/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * Classifier.java * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand * */ package weka.gui.beans; import java.awt.BorderLayout; import java.beans.EventSetDescriptor; import java.io.BufferedInputStream; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.util.Date; import java.util.Enumeration; import java.util.Hashtable; import java.util.Vector; import java.util.concurrent.LinkedBlockingQueue; import java.util.concurrent.ThreadPoolExecutor; import java.util.concurrent.TimeUnit; import javax.swing.JFileChooser; import javax.swing.JOptionPane; import javax.swing.JPanel; import javax.swing.filechooser.FileFilter; import weka.classifiers.rules.ZeroR; import weka.core.Instances; import weka.core.OptionHandler; import weka.core.Utils; import weka.core.xml.KOML; import weka.core.xml.XStream; import weka.experiment.Task; import weka.experiment.TaskStatusInfo; import weka.gui.ExtensionFileFilter; import weka.gui.Logger; /** * Bean that wraps around weka.classifiers * * @author Mark Hall * @version $Revision: 6197 $ * @since 1.0 * @see JPanel * @see BeanCommon * @see Visible * @see WekaWrapper * @see Serializable * @see UserRequestAcceptor * @see TrainingSetListener * @see TestSetListener */ public class Classifier extends JPanel implements BeanCommon, Visible, WekaWrapper, EventConstraints, Serializable, UserRequestAcceptor, TrainingSetListener, TestSetListener, InstanceListener, ConfigurationProducer { /** for serialization */ private static final long serialVersionUID = 659603893917736008L; protected BeanVisual m_visual = new BeanVisual("Classifier", BeanVisual.ICON_PATH+"DefaultClassifier.gif", BeanVisual.ICON_PATH+"DefaultClassifier_animated.gif"); private static int IDLE = 0; private static int BUILDING_MODEL = 1; private static int CLASSIFYING = 2; private int m_state = IDLE; //private Thread m_buildThread = null; /** * Global info for the wrapped classifier (if it exists). */ protected String m_globalInfo; /** * Objects talking to us */ private Hashtable m_listenees = new Hashtable(); /** * Objects listening for batch classifier events */ private Vector m_batchClassifierListeners = new Vector(); /** * Objects listening for incremental classifier events */ private Vector m_incrementalClassifierListeners = new Vector(); /** * Objects listening for graph events */ private Vector m_graphListeners = new Vector(); /** * Objects listening for text events */ private Vector m_textListeners = new Vector(); /** * Holds training instances for batch training. Not transient because * header is retained for validating any instance events that this * classifier might be asked to predict in the future. */ private Instances m_trainingSet; private transient Instances m_testingSet; private weka.classifiers.Classifier m_Classifier = new ZeroR(); /** Template used for creating copies when building in parallel */ private weka.classifiers.Classifier m_ClassifierTemplate = m_Classifier; private IncrementalClassifierEvent m_ie = new IncrementalClassifierEvent(this); /** the extension for serialized models (binary Java serialization) */ public final static String FILE_EXTENSION = "model"; private transient JFileChooser m_fileChooser = null; protected FileFilter m_binaryFilter = new ExtensionFileFilter("."+FILE_EXTENSION, "Binary serialized model file (*" + FILE_EXTENSION + ")"); protected FileFilter m_KOMLFilter = new ExtensionFileFilter(KOML.FILE_EXTENSION + FILE_EXTENSION, "XML serialized model file (*" + KOML.FILE_EXTENSION + FILE_EXTENSION + ")"); protected FileFilter m_XStreamFilter = new ExtensionFileFilter(XStream.FILE_EXTENSION + FILE_EXTENSION, "XML serialized model file (*" + XStream.FILE_EXTENSION + FILE_EXTENSION + ")"); /** * If the classifier is an incremental classifier, should we * update it (ie train it on incoming instances). This makes it * possible incrementally test on a separate stream of instances * without updating the classifier, or mix batch training/testing * with incremental