[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * PredictionAppender.java |
---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | package weka.gui.beans; |
---|
| 24 | |
---|
| 25 | import weka.clusterers.DensityBasedClusterer; |
---|
| 26 | import weka.core.Instance; |
---|
| 27 | import weka.core.DenseInstance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | |
---|
| 30 | import java.awt.BorderLayout; |
---|
| 31 | import java.beans.EventSetDescriptor; |
---|
| 32 | import java.io.Serializable; |
---|
| 33 | import java.util.Enumeration; |
---|
| 34 | import java.util.Vector; |
---|
| 35 | |
---|
| 36 | import javax.swing.JPanel; |
---|
| 37 | |
---|
| 38 | /** |
---|
| 39 | * Bean that can can accept batch or incremental classifier events |
---|
| 40 | * and produce dataset or instance events which contain instances with |
---|
| 41 | * predictions appended. |
---|
| 42 | * |
---|
| 43 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
| 44 | * @version $Revision: 5987 $ |
---|
| 45 | */ |
---|
| 46 | public class PredictionAppender |
---|
| 47 | extends JPanel |
---|
| 48 | implements DataSource, TrainingSetProducer, TestSetProducer, Visible, BeanCommon, |
---|
| 49 | EventConstraints, BatchClassifierListener, |
---|
| 50 | IncrementalClassifierListener, BatchClustererListener, Serializable { |
---|
| 51 | |
---|
| 52 | /** for serialization */ |
---|
| 53 | private static final long serialVersionUID = -2987740065058976673L; |
---|
| 54 | |
---|
| 55 | /** |
---|
| 56 | * Objects listenening for dataset events |
---|
| 57 | */ |
---|
| 58 | protected Vector m_dataSourceListeners = new Vector(); |
---|
| 59 | |
---|
| 60 | /** |
---|
| 61 | * Objects listening for instances events |
---|
| 62 | */ |
---|
| 63 | protected Vector m_instanceListeners = new Vector(); |
---|
| 64 | |
---|
| 65 | /** |
---|
| 66 | * Objects listening for training set events |
---|
| 67 | */ |
---|
| 68 | protected Vector m_trainingSetListeners = new Vector();; |
---|
| 69 | |
---|
| 70 | /** |
---|
| 71 | * Objects listening for test set events |
---|
| 72 | */ |
---|
| 73 | protected Vector m_testSetListeners = new Vector(); |
---|
| 74 | |
---|
| 75 | /** |
---|
| 76 | * Non null if this object is a target for any events. |
---|
| 77 | */ |
---|
| 78 | protected Object m_listenee = null; |
---|
| 79 | |
---|
| 80 | /** |
---|
| 81 | * Format of instances to be produced. |
---|
| 82 | */ |
---|
| 83 | protected Instances m_format; |
---|
| 84 | |
---|
| 85 | protected BeanVisual m_visual = |
---|
| 86 | new BeanVisual("PredictionAppender", |
---|
| 87 | BeanVisual.ICON_PATH+"PredictionAppender.gif", |
---|
| 88 | BeanVisual.ICON_PATH+"PredictionAppender_animated.gif"); |
---|
| 89 | |
---|
| 90 | /** |
---|
| 91 | * Append classifier's predicted probabilities (if the class is discrete |
---|
| 92 | * and the classifier is a distribution classifier) |
---|
| 93 | */ |
---|
| 94 | protected boolean m_appendProbabilities; |
---|
| 95 | |
---|
| 96 | protected transient weka.gui.Logger m_logger; |
---|
| 97 | |
---|
| 98 | /** |
---|
| 99 | * Global description of this bean |
---|
| 100 | * |
---|
| 101 | * @return a <code>String</code> value |
---|
| 102 | */ |
---|
| 103 | public String globalInfo() { |
---|
| 104 | return "Accepts batch or incremental classifier events and " |
---|
| 105 | +"produces a new data set with classifier predictions appended."; |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | /** |
---|
| 109 | * Creates a new <code>PredictionAppender</code> instance. |
---|
| 110 | */ |
---|
| 111 | public PredictionAppender() { |
---|
| 112 | setLayout(new BorderLayout()); |
---|
| 113 | add(m_visual, BorderLayout.CENTER); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * Set a custom (descriptive) name for this bean |
---|
| 118 | * |
---|
| 119 | * @param name the name to use |
---|
| 120 | */ |
---|
| 121 | public void setCustomName(String name) { |
---|
| 122 | m_visual.setText(name); |
---|
| 123 | } |
---|
| 124 | |
---|
| 125 | /** |
---|
| 126 | * Get the custom (descriptive) name for this bean (if one has been set) |
---|
| 127 | * |
---|
| 128 | * @return the custom name (or the default name) |
---|
| 129 | */ |
---|
| 130 | public String getCustomName() { |
---|
| 131 | return m_visual.getText(); |
---|
| 132 | } |
---|
| 133 | |
---|
| 134 | /** |
---|
| 135 | * Return a tip text suitable for displaying in a GUI |
---|
| 136 | * |
---|
| 137 | * @return a <code>String</code> value |
---|
| 138 | */ |
---|
| 139 | public String appendPredictedProbabilitiesTipText() { |
---|
| 140 | return "append probabilities rather than labels for discrete class " |
---|
| 141 | +"predictions"; |
---|
| 142 | } |
---|
| 143 | |
---|
| 144 | /** |
---|
| 145 | * Return true if predicted probabilities are to be appended rather |
---|
| 146 | * than class value |
---|
| 147 | * |
---|
| 148 | * @return a <code>boolean</code> value |
---|
| 149 | */ |
---|
| 150 | public boolean getAppendPredictedProbabilities() { |
