |
---|
| 1158 | public static void main (String [] args) { |
---|
| 1159 | try { |
---|
| 1160 | if (args.length < 8) { |
---|
| 1161 | System.err.println("Usage : BoundaryPanel <dataset> " |
---|
| 1162 | +"<class col> <xAtt> <yAtt> " |
---|
| 1163 | +"<base> <# loc/pixel> <kernel bandwidth> " |
---|
| 1164 | +"<display width> " |
---|
| 1165 | +"<display height> <classifier " |
---|
| 1166 | +"[classifier options]>"); |
---|
| 1167 | System.exit(1); |
---|
| 1168 | } |
---|
| 1169 | final javax.swing.JFrame jf = |
---|
| 1170 | new javax.swing.JFrame("Weka classification boundary visualizer"); |
---|
| 1171 | jf.getContentPane().setLayout(new BorderLayout()); |
---|
| 1172 | |
---|
| 1173 | System.err.println("Loading instances from : "+args[0]); |
---|
| 1174 | java.io.Reader r = new java.io.BufferedReader( |
---|
| 1175 | new java.io.FileReader(args[0])); |
---|
| 1176 | final Instances i = new Instances(r); |
---|
| 1177 | i.setClassIndex(Integer.parseInt(args[1])); |
---|
| 1178 | |
---|
| 1179 | // bv.setClassifier(new Logistic()); |
---|
| 1180 | final int xatt = Integer.parseInt(args[2]); |
---|
| 1181 | final int yatt = Integer.parseInt(args[3]); |
---|
| 1182 | int base = Integer.parseInt(args[4]); |
---|
| 1183 | int loc = Integer.parseInt(args[5]); |
---|
| 1184 | |
---|
| 1185 | int bandWidth = Integer.parseInt(args[6]); |
---|
| 1186 | int panelWidth = Integer.parseInt(args[7]); |
---|
| 1187 | int panelHeight = Integer.parseInt(args[8]); |
---|
| 1188 | |
---|
| 1189 | final String classifierName = args[9]; |
---|
| 1190 | final BoundaryPanel bv = new BoundaryPanel(panelWidth,panelHeight); |
---|
| 1191 | bv.addActionListener(new ActionListener() { |
---|
| 1192 | public void actionPerformed(ActionEvent e) { |
---|
| 1193 | String classifierNameNew = |
---|
| 1194 | classifierName.substring(classifierName.lastIndexOf('.')+1, |
---|
| 1195 | classifierName.length()); |
---|
| 1196 | bv.saveImage(classifierNameNew+"_"+i.relationName() |
---|
| 1197 | +"_X"+xatt+"_Y"+yatt+".jpg"); |
---|
| 1198 | } |
---|
| 1199 | }); |
---|
| 1200 | |
---|
| 1201 | jf.getContentPane().add(bv, BorderLayout.CENTER); |
---|
| 1202 | jf.setSize(bv.getMinimumSize()); |
---|
| 1203 | // jf.setSize(200,200); |
---|
| 1204 | jf.addWindowListener(new java.awt.event.WindowAdapter() { |
---|
| 1205 | public void windowClosing(java.awt.event.WindowEvent e) { |
---|
| 1206 | jf.dispose(); |
---|
| 1207 | System.exit(0); |
---|
| 1208 | } |
---|
| 1209 | }); |
---|
| 1210 | |
---|
| 1211 | jf.pack(); |
---|
| 1212 | jf.setVisible(true); |
---|
| 1213 | // bv.initialize(); |
---|
| 1214 | bv.repaint(); |
---|
| 1215 | |
---|
| 1216 | |
---|
| 1217 | String [] argsR = null; |
---|
| 1218 | if (args.length > 10) { |
---|
| 1219 | argsR = new String [args.length-10]; |
---|
| 1220 | for (int j = 10; j < args.length; j++) { |
---|
| 1221 | argsR[j-10] = args[j]; |
---|
| 1222 | } |
---|
| 1223 | } |
---|
| 1224 | Classifier c = AbstractClassifier.forName(args[9], argsR); |
---|
| 1225 | KDDataGenerator dataGen = new KDDataGenerator(); |
---|
| 1226 | dataGen.setKernelBandwidth(bandWidth); |
---|
| 1227 | bv.setDataGenerator(dataGen); |
---|
| 1228 | bv.setNumSamplesPerRegion(loc); |
---|
| 1229 | bv.setGeneratorSamplesBase(base); |
---|
| 1230 | bv.setClassifier(c); |
---|
| 1231 | bv.setTrainingData(i); |
---|
| 1232 | bv.setXAttribute(xatt); |
---|
| 1233 | bv.setYAttribute(yatt); |
---|
| 1234 | |
---|
| 1235 | try { |
---|
| 1236 | // try and load a color map if one exists |
---|
| 1237 | FileInputStream fis = new FileInputStream("colors.ser"); |
---|
| 1238 | ObjectInputStream ois = new ObjectInputStream(fis); |
---|
| 1239 | FastVector colors = (FastVector)ois.readObject(); |
---|
| 1240 | bv.setColors(colors); |
---|
| 1241 | } catch (Exception ex) { |
---|
| 1242 | System.err.println("No color map file"); |
---|
| 1243 | } |
---|
| 1244 | bv.start(); |
---|
| 1245 | } catch (Exception ex) { |
---|
| 1246 | ex.printStackTrace(); |
---|
| 1247 | } |
---|
| 1248 | } |
---|
| 1249 | } |
---|
| 1250 | |
---|