training/testing */ private boolean m_updateIncrementalClassifier = true; private transient Logger m_log = null; /** * Event to handle when processing incremental updates */ private InstanceEvent m_incrementalEvent; /** * Number of threads to use to train models with */ protected int m_executionSlots = 2; // protected int m_queueSize = 5; /** * Pool of threads to train models on incoming data */ protected transient ThreadPoolExecutor m_executorPool; /** * Stores completed models and associated data sets. */ protected transient BatchClassifierEvent[][] m_outputQueues; /** * Stores which sets from which runs have been completed. */ protected transient boolean[][] m_completedSets; /** * Identifier for the current batch. A batch is a group * of related runs/sets. */ protected transient Date m_currentBatchIdentifier; /** * Holds original icon label text */ protected String m_oldText = ""; /** * true if we should reject any further training * data sets, until all processing has been finished, * once we've received the last fold of * the last run. */ protected boolean m_reject = false; /** * True if we should block rather reject until * all processing has been completed. */ protected boolean m_block = false; /** * Global info (if it exists) for the wrapped classifier * * @return the global info */ public String globalInfo() { return m_globalInfo; } /** * Creates a new Classifier instance. */ public Classifier() { setLayout(new BorderLayout()); add(m_visual, BorderLayout.CENTER); setClassifierTemplate(m_ClassifierTemplate); //setupFileChooser(); } private void startExecutorPool() { if (m_executorPool != null) { m_executorPool.shutdownNow(); } m_executorPool = new ThreadPoolExecutor(m_executionSlots, m_executionSlots, 120, TimeUnit.SECONDS, new LinkedBlockingQueue()); } /** * Set a custom (descriptive) name for this bean * * @param name the name to use */ public void setCustomName(String name) { m_visual.setText(name); } /** * Get the custom (descriptive) name for this bean (if one has been set) * * @return the custom name (or the default name) */ public String getCustomName() { return m_visual.getText(); } protected void setupFileChooser() { if (m_fileChooser == null) { m_fileChooser = new JFileChooser(new File(System.getProperty("user.dir"))); } m_fileChooser.addChoosableFileFilter(m_binaryFilter); if (KOML.isPresent()) { m_fileChooser.addChoosableFileFilter(m_KOMLFilter); } if (XStream.isPresent()) { m_fileChooser.addChoosableFileFilter(m_XStreamFilter); } m_fileChooser.setFileFilter(m_binaryFilter); } /** * Get the number of execution slots (threads) used * to train models. * * @return the number of execution slots. */ public int getExecutionSlots() { return m_executionSlots; } /** * Set the number of execution slots (threads) to use to * train models with. * * @param slots the number of execution slots to use. */ public void setExecutionSlots(int slots) { m_executionSlots = slots; } /** * Set whether to block on receiving the last fold * of the last run rather than rejecting any further * data until all processing is complete. * * @param block true if we should block on the * last fold of the last run. */ public void setBlockOnLastFold(boolean block) { m_block = block; } /** * Gets whether we are blocking on the last fold of the * last run rather than rejecting any further data until * all processing has been completed. * * @return true if we are blocking on the last fold * of the last run */ public boolean getBlockOnLastFold() { return m_block; } /** * Set the template classifier for this wrapper * * @param c a weka.classifiers.Classifier value */ public void setClassifierTemplate(weka.classifiers.Classifier c) { boolean loadImages = true; if (c.getClass().getName(). compareTo(m_ClassifierTemplate.getClass().getName()) == 0) { loadImages = false; } else { // classifier has changed so any batch training status is now // invalid m_trainingSet = null; } m_ClassifierTemplate = c; String classifierName = c.getClass().toString(); classifierName = classifierName.substring(classifierName. lastIndexOf('.')