---|
| 151 | return m_appendProbabilities; |
---|
| 152 | } |
---|
| 153 | |
---|
| 154 | /** |
---|
| 155 | * Set whether to append predicted probabilities rather than |
---|
| 156 | * class value (for discrete class data sets) |
---|
| 157 | * |
---|
| 158 | * @param ap a <code>boolean</code> value |
---|
| 159 | */ |
---|
| 160 | public void setAppendPredictedProbabilities(boolean ap) { |
---|
| 161 | m_appendProbabilities = ap; |
---|
| 162 | } |
---|
| 163 | |
---|
| 164 | /** |
---|
| 165 | * Add a training set listener |
---|
| 166 | * |
---|
| 167 | * @param tsl a <code>TrainingSetListener</code> value |
---|
| 168 | */ |
---|
| 169 | public void addTrainingSetListener(TrainingSetListener tsl) { |
---|
| 170 | // TODO Auto-generated method stub |
---|
| 171 | m_trainingSetListeners.addElement(tsl); |
---|
| 172 | // pass on any format that we might have determined so far |
---|
| 173 | if (m_format != null) { |
---|
| 174 | TrainingSetEvent e = new TrainingSetEvent(this, m_format); |
---|
| 175 | tsl.acceptTrainingSet(e); |
---|
| 176 | } |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | /** |
---|
| 180 | * Remove a training set listener |
---|
| 181 | * |
---|
| 182 | * @param tsl a <code>TrainingSetListener</code> value |
---|
| 183 | */ |
---|
| 184 | public void removeTrainingSetListener(TrainingSetListener tsl) { |
---|
| 185 | m_trainingSetListeners.removeElement(tsl); |
---|
| 186 | } |
---|
| 187 | |
---|
| 188 | /** |
---|
| 189 | * Add a test set listener |
---|
| 190 | * |
---|
| 191 | * @param tsl a <code>TestSetListener</code> value |
---|
| 192 | */ |
---|
| 193 | public void addTestSetListener(TestSetListener tsl) { |
---|
| 194 | m_testSetListeners.addElement(tsl); |
---|
| 195 | // pass on any format that we might have determined so far |
---|
| 196 | if (m_format != null) { |
---|
| 197 | TestSetEvent e = new TestSetEvent(this, m_format); |
---|
| 198 | tsl.acceptTestSet(e); |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | |
---|
| 202 | /** |
---|
| 203 | * Remove a test set listener |
---|
| 204 | * |
---|
| 205 | * @param tsl a <code>TestSetListener</code> value |
---|
| 206 | */ |
---|
| 207 | public void removeTestSetListener(TestSetListener tsl) { |
---|
| 208 | m_testSetListeners.removeElement(tsl); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | /** |
---|
| 212 | * Add a datasource listener |
---|
| 213 | * |
---|
| 214 | * @param dsl a <code>DataSourceListener</code> value |
---|
| 215 | */ |
---|
| 216 | public synchronized void addDataSourceListener(DataSourceListener dsl) { |
---|
| 217 | m_dataSourceListeners.addElement(dsl); |
---|
| 218 | // pass on any format that we might have determined so far |
---|
| 219 | if (m_format != null) { |
---|
| 220 | DataSetEvent e = new DataSetEvent(this, m_format); |
---|
| 221 | dsl.acceptDataSet(e); |
---|
| 222 | } |
---|
| 223 | } |
---|
| 224 | |
---|
| 225 | /** |
---|
| 226 | * Remove a datasource listener |
---|
| 227 | * |
---|
| 228 | * @param dsl a <code>DataSourceListener</code> value |
---|
| 229 | */ |
---|
| 230 | public synchronized void removeDataSourceListener(DataSourceListener dsl) { |
---|
| 231 | m_dataSourceListeners.remove(dsl); |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | /** |
---|
| 235 | * Add an instance listener |
---|
| 236 | * |
---|
| 237 | * @param dsl a <code>InstanceListener</code> value |
---|
| 238 | */ |
---|
| 239 | public synchronized void addInstanceListener(InstanceListener dsl) { |
---|
| 240 | m_instanceListeners.addElement(dsl); |
---|
| 241 | // pass on any format that we might have determined so far |
---|
| 242 | if (m_format != null) { |
---|
| 243 | InstanceEvent e = new InstanceEvent(this, m_format); |
---|
| 244 | dsl.acceptInstance(e); |
---|
| 245 | } |
---|
| 246 | } |
---|
| 247 | |
---|
| 248 | /** |
---|
| 249 | * Remove an instance listener |
---|
| 250 | * |
---|
| 251 | * @param dsl a <code>InstanceListener</code> value |
---|
| 252 | */ |
---|
| 253 | public synchronized void removeInstanceListener(InstanceListener dsl) { |
---|
| 254 | m_instanceListeners.remove(dsl); |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /** |
---|
| 258 | * Set the visual for this data source |
---|
| 259 | * |
---|
| 260 | * @param newVisual a <code>BeanVisual</code> value |
---|
| 261 | */ |
---|
| 262 | public void setVisual(BeanVisual newVisual) { |
---|
| 263 | m_visual = newVisual; |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | /** |
---|
| 267 | * Get the visual being used by this data source. |
---|
| 268 | * |
---|
| 269 | */ |
---|
| 270 | public BeanVisual getVisual() { |
---|
| 271 | return m_visual; |
---|
| 272 | } |
---|
| 273 | |
---|
| 274 | /** |
---|
| 275 | * Use the default images for a data source |
---|
| 276 | * |
---|
| 277 | */ |
---|
| 278 | public void useDefaultVisual() { |
---|
| 279 | m_visual.loadIcons(BeanVisual.ICON_PATH+"PredictionAppender.gif", |
---|
| 280 | BeanVisual.ICON_PATH+"PredictionAppender_animated.gif"); |
---|
| 281 | } |
---|
| 282 | |
---|
| 283 | protected InstanceEvent m_instanceEvent; |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | /** |
---|
| 287 | * Accept and process an incremental classifier event |
---|
| 288 | * |
---|
| 289 | * @param e an <code>IncrementalClassifierEvent</code> value |
---|
| 290 | */ |
---|
| 291 | public void acceptClassifier(IncrementalClassifierEvent e) { |
---|
| 292 | weka.classifiers.Classifier classifier = e.getClassifier(); |
---|
| 293 | Instance currentI = e.getCurrentInstance(); |
---|
| 294 | int status = e.getStatus(); |
---|
| 295 | int oldNumAtts = 0; |
---|
| 296 | if (status == IncrementalClassifierEvent.NEW_BATCH) { |
---|
| 297 | oldNumAtts = e.getStructure().numAttributes(); |
---|
| 298 | } else { |
---|
| 299 | oldNumAtts = currentI.dataset().numAttributes(); |
---|
| 300 | } |
---|
| 301 | if (status == IncrementalClassifierEvent.NEW_BATCH) { |
---|
| 302 | m_instanceEvent = new InstanceEvent(this, null, 0); |
---|
| 303 | // create new header structure |
---|
| 304 | Instances oldStructure = new Instances(e.getStructure(), 0); |
---|
| 305 | //String relationNameModifier = oldStructure.relationName() |
---|
| 306 | //+"_with predictions"; |
---|
| 307 | String relationNameModifier = "_with predictions"; |
---|
| 308 | //+"_with predictions"; |
---|
| 309 | if (!m_appendProbabilities |
---|
| 310 | || oldStructure.classAttribute().isNumeric()) { |
---|
| 311 | try { |
---|
| 312 | m_format = makeDataSetClass(oldStructure, oldStructure, classifier, |
---|
| 313 | relationNameModifier); |
---|
| 314 | } catch (Exception ex) { |
---|
| 315 | ex.printStackTrace(); |
---|
| 316 | return; |
---|
| 317 | } |
---|
| 318 | } else if (m_appendProbabilities) { |
---|
| 319 | try { |
---|
| 320 | m_format = |
---|
| 321 | makeDataSetProbabilities(oldStructure, oldStructure, classifier, |
---|
| 322 | relationNameModifier); |
---|
| 323 | |
---|
| 324 | } catch (Exception ex) { |
---|
| 325 | ex.printStackTrace(); |
---|
| 326 | return; |
---|
| 327 | } |
---|
| 328 | } |
---|
| 329 | // Pass on the structure |
---|
| 330 | m_instanceEvent.setStructure(m_format); |
---|
| 331 | notifyInstanceAvailable(m_instanceEvent); |
---|
| 332 | return; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | double[] instanceVals = new double [m_format.numAttributes()]; |
---|
| 336 | Instance newInst = null; |
---|
| 337 | try { |
---|
| 338 | // process the actual instance |
---|
| 339 | for (int i = 0; i < oldNumAtts; i++) { |
---|
| 340 | instanceVals[i] = currentI.value(i); |
---|
| 341 | } |
---|
| 342 | if (!m_appendProbabilities |
---|
| 343 | || currentI.dataset().classAttribute().isNumeric()) { |
---|
| 344 | double predClass = |
---|
| 345 | classifier.classifyInstance(currentI); |
---|
| 346 | instanceVals[instanceVals.length - 1] = predClass; |
---|
| 347 | } else if (m_appendProbabilities) { |
---|
| 348 | double [] preds = classifier.distributionForInstance(currentI); |
---|
| 349 | for (int i = oldNumAtts; i < instanceVals.length; i++) { |
---|
| 350 | instanceVals[i] = preds[i-oldNumAtts]; |
---|
| 351 | } |
---|
| 352 | } |
---|
| 353 | } catch (Exception ex) { |
---|
| 354 | ex.printStackTrace(); |
---|
| 355 | return; |
---|
| 356 | } finally { |
---|
| 357 | newInst = new DenseInstance(currentI.weight(), instanceVals); |
---|
| 358 | newInst.setDataset(m_format); |
---|
| 359 | m_instanceEvent.setInstance(newInst); |
---|
| 360 | m_instanceEvent.setStatus(status); |
---|
| 361 | // notify listeners |
---|
| 362 | notifyInstanceAvailable(m_instanceEvent); |
---|
| 363 | } |
---|
| 364 | |
---|
| 365 | if (status == IncrementalClassifierEvent.BATCH_FINISHED) { |
---|
| 366 | // clean up |
---|
| 367 | // m_incrementalStructure = null; |
---|
| 368 | m_instanceEvent = null; |
---|
| 369 | } |
---|
| 370 | } |
---|
| 371 | |
---|
| 372 | /** |
---|
| 373 | * Accept and process a batch classifier event |
---|
| 374 | * |
---|
| 375 | * @param e a <code>BatchClassifierEvent</code> value |
---|
| 376 | */ |
---|
| 377 | public void acceptClassifier(BatchClassifierEvent e) { |
---|
| 378 | if (m_dataSourceListeners.size() > 0 |
---|
| 379 | || m_trainingSetListeners.size() > 0 |
---|
| 380 | || m_testSetListeners.size() > 0) { |
---|
| 381 | |
---|
| 382 | if (e.getTestSet() == null) { |
---|
| 383 | // can't append predictions |
---|
| 384 | return; |
---|
| 385 | } |
---|
| 386 | |
---|
| 387 | Instances testSet = e.getTestSet().getDataSet(); |
---|
| 388 | Instances trainSet = e.getTrainSet().getDataSet(); |
---|
| 389 | int setNum = e.getSetNumber(); |
---|
| 390 | int maxNum = e.getMaxSetNumber(); |
---|
| 391 | |
---|
| 392 | weka.classifiers.Classifier classifier = e.getClassifier(); |
---|
| 393 | String relationNameModifier = "_set_"+e.getSetNumber()+"_of_" |
---|
| 394 | +e.getMaxSetNumber(); |
---|
| 395 | if (!m_appendProbabilities || testSet.classAttribute().isNumeric()) { |
---|
| 396 | try { |
---|
| 397 | Instances newTestSetInstances = makeDataSetClass(testSet, trainSet, |
---|
| 398 | classifier, relationNameModifier); |
---|
| 399 | Instances newTrainingSetInstances = makeDataSetClass(trainSet, trainSet, |
---|
| 400 | classifier, relationNameModifier); |
---|
| 401 | |
---|
| 402 | if (m_trainingSetListeners.size() > 0) { |
---|
| 403 | TrainingSetEvent tse = new TrainingSetEvent(this, |
---|
| 404 | new Instances(newTrainingSetInstances, 0)); |
---|
| 405 | tse.m_setNumber = setNum; |
---|
| 406 | tse.m_maxSetNumber = maxNum; |
---|
| 407 | notifyTrainingSetAvailable(tse); |
---|
| 408 | // fill in predicted values |
---|
| 409 | for (int i = 0; i < trainSet.numInstances(); i++) { |
---|
| 410 | double predClass = |
---|
| 411 | classifier.classifyInstance(trainSet.instance(i)); |
---|
| 412 | newTrainingSetInstances.instance(i).setValue(newTrainingSetInstances.numAttributes()-1, |
---|
| 413 | predClass); |
---|
| 414 | } |
---|
| 415 | tse = new TrainingSetEvent(this, |
---|
| 416 | newTrainingSetInstances); |
---|
| 417 | tse.m_setNumber = setNum; |
---|
| 418 | tse.m_maxSetNumber = maxNum; |
---|
| 419 | notifyTrainingSetAvailable(tse); |
---|
| 420 | } |
---|
| 421 | |
---|
| 422 | if (m_testSetListeners.size() > 0) { |
---|
| 423 | TestSetEvent tse = new TestSetEvent(this, |
---|
| 424 | new Instances(newTestSetInstances, 0)); |
---|
| 425 | tse.m_setNumber = setNum; |
---|
| 426 | tse.m_maxSetNumber = maxNum; |
---|
| 427 | notifyTestSetAvailable(tse); |
---|
| 428 | } |
---|
| 429 | if (m_dataSourceListeners.size() > 0) { |
---|
| 430 | notifyDataSetAvailable(new DataSetEvent(this, new Instances(newTestSetInstances,0))); |
---|
| 431 | } |
---|
| 432 | if (e.getTestSet().isStructureOnly()) { |
---|
| 433 | m_format = newTestSetInstances; |
---|
| 434 | } |
---|
| 435 | if (m_dataSourceListeners.size() > 0 || m_testSetListeners.size() > 0) { |
---|
| 436 | // fill in predicted values |
---|
| 437 | for (int i = 0; i < testSet.numInstances(); i++) { |
---|
| 438 | Instance tempInst = testSet.instance(i); |
---|
| 439 | |
---|
| 440 | // if the class value is missing, then copy the instance |
---|
| 441 | // and set the data set to the training data. This is |
---|
| 442 | // just in case this test data was loaded from a CSV file |
---|
| 443 | // with all missing values for a nominal class (in this |
---|
| 444 | // case we have no information on the legal class values |
---|
| 445 | // in the test data) |
---|
| 446 | if (tempInst.isMissing(tempInst.classIndex())) { |
---|
| 447 | tempInst = (Instance)testSet.instance(i).copy(); |
---|
| 448 | tempInst.setDataset(trainSet); |
---|
| 449 | } |
---|
| 450 | double predClass = |
---|
| 451 | classifier.classifyInstance(tempInst); |
---|
| 452 | newTestSetInstances.instance(i).setValue(newTestSetInstances.numAttributes()-1, |
---|
| 453 | predClass); |
---|
| 454 | } |
---|
| 455 | } |
---|
| 456 | // notify listeners |
---|
| 457 | if (m_testSetListeners.size() > 0) { |
---|
| 458 | TestSetEvent tse = new TestSetEvent(this, newTestSetInstances); |
---|
| 459 | tse.m_setNumber = setNum; |
---|
| 460 | tse.m_maxSetNumber = maxNum; |
---|
| 461 | notifyTestSetAvailable(tse); |
---|
| 462 | } |
---|
| 463 | if (m_dataSourceListeners.size() > 0) { |
---|
| 464 | notifyDataSetAvailable(new DataSetEvent(this, newTestSetInstances)); |
---|
| 465 | } |
---|
| 466 | return; |
---|
| 467 | } catch (Exception ex) { |
---|
| 468 | ex.printStackTrace(); |
---|
| 469 | } |
---|
| 470 | } |
---|
| 471 | if (m_appendProbabilities) { |
---|
| 472 | try { |
---|
| 473 | Instances newTestSetInstances = |
---|
| 474 | makeDataSetProbabilities(testSet, trainSet, |
---|
| 475 | classifier,relationNameModifier); |
---|
| 476 | Instances newTrainingSetInstances = |
---|
| 477 | makeDataSetProbabilities(trainSet, trainSet, |
---|
| 478 | classifier,relationNameModifier); |
---|
| 479 | if (m_trainingSetListeners.size() > 0) { |
---|
| 480 | TrainingSetEvent tse = new TrainingSetEvent(this, |
---|
| 481 | new Instances(newTrainingSetInstances, 0)); |
---|
| 482 | tse.m_setNumber = setNum; |
---|
| 483 | tse.m_maxSetNumber = maxNum; |
---|
| 484 | notifyTrainingSetAvailable(tse); |
---|
| 485 | // fill in predicted probabilities |
---|
| 486 | for (int i = 0; i < trainSet.numInstances(); i++) { |
---|
| 487 | double [] preds = classifier. |
---|
| 488 | distributionForInstance(trainSet.instance(i)); |
---|
| 489 | for (int j = 0; j < trainSet.classAttribute().numValues(); j++) { |
---|
| 490 | newTrainingSetInstances.instance(i).setValue(trainSet.numAttributes()+j, |
---|
| 491 | preds[j]); |
---|
| 492 | } |
---|
| 493 | } |
---|
| 494 | tse = new TrainingSetEvent(this, |
---|
| 495 | newTrainingSetInstances); |
---|
| 496 | tse.m_setNumber = setNum; |
---|
| 497 | tse.m_maxSetNumber = maxNum; |
---|
| 498 | notifyTrainingSetAvailable(tse); |
---|
| 499 | } |
---|
| 500 | if (m_testSetListeners.size() > 0) { |
---|
| 501 | TestSetEvent tse = new TestSetEvent(this, |
---|
| 502 | new Instances(newTestSetInstances, 0)); |
---|
| 503 | tse.m_setNumber = setNum; |
---|
| 504 | tse.m_maxSetNumber = maxNum; |
---|
| 505 | notifyTestSetAvailable(tse); |
---|
| 506 | } |
---|
| 507 | if (m_dataSourceListeners.size() > 0) { |
---|
| 508 | notifyDataSetAvailable(new DataSetEvent(this, new Instances(newTestSetInstances,0))); |
---|
| 509 | } |
---|
| 510 | if (e.getTestSet().isStructureOnly()) { |
---|
| 511 | m_format = newTestSetInstances; |
---|
| 512 | } |
---|
| 513 | if (m_dataSourceListeners.size() > 0 || m_testSetListeners.size() > 0) { |
---|
| 514 | // fill in predicted probabilities |
---|
| 515 | for (int i = 0; i < testSet.numInstances(); i++) { |
---|
| 516 | Instance tempInst = testSet.instance(i); |
---|
| 517 | |
---|
| 518 | // if the class value is missing, then copy the instance |
---|
| 519 | // and set the data set to the training data. This is |
---|
| 520 | // just in case this test data was loaded from a CSV file |
---|
| 521 | // with all missing values for a nominal class (in this |
---|
| 522 | // case we have no information on the legal class values |
---|
| 523 | // in the test data) |
---|
| 524 | if (tempInst.isMissing(tempInst.classIndex())) { |
---|
| 525 | tempInst = (Instance)testSet.instance(i).copy(); |
---|
| 526 | tempInst.setDataset(trainSet); |
---|
| 527 | } |
---|
| 528 | |
---|
| 529 | double [] preds = classifier. |
---|
| 530 | distributionForInstance(tempInst); |
---|
| 531 | for (int j = 0; j < tempInst.classAttribute().numValues(); j++) { |
---|
| 532 | newTestSetInstances.instance(i).setValue(testSet.numAttributes()+j, |
---|
| 533 | preds[j]); |
---|
| 534 | } |
---|
| 535 | } |
---|
| 536 | } |
---|
| 537 | |
---|
| 538 | // notify listeners |
---|
| 539 | if (m_testSetListeners.size() > 0) { |
---|
| 540 | TestSetEvent tse = new TestSetEvent(this, newTestSetInstances); |
---|
| 541 | tse.m_setNumber = setNum; |
---|
| 542 | tse.m_maxSetNumber = maxNum; |
---|
| 543 | notifyTestSetAvailable(tse); |
---|
| 544 | } |
---|
| 545 | if (m_dataSourceListeners.size() > 0) { |
---|
| 546 | notifyDataSetAvailable(new DataSetEvent(this, newTestSetInstances)); |
---|
| 547 | } |
---|
| 548 | } catch (Exception ex) { |
---|
| 549 | ex.printStackTrace(); |
---|
| 550 | } |
---|
| 551 | } |
---|
| 552 | } |
---|
| 553 | } |
---|
| 554 | |
---|
| 555 | |
---|
| 556 | /** |
---|
| 557 | * Accept and process a batch clusterer event |
---|
| 558 | * |
---|
| 559 | * @param e a <code>BatchClassifierEvent</code> value |
---|
| 560 | */ |
---|
| 561 | public void acceptClusterer(BatchClustererEvent e) { |
---|
| 562 | if (m_dataSourceListeners.size() > 0 |
---|
| 563 | || m_trainingSetListeners.size() > 0 |
---|
| 564 | || m_testSetListeners.size() > 0) { |
---|
| 565 | |
---|
| 566 | if(e.getTestSet().isStructureOnly()) { |
---|
| 567 | return; |
---|
| 568 | } |
---|
| 569 | Instances testSet = e.getTestSet().getDataSet(); |
---|
| 570 | |
---|
| 571 | weka.clusterers.Clusterer clusterer = e.getClusterer(); |
---|
| 572 | String test; |
---|
| 573 | if(e.getTestOrTrain() == 0) { |
---|
| 574 | test = "test"; |
---|
| 575 | } else { |
---|
| 576 | test = "training"; |
---|
| 577 | } |
---|
| 578 | String relationNameModifier = "_"+test+"_"+e.getSetNumber()+"_of_" |
---|
| 579 | +e.getMaxSetNumber(); |
---|
| 580 | if (!m_appendProbabilities || !(clusterer instanceof DensityBasedClusterer)) { |
---|
| 581 | if(m_appendProbabilities && !(clusterer instanceof DensityBasedClusterer)){ |
---|
| 582 | System.err.println("Only density based clusterers can append probabilities. Instead cluster will be assigned for each instance."); |
---|
| 583 | if (m_logger != null) { |
---|
| 584 | m_logger.logMessage("[PredictionAppender] " |
---|
| 585 | + statusMessagePrefix() + " Only density based clusterers can " |
---|
| 586 | +"append probabilities. Instead cluster will be assigned for each " |
---|
| 587 | +"instance."); |
---|
| 588 | m_logger.statusMessage(statusMessagePrefix() |
---|
| 589 | +"WARNING: Only density based clusterers can append probabilities. " |
---|
| 590 | +"Instead cluster will be assigned for each instance."); |
---|
| 591 | } |
---|
| 592 | } |
---|
| 593 | try { |
---|
| 594 | Instances newInstances = makeClusterDataSetClass(testSet, clusterer, |
---|
| 595 | relationNameModifier); |
---|
| 596 | |
---|
| 597 | // data source listeners get both train and test sets |
---|
| 598 | if (m_dataSourceListeners.size() > 0) { |
---|
| 599 | notifyDataSetAvailable(new DataSetEvent(this, new Instances(newInstances,0))); |
---|
| 600 | } |
---|
| 601 | |
---|
| 602 | if (m_trainingSetListeners.size() > 0 && e.getTestOrTrain() > 0) { |
---|
| 603 | TrainingSetEvent tse = |
---|
| 604 | new TrainingSetEvent(this, new Instances(newInstances, 0)); |
---|
| 605 | tse.m_setNumber = e.getSetNumber(); |
---|
| 606 | tse.m_maxSetNumber = e.getMaxSetNumber(); |
---|
| 607 | notifyTrainingSetAvailable(tse); |
---|
| 608 | } |
---|
| 609 | |
---|
| 610 | if (m_testSetListeners.size() > 0 && e.getTestOrTrain() == 0) { |
---|
| 611 | TestSetEvent tse = |
---|
| 612 | new TestSetEvent(this, new Instances(newInstances, 0)); |
---|
| 613 | tse.m_setNumber = e.getSetNumber(); |
---|
| 614 | tse.m_maxSetNumber = e.getMaxSetNumber(); |
---|
| 615 | notifyTestSetAvailable(tse); |
---|
| 616 | } |
---|
| 617 | |
---|
| 618 | // fill in predicted values |
---|
| 619 | for (int i = 0; i < testSet.numInstances(); i++) { |
---|
| 620 | double predCluster = |
---|
| 621 | clusterer.clusterInstance(testSet.instance(i)); |
---|
| 622 | newInstances.instance(i).setValue(newInstances.numAttributes()-1, |
---|
| 623 | predCluster); |
---|
| 624 | } |
---|
| 625 | // notify listeners |
---|
| 626 | if (m_dataSourceListeners.size() > 0) { |
---|
| 627 | notifyDataSetAvailable(new DataSetEvent(this, newInstances)); |
---|
| 628 | } |
---|
| 629 | if (m_trainingSetListeners.size() > 0 && e.getTestOrTrain() > 0) { |
---|
| 630 | TrainingSetEvent tse = |
---|
| 631 | new TrainingSetEvent(this, newInstances); |
---|
| 632 | tse.m_setNumber = e.getSetNumber(); |
---|
| 633 | tse.m_maxSetNumber = e.getMaxSetNumber(); |
---|
| 634 | notifyTrainingSetAvailable(tse); |
---|
| 635 | } |
---|
| 636 | if (m_testSetListeners.size() > 0 && e.getTestOrTrain() == 0) { |
---|
| 637 | TestSetEvent tse = |
---|
| 638 | new TestSetEvent(this, newInstances); |
---|
| 639 | tse.m_setNumber = e.getSetNumber(); |
---|
| 640 | tse.m_maxSetNumber = e.getMaxSetNumber(); |
---|
| 641 | notifyTestSetAvailable(tse); |
---|
| 642 | } |
---|
| 643 | |
---|
| 644 | return; |
---|
| 645 | } catch (Exception ex) { |
---|
| 646 | ex.printStackTrace(); |
---|
| 647 | } |
---|
| 648 | } |
---|
| 649 | else{ |
---|
| 650 | try { |
---|
| 651 | Instances newInstances = |
---|
| 652 | makeClusterDataSetProbabilities(testSet, |
---|
| 653 | clusterer,relationNameModifier); |
---|
| 654 | notifyDataSetAvailable(new DataSetEvent(this, new Instances(newInstances,0))); |
---|
| 655 | |
---|
| 656 | // fill in predicted probabilities |
---|
| 657 | for (int i = 0; i < testSet.numInstances(); i++) { |
---|
| 658 | double [] probs = clusterer. |
---|
| 659 | distributionForInstance(testSet.instance(i)); |
---|
| 660 | for (int j = 0; j < clusterer.numberOfClusters(); j++) { |
---|
| 661 | newInstances.instance(i).setValue(testSet.numAttributes()+j, |
---|
| 662 | probs[j]); |
---|
| 663 | } |
---|
| 664 | } |
---|
| 665 | // notify listeners |
---|
| 666 | notifyDataSetAvailable(new DataSetEvent(this, newInstances)); |
---|
| 667 | } catch (Exception ex) { |
---|
| 668 | ex.printStackTrace(); |
---|
| 669 | } |
---|
| 670 | } |
---|
| 671 | } |
---|
| 672 | } |
---|
| 673 | |
---|
| 674 | private Instances |
---|
| 675 | makeDataSetProbabilities(Instances insts, Instances format, |
---|
| 676 | weka.classifiers.Classifier classifier, |
---|
| 677 | String relationNameModifier) |
---|
| 678 | throws Exception { |
---|
| 679 | String classifierName = classifier.getClass().getName(); |
---|
| 680 | classifierName = classifierName. |
---|
| 681 | substring(classifierName.lastIndexOf('.')+1, classifierName.length()); |
---|
| 682 | int numOrigAtts = insts.numAttributes(); |
---|
| 683 | Instances newInstances = new Instances(insts); |
---|
| 684 | for (int i = 0; i < format.classAttribute().numValues(); i++) { |
---|
| 685 | weka.filters.unsupervised.attribute.Add addF = new |
---|
| 686 | weka.filters.unsupervised.attribute.Add(); |
---|
| 687 | addF.setAttributeIndex("last"); |
---|
| 688 | addF.setAttributeName(classifierName+"_prob_"+format.classAttribute().value(i)); |
---|
| 689 | addF.setInputFormat(newInstances); |
---|
| 690 | newInstances = weka.filters.Filter.useFilter(newInstances, addF); |
---|
| 691 | } |
---|
| 692 | newInstances.setRelationName(insts.relationName()+relationNameModifier); |
---|
| 693 | return newInstances; |
---|
| 694 | } |
---|
| 695 | |
---|
| 696 | private Instances makeDataSetClass(Instances insts, Instances structure, |
---|
| 697 | weka.classifiers.Classifier classifier, |
---|
| 698 | String relationNameModifier) |
---|
| 699 | throws Exception { |
---|
| 700 | |
---|
| 701 | weka.filters.unsupervised.attribute.Add addF = new |
---|
| 702 | weka.filters.unsupervised.attribute.Add(); |
---|
| 703 | addF.setAttributeIndex("last"); |
---|
| 704 | String classifierName = classifier.getClass().getName(); |
---|
| 705 | classifierName = classifierName. |
---|
| 706 | substring(classifierName.lastIndexOf('.')+1, classifierName.length()); |
---|
| 707 | addF.setAttributeName("class_predicted_by: "+classifierName); |
---|
| 708 | if (structure.classAttribute().isNominal()) { |
---|
| 709 | String classLabels = ""; |
---|
| 710 | Enumeration enu = structure.classAttribute().enumerateValues(); |
---|
| 711 | classLabels += (String)enu.nextElement(); |
---|
| 712 | while (enu.hasMoreElements()) { |
---|
| 713 | classLabels += ","+(String)enu.nextElement(); |
---|
| 714 | } |
---|
| 715 | addF.setNominalLabels(classLabels); |
---|
| 716 | } |
---|
| 717 | addF.setInputFormat(insts); |
---|
| 718 | |
---|
| 719 | |
---|
| 720 | Instances newInstances = |
---|
| 721 | weka.filters.Filter.useFilter(insts, addF); |
---|
| 722 | newInstances.setRelationName(insts.relationName()+relationNameModifier); |
---|
| 723 | return newInstances; |
---|
| 724 | } |
---|
| 725 | |
---|
| 726 | private Instances |
---|
| 727 | makeClusterDataSetProbabilities(Instances format, |
---|
| 728 | weka.clusterers.Clusterer clusterer, |
---|
| 729 | String relationNameModifier) |
---|
| 730 | throws Exception { |
---|
| 731 | int numOrigAtts = format.numAttributes(); |
---|
| 732 | Instances newInstances = new Instances(format); |
---|
| 733 | for (int i = 0; i < clusterer.numberOfClusters(); i++) { |
---|
| 734 | weka.filters.unsupervised.attribute.Add addF = new |
---|
| 735 | weka.filters.unsupervised.attribute.Add(); |
---|
| 736 | addF.setAttributeIndex("last"); |
---|
| 737 | addF.setAttributeName("prob_cluster"+i); |
---|
| 738 | addF.setInputFormat(newInstances); |
---|
| 739 | newInstances = weka.filters.Filter.useFilter(newInstances, addF); |
---|
| 740 | } |
---|
| 741 | newInstances.setRelationName(format.relationName()+relationNameModifier); |
---|
| 742 | return newInstances; |
---|
| 743 | } |
---|
| 744 | |
---|
| 745 | private Instances makeClusterDataSetClass(Instances format, |
---|
| 746 | weka.clusterers.Clusterer clusterer, |
---|
| 747 | String relationNameModifier) |
---|
| 748 | throws Exception { |
---|
| 749 | |
---|
| 750 | weka.filters.unsupervised.attribute.Add addF = new |
---|
| 751 | weka.filters.unsupervised.attribute.Add(); |
---|
| 752 | addF.setAttributeIndex("last"); |
---|
| 753 | String clustererName = clusterer.getClass().getName(); |
---|
| 754 | clustererName = clustererName. |
---|
| 755 | substring(clustererName.lastIndexOf('.')+1, clustererName.length()); |
---|
| 756 | addF.setAttributeName("assigned_cluster: "+clustererName); |
---|
| 757 | //if (format.classAttribute().isNominal()) { |
---|
| 758 | String clusterLabels = "0"; |
---|
| 759 | /*Enumeration enu = format.classAttribute().enumerateValues(); |
---|
| 760 | clusterLabels += (String)enu.nextElement(); |
---|
| 761 | while (enu.hasMoreElements()) { |
---|
| 762 | clusterLabels += ","+(String)enu.nextElement(); |
---|
| 763 | }*/ |
---|
| 764 | for(int i = 1; i <= clusterer.numberOfClusters()-1; i++) |
---|
| 765 | clusterLabels += ","+i; |
---|
| 766 | addF.setNominalLabels(clusterLabels); |
---|
| 767 | //} |
---|
| 768 | addF.setInputFormat(format); |
---|
| 769 | |
---|
| 770 | |
---|
| 771 | Instances newInstances = |
---|
| 772 | weka.filters.Filter.useFilter(format, addF); |
---|
| 773 | newInstances.setRelationName(format.relationName()+relationNameModifier); |
---|
| 774 | return newInstances; |
---|
| 775 | } |
---|
| 776 | |
---|
| 777 | /** |
---|
| 778 | * Notify all instance listeners that an instance is available |
---|
| 779 | * |
---|
| 780 | * @param e an <code>InstanceEvent</code> value |
---|
| 781 | */ |
---|
| 782 | protected void notifyInstanceAvailable(InstanceEvent e) { |
---|
| 783 | Vector l; |
---|
| 784 | synchronized (this) { |
---|
| 785 | l = (Vector)m_instanceListeners.clone(); |
---|
| 786 | } |
---|
| 787 | |
---|
| 788 | if (l.size() > 0) { |
---|
| 789 | for(int i = 0; i < l.size(); i++) { |
---|
| 790 | ((InstanceListener)l.elementAt(i)).acceptInstance(e); |
---|
| 791 | } |
---|
| 792 | } |
---|
| 793 | } |
---|
| 794 | |
---|
| 795 | /** |
---|
| 796 | * Notify all Data source listeners that a data set is available |
---|
| 797 | * |
---|
| 798 | * @param e a <code>DataSetEvent</code> value |
---|
| 799 | */ |
---|
| 800 | protected void notifyDataSetAvailable(DataSetEvent e) { |
---|
| 801 | Vector l; |
---|
| 802 | synchronized (this) { |
---|
| 803 | l = (Vector)m_dataSourceListeners.clone(); |
---|
| 804 | } |
---|
| 805 | |
---|
| 806 | if (l.size() > 0) { |
---|
| 807 | for(int i = 0; i < l.size(); i++) { |
---|
| 808 | ((DataSourceListener)l.elementAt(i)).acceptDataSet(e); |
---|
| 809 | } |
---|
| 810 | } |
---|
| 811 | } |
---|
| 812 | |
---|
| 813 | /** |
---|
| 814 | * Notify all test set listeners that a test set is available |
---|
| 815 | * |
---|
| 816 | * @param e a <code>TestSetEvent</code> value |
---|
| 817 | */ |
---|
| 818 | protected void notifyTestSetAvailable(TestSetEvent e) { |
---|
| 819 | Vector l; |
---|
| 820 | synchronized (this) { |
---|
| 821 | l = (Vector)m_testSetListeners.clone(); |
---|
| 822 | } |
---|
| 823 | |
---|
| 824 | if (l.size() > 0) { |
---|
| 825 | for(int i = 0; i < l.size(); i++) { |
---|
| 826 | ((TestSetListener)l.elementAt(i)).acceptTestSet(e); |
---|
| 827 | } |
---|
| 828 | } |
---|
| 829 | } |
---|
| 830 | |
---|
| 831 | /** |
---|
| 832 | * Notify all test set listeners that a test set is available |
---|
| 833 | * |
---|
| 834 | * @param e a <code>TestSetEvent</code> value |
---|
| 835 | */ |
---|
| 836 | protected void notifyTrainingSetAvailable(TrainingSetEvent e) { |
---|
| 837 | Vector l; |
---|
| 838 | synchronized (this) { |
---|
| 839 | l = (Vector)m_trainingSetListeners.clone(); |
---|
| 840 | } |
---|
| 841 | |
---|
| 842 | if (l.size() > 0) { |
---|
| 843 | for(int i = 0; i < l.size(); i++) { |
---|
| 844 | ((TrainingSetListener)l.elementAt(i)).acceptTrainingSet(e); |
---|
| 845 | } |
---|
| 846 | } |
---|
| 847 | } |
---|
| 848 | |
---|
| 849 | /** |
---|
| 850 | * Set a logger |
---|
| 851 | * |
---|
| 852 | * @param logger a <code>weka.gui.Logger</code> value |
---|
| 853 | */ |
---|
| 854 | public void setLog(weka.gui.Logger logger) { |
---|
| 855 | m_logger = logger; |
---|
| 856 | } |
---|
| 857 | |
---|
| 858 | public void stop() { |
---|
| 859 | // tell the listenee (upstream bean) to stop |
---|
| 860 | if (m_listenee instanceof BeanCommon) { |
---|
| 861 | ((BeanCommon)m_listenee).stop(); |
---|
| 862 | } |
---|
| 863 | } |
---|
| 864 | |
---|
| 865 | /** |
---|
| 866 | * Returns true if. at this time, the bean is busy with some |
---|
| 867 | * (i.e. perhaps a worker thread is performing some calculation). |
---|
| 868 | * |
---|
| 869 | * @return true if the bean is busy. |
---|
| 870 | */ |
---|
| 871 | public boolean isBusy() { |
---|
| 872 | return false; |
---|
| 873 | } |
---|
| 874 | |
---|
| 875 | /** |
---|
| 876 | * Returns true if, at this time, |
---|
| 877 | * the object will accept a connection according to the supplied |
---|
| 878 | * event name |
---|
| 879 | * |
---|
| 880 | * @param eventName the event |
---|
| 881 | * @return true if the object will accept a connection |
---|
| 882 | */ |
---|
| 883 | public boolean connectionAllowed(String eventName) { |
---|
| 884 | return (m_listenee == null); |
---|
| 885 | } |
---|
| 886 | |
---|
| 887 | /** |
---|
| 888 | * Returns true if, at this time, |
---|
| 889 | * the object will accept a connection according to the supplied |
---|
| 890 | * EventSetDescriptor |
---|
| 891 | * |
---|
| 892 | * @param esd the EventSetDescriptor |
---|
| 893 | * @return true if the object will accept a connection |
---|
| 894 | */ |
---|
| 895 | public boolean connectionAllowed(EventSetDescriptor esd) { |
---|
| 896 | return connectionAllowed(esd.getName()); |
---|
| 897 | } |
---|
| 898 | |
---|
| 899 | /** |
---|
| 900 | * Notify this object that it has been registered as a listener with |
---|
| 901 | * a source with respect to the supplied event name |
---|
| 902 | * |
---|
| 903 | * @param eventName |
---|
| 904 | * @param source the source with which this object has been registered as |
---|
| 905 | * a listener |
---|
| 906 | */ |
---|
| 907 | public synchronized void connectionNotification(String eventName, |
---|
| 908 | Object source) { |
---|
| 909 | if (connectionAllowed(eventName)) { |
---|
| 910 | m_listenee = source; |
---|
| 911 | } |
---|
| 912 | } |
---|
| 913 | |
---|
| 914 | /** |
---|
| 915 | * Notify this object that it has been deregistered as a listener with |
---|
| 916 | * a source with respect to the supplied event name |
---|
| 917 | * |
---|
| 918 | * @param eventName the event name |
---|
| 919 | * @param source the source with which this object has been registered as |
---|
| 920 | * a listener |
---|
| 921 | */ |
---|
| 922 | public synchronized void disconnectionNotification(String eventName, |
---|
| 923 | Object source) { |
---|
| 924 | if (m_listenee == source) { |
---|
| 925 | m_listenee = null; |
---|
| 926 | m_format = null; // assume any calculated instance format if now invalid |
---|
| 927 | } |
---|
| 928 | } |
---|
| 929 | |
---|
| 930 | /** |
---|
| 931 | * Returns true, if at the current time, the named event could |
---|
| 932 | * be generated. Assumes that supplied event names are names of |
---|
| 933 | * events that could be generated by this bean. |
---|
| 934 | * |
---|
| 935 | * @param eventName the name of the event in question |
---|
| 936 | * @return true if the named event could be generated at this point in |
---|
| 937 | * time |
---|
| 938 | */ |
---|
| 939 | public boolean eventGeneratable(String eventName) { |
---|
| 940 | if (m_listenee == null) { |
---|
| 941 | return false; |
---|
| 942 | } |
---|
| 943 | |
---|
| 944 | if (m_listenee instanceof EventConstraints) { |
---|
| 945 | if (eventName.equals("instance")) { |
---|
| 946 | if (!((EventConstraints)m_listenee). |
---|
| 947 | eventGeneratable("incrementalClassifier")) { |
---|
| 948 | return false; |
---|
| 949 | } |
---|
| 950 | } |
---|
| 951 | if (eventName.equals("dataSet") |
---|
| 952 | || eventName.equals("trainingSet") |
---|
| 953 | || eventName.equals("testSet")) { |
---|
| 954 | if (((EventConstraints)m_listenee). |
---|
| 955 | eventGeneratable("batchClassifier")) { |
---|
| 956 | return true; |
---|
| 957 | } |
---|
| 958 | if (((EventConstraints)m_listenee).eventGeneratable("batchClusterer")) { |
---|
| 959 | return true; |
---|
| 960 | } |
---|
| 961 | return false; |
---|
| 962 | } |
---|
| 963 | } |
---|
| 964 | return true; |
---|
| 965 | } |
---|
| 966 | |
---|
| 967 | private String statusMessagePrefix() { |
---|
| 968 | return getCustomName() + "$" + hashCode() + "|"; |
---|
| 969 | } |
---|
| 970 | } |
---|