+1, classifierName.length()); if (loadImages) { if (!m_visual.loadIcons(BeanVisual.ICON_PATH+classifierName+".gif", BeanVisual.ICON_PATH+classifierName+"_animated.gif")) { useDefaultVisual(); } } m_visual.setText(classifierName); if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier) && (m_listenees.containsKey("instance"))) { if (m_log != null) { m_log.logMessage("[Classifier] " + statusMessagePrefix() + " WARNING : " + getCustomName() +" is not an incremental classifier"); } } // get global info m_globalInfo = KnowledgeFlowApp.getGlobalInfo(m_ClassifierTemplate); } /** * Return the classifier template currently in use. * * @return the classifier template currently in use. */ public weka.classifiers.Classifier getClassifierTemplate() { return m_ClassifierTemplate; } private void setTrainedClassifier(weka.classifiers.Classifier tc) { m_Classifier = tc; // set the template weka.classifiers.Classifier newTemplate = null; try { String[] options = ((OptionHandler)tc).getOptions(); newTemplate = weka.classifiers.AbstractClassifier.forName(tc.getClass().getName(), options); setClassifierTemplate(newTemplate); } catch (Exception ex) { if (m_log != null) { m_log.logMessage("[Classifier] " + statusMessagePrefix() + ex.getMessage()); String errorMessage = statusMessagePrefix() + "ERROR: see log for details."; m_log.statusMessage(errorMessage); } else { ex.printStackTrace(); } } } /** * Returns true if this classifier has an incoming connection that is * an instance stream * * @return true if has an incoming connection that is an instance stream */ public boolean hasIncomingStreamInstances() { if (m_listenees.size() == 0) { return false; } if (m_listenees.containsKey("instance")) { return true; } return false; } /** * Returns true if this classifier has an incoming connection that is * a batch set of instances * * @return a boolean value */ public boolean hasIncomingBatchInstances() { if (m_listenees.size() == 0) { return false; } if (m_listenees.containsKey("trainingSet") || m_listenees.containsKey("testSet")) { return true; } return false; } /** * Get the currently trained classifier. * * @return a weka.classifiers.Classifier value */ public weka.classifiers.Classifier getClassifier() { return m_Classifier; } /** * Sets the algorithm (classifier) for this bean * * @param algorithm an Object value * @exception IllegalArgumentException if an error occurs */ public void setWrappedAlgorithm(Object algorithm) { if (!(algorithm instanceof weka.classifiers.Classifier)) { throw new IllegalArgumentException(algorithm.getClass()+" : incorrect " +"type of algorithm (Classifier)"); } setClassifierTemplate((weka.classifiers.Classifier)algorithm); } /** * Returns the wrapped classifier * * @return an Object value */ public Object getWrappedAlgorithm() { return getClassifierTemplate(); } /** * Get whether an incremental classifier will be updated on the * incoming instance stream. * * @return true if an incremental classifier is to be updated. */ public boolean getUpdateIncrementalClassifier() { return m_updateIncrementalClassifier; } /** * Set whether an incremental classifier will be updated on the * incoming instance stream. * * @param update true if an incremental classifier is to be updated. */ public void setUpdateIncrementalClassifier(boolean update) { m_updateIncrementalClassifier = update; } /** * Accepts an instance for incremental processing. * * @param e an InstanceEvent value */ public void acceptInstance(InstanceEvent e) { m_incrementalEvent = e; handleIncrementalEvent(); } /** * Handles initializing and updating an incremental classifier */ private void handleIncrementalEvent() { if (m_executorPool != null && (m_executorPool.getQueue().size() > 0 || m_executorPool.getActiveCount() > 0)) { String messg = "[Classifier] " + statusMessagePrefix() + " is currently batch training!"; if (m_log != null) { m_log.logMessage(messg); m_log.statusMessage(statusMessagePrefix() + "WARNING: " + "Can't accept instance - batch training in progress."); } else { System.err.println(messg); } return; } if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) { // clear any warnings/errors from the log if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "remove"); } // Instances dataset = m_incrementalEvent.getInstance().dataset(); Instances dataset = m_incrementalEvent.getStructure(); // default to the last column if no class is set if (dataset.classIndex() < 0) { stop(); String errorMessage = statusMessagePrefix() + "ERROR: no class attribute set in incoming stream!"; if (m_log != null) { m_log.statusMessage(errorMessage); m_log.logMessage("[" + getCustomName() + "] " + errorMessage); } else { System.err.println("[" + getCustomName() + "] " + errorMessage); } return; // System.err.println("Classifier : setting class index..."); //dataset.setClassIndex(dataset.numAttributes()-1); } try { // initialize classifier if m_trainingSet is null // otherwise assume that classifier has been pre-trained in batch // mode, *if* headers match if (m_trainingSet == null || !m_trainingSet.equalHeaders(dataset)) { if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier)) { stop(); // stop all processing if (m_log != null) { String msg = (m_trainingSet == null) ? statusMessagePrefix() + "ERROR: classifier has not been batch " +"trained; can't process instance events." : statusMessagePrefix() + "ERROR: instance event's structure is different from " +"the data that " + "was used to batch train this classifier; can't continue."; m_log.logMessage("[Classifier] " + msg); m_log.statusMessage(msg); } return; } if (m_trainingSet != null && (!dataset.equalHeaders(m_trainingSet))) { if (m_log != null) { String msg = statusMessagePrefix() + " WARNING : structure of instance events differ " +"from data used in batch training this " +"classifier. Resetting classifier..."; m_log.logMessage("[Classifier] " + msg); m_log.statusMessage(msg); } m_trainingSet = null; } if (m_trainingSet == null) { // initialize the classifier if it hasn't been trained yet m_trainingSet = new Instances(dataset, 0); m_Classifier = weka.classifiers.AbstractClassifier.makeCopy(m_ClassifierTemplate); m_Classifier.buildClassifier(m_trainingSet); } } } catch (Exception ex) { stop(); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "ERROR (See log for details)"); m_log.logMessage("[Classifier] " + statusMessagePrefix() + " problem during incremental processing. " + ex.getMessage()); } ex.printStackTrace(); } // Notify incremental classifier listeners of new batch System.err.println("NOTIFYING NEW BATCH"); m_ie.setStructure(dataset); m_ie.setClassifier(m_Classifier); notifyIncrementalClassifierListeners(m_ie); return; } else { if (m_trainingSet == null) { // simply return. If the training set is still null after // the first instance then the classifier must not be updateable // and hasn't been previously batch trained - therefore we can't // do anything meaningful return; } } try { // test on this instance if (m_incrementalEvent.getInstance().dataset().classIndex() < 0) { // System.err.println("Classifier : setting class index..."); m_incrementalEvent.getInstance().dataset().setClassIndex( m_incrementalEvent.getInstance().dataset().numAttributes()-1); } int status = IncrementalClassifierEvent.WITHIN_BATCH; /* if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) { status = IncrementalClassifierEvent.NEW_BATCH; */ /* } else */ if (m_incrementalEvent.getStatus() == InstanceEvent.BATCH_FINISHED) { status = IncrementalClassifierEvent.BATCH_FINISHED; } m_ie.setStatus(status); m_ie.setClassifier(m_Classifier); m_ie.setCurrentInstance(m_incrementalEvent.getInstance()); notifyIncrementalClassifierListeners(m_ie); // now update on this instance (if class is not missing and classifier // is updateable and user has specified that classifier is to be // updated) if (m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier && m_updateIncrementalClassifier == true && !(m_incrementalEvent.getInstance(). isMissing(m_incrementalEvent.getInstance(). dataset().classIndex()))) { ((weka.classifiers.UpdateableClassifier)m_Classifier). updateClassifier(m_incrementalEvent.getInstance()); } if (m_incrementalEvent.getStatus() == InstanceEvent.BATCH_FINISHED) { if (m_textListeners.size() > 0) { String modelString = m_Classifier.toString(); String titleString = m_Classifier.getClass().getName(); titleString = titleString. substring(titleString.lastIndexOf('.') + 1, titleString.length()); modelString = "=== Classifier model ===\n\n" + "Scheme: " +titleString+"\n" + "Relation: " + m_trainingSet.relationName() + "\n\n" + modelString; titleString = "Model: " + titleString; TextEvent nt = new TextEvent(this, modelString, titleString); notifyTextListeners(nt); } } } catch (Exception ex) { stop(); if (m_log != null) { m_log.logMessage("[Classifier] " + statusMessagePrefix() + ex.getMessage()); m_log.statusMessage(statusMessagePrefix() + "ERROR (see log for details)"); ex.printStackTrace(); } else { ex.printStackTrace(); } } } protected class TrainingTask implements Runnable, Task { private int m_runNum; private int m_maxRunNum; private int m_setNum; private int m_maxSetNum; private Instances m_train = null; private TaskStatusInfo m_taskInfo = new TaskStatusInfo(); public TrainingTask(int runNum, int maxRunNum, int setNum, int maxSetNum, Instances train) { m_runNum = runNum; m_maxRunNum = maxRunNum; m_setNum = setNum; m_maxSetNum = maxSetNum; m_train = train; m_taskInfo.setExecutionStatus(TaskStatusInfo.TO_BE_RUN); } public void run() { execute(); } public void execute() { try { if (m_train != null) { if (m_train.classIndex() < 0) { // stop all processing stop(); String errorMessage = statusMessagePrefix() + "ERROR: no class attribute set in test data!"; if (m_log != null) { m_log.statusMessage(errorMessage); m_log.logMessage("[Classifier] " + errorMessage); } else { System.err.println("[Classifier] " + errorMessage); } return; // assume last column is the class /* m_train.setClassIndex(m_train.numAttributes()-1); if (m_log != null) { m_log.logMessage("[Classifier] " + statusMessagePrefix() + " : assuming last " +"column is the class"); } */ } if (m_runNum == 1 && m_setNum == 1) { // set this back to idle once the last fold // of the last run has completed m_state = BUILDING_MODEL; // global state // local status of this runnable m_taskInfo.setExecutionStatus(TaskStatusInfo.PROCESSING); } //m_visual.setAnimated(); //m_visual.setText("Building model..."); String msg = statusMessagePrefix() + "Building model for run " + m_runNum + " fold " + m_setNum; if (m_log != null) { m_log.statusMessage(msg); } else { System.err.println(msg); } // buildClassifier(); // copy the classifier configuration weka.classifiers.Classifier classifierCopy = weka.classifiers.AbstractClassifier.makeCopy(m_ClassifierTemplate); // build this model classifierCopy.buildClassifier(m_train); if (m_runNum == m_maxRunNum && m_setNum == m_maxSetNum) { // Save the last classifier (might be used later on for // classifying further test sets. m_Classifier = classifierCopy; m_trainingSet = m_train; } //if (m_batchClassifierListeners.size() > 0) { // notify anyone who might be interested in just the model // and training set. BatchClassifierEvent ce = new BatchClassifierEvent(Classifier.this, classifierCopy, new DataSetEvent(this, m_train), null, // no test set (yet) m_setNum, m_maxSetNum); ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); notifyBatchClassifierListeners(ce); // store in the output queue (if we have incoming test set events) ce = new BatchClassifierEvent(Classifier.this, classifierCopy, new DataSetEvent(this, m_train), null, // no test set (yet) m_setNum, m_maxSetNum); ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); classifierTrainingComplete(ce); //} if (classifierCopy instanceof weka.core.Drawable && m_graphListeners.size() > 0) { String grphString = ((weka.core.Drawable)classifierCopy).graph(); int grphType = ((weka.core.Drawable)classifierCopy).graphType(); String grphTitle = classifierCopy.getClass().getName(); grphTitle = grphTitle.substring(grphTitle. lastIndexOf('.')+1, grphTitle.length()); grphTitle = "Set " + m_setNum + " (" + m_train.relationName() + ") " + grphTitle; GraphEvent ge = new GraphEvent(Classifier.this, grphString, grphTitle, grphType); notifyGraphListeners(ge); } if (m_textListeners.size() > 0) { String modelString = classifierCopy.toString(); String titleString = classifierCopy.getClass().getName(); titleString = titleString. substring(titleString.lastIndexOf('.') + 1, titleString.length()); modelString = "=== Classifier model ===\n\n" + "Scheme: " +titleString+"\n" + "Relation: " + m_train.relationName() + ((m_maxSetNum > 1) ? "\nTraining Fold: " + m_setNum :"") + "\n\n" + modelString; titleString = "Model: " + titleString; TextEvent nt = new TextEvent(Classifier.this, modelString, titleString); notifyTextListeners(nt); } } } catch (Exception ex) { ex.printStackTrace(); if (m_log != null) { String titleString = "[Classifier] " + statusMessagePrefix(); titleString += " run " + m_runNum + " fold " + m_setNum + " failed to complete."; m_log.logMessage(titleString + " (build classifier). " + ex.getMessage()); m_log.statusMessage(statusMessagePrefix() + "ERROR (see log for details)"); ex.printStackTrace(); } m_taskInfo.setExecutionStatus(TaskStatusInfo.FAILED); // Stop all processing stop(); } finally { m_visual.setStatic(); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "Finished."); } m_state = IDLE; if (Thread.currentThread().isInterrupted()) { // prevent any classifier events from being fired m_trainingSet = null; if (m_log != null) { String titleString = "[Classifier] " + statusMessagePrefix(); m_log.logMessage(titleString + " (" + " run " + m_runNum + " fold " + m_setNum + ") interrupted!"); m_log.statusMessage(statusMessagePrefix() + "INTERRUPTED"); /* // are we the last active thread? if (m_executorPool.getActiveCount() == 1) { String msg = "[Classifier] " + statusMessagePrefix() + " last classifier unblocking..."; System.err.println(msg + " (interrupted)"); m_log.logMessage(msg + " (interrupted)"); // m_log.statusMessage(statusMessagePrefix() + "finished."); m_block = false; m_state = IDLE; block(false); } */ } /*System.err.println("Queue size: " + m_executorPool.getQueue().size() + " Active count: " + m_executorPool.getActiveCount()); */ } /* else { // check to see if we are the last active thread if (m_executorPool == null || (m_executorPool.getQueue().size() == 0 && m_executorPool.getActiveCount() == 1)) { String msg = "[Classifier] " + statusMessagePrefix() + " last classifier unblocking..."; System.err.println(msg); if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } //m_visual.setText(m_oldText); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "Finished."); } // m_outputQueues = null; // free memory m_block = false; block(false); } } */ } } public TaskStatusInfo getTaskStatus() { // TODO return null; } } /** * Accepts a training set and builds batch classifier * * @param e a TrainingSetEvent value */ public void acceptTrainingSet(final TrainingSetEvent e) { if (e.isStructureOnly()) { // no need to build a classifier, instead just generate a dummy // BatchClassifierEvent in order to pass on instance structure to // any listeners - eg. PredictionAppender can use it to determine // the final structure of instances with predictions appended BatchClassifierEvent ce = new BatchClassifierEvent(this, m_Classifier, new DataSetEvent(this, e.getTrainingSet()), new DataSetEvent(this, e.getTrainingSet()), e.getSetNumber(), e.getMaxSetNumber()); notifyBatchClassifierListeners(ce); return; } if (m_reject) { //block(true); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "BUSY. Can't accept data " + "at this time."); m_log.logMessage("[Classifier] " + statusMessagePrefix() + " BUSY. Can't accept data at this time."); } return; } // Do some initialization if this is the first set of the first run if (e.getRunNumber() == 1 && e.getSetNumber() == 1) { // m_oldText = m_visual.getText(); // store the training header m_trainingSet = new Instances(e.getTrainingSet(), 0); m_state = BUILDING_MODEL; String msg = "[Classifier] " + statusMessagePrefix() + " starting executor pool (" + getExecutionSlots() + " slots)..."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } // start the execution pool if (m_executorPool == null) { startExecutorPool(); } // setup output queues msg = "[Classifier] " + statusMessagePrefix() + " setup output queues."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } m_outputQueues = new BatchClassifierEvent[e.getMaxRunNumber()][e.getMaxSetNumber()]; m_completedSets = new boolean[e.getMaxRunNumber()][e.getMaxSetNumber()]; m_currentBatchIdentifier = new Date(); } // create a new task and schedule for execution TrainingTask newTask = new TrainingTask(e.getRunNumber(), e.getMaxRunNumber(), e.getSetNumber(), e.getMaxSetNumber(), e.getTrainingSet()); String msg = "[Classifier] " + statusMessagePrefix() + " scheduling run " + e.getRunNumber() +" fold " + e.getSetNumber() + " for execution..."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } // delay just a little bit /*try { Thread.sleep(10); } catch (Exception ex){} */ m_executorPool.execute(newTask); } /** * Accepts a test set for a batch trained classifier * * @param e a TestSetEvent value */ public synchronized void acceptTestSet(TestSetEvent e) { if (m_reject) { if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "BUSY. Can't accept data " + "at this time."); m_log.logMessage("[Classifier] " + statusMessagePrefix() + " BUSY. Can't accept data at this time."); } return; } Instances testSet = e.getTestSet(); if (testSet != null) { if (testSet.classIndex() < 0) { // testSet.setClassIndex(testSet.numAttributes() - 1); // stop all processing stop(); String errorMessage = statusMessagePrefix() + "ERROR: no class attribute set in test data!"; if (m_log != null) { m_log.statusMessage(errorMessage); m_log.logMessage("[Classifier] " + errorMessage); } else { System.err.println("[Classifier] " + errorMessage); } return; } } // If we just have a test set connection or // there is just one run involving one set (and we are not // currently building a model), then use the // last saved model if (m_Classifier != null && m_state == IDLE && (!m_listenees.containsKey("trainingSet") || (e.getMaxRunNumber() == 1 && e.getMaxSetNumber() == 1))) { // if this is structure only then just return at this point if (e.getTestSet() != null && e.isStructureOnly()) { return; } // check that we have a training set/header (if we don't, // then it means that no model has been loaded if (m_trainingSet == null) { stop(); String errorMessage = statusMessagePrefix() + "ERROR: no trained/loaded classifier to use for prediction!"; if (m_log != null) { m_log.statusMessage(errorMessage); m_log.logMessage("[Classifier] " + errorMessage); } else { System.err.println("[Classifier] " + errorMessage); } return; } testSet = e.getTestSet(); if (e.getRunNumber() == 1 && e.getSetNumber() == 1) { m_currentBatchIdentifier = new Date(); } if (testSet != null) { if (m_trainingSet.equalHeaders(testSet)) { BatchClassifierEvent ce = new BatchClassifierEvent(this, m_Classifier, new DataSetEvent(this, m_trainingSet), new DataSetEvent(this, e.getTestSet()), e.getRunNumber(), e.getMaxRunNumber(), e.getSetNumber(), e.getMaxSetNumber()); ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); if (m_log != null && !e.isStructureOnly()) { m_log.statusMessage(statusMessagePrefix() + "Finished."); } notifyBatchClassifierListeners(ce); } else { // if headers do not match check to see if it's // just the class that is different and that // all class values are missing if (testSet.numInstances() > 0) { if (testSet.classIndex() == m_trainingSet.classIndex() && testSet.attributeStats(testSet.classIndex()).missingCount == testSet.numInstances()) { // now check the other attributes against the training // structure boolean ok = true; for (int i = 0; i < testSet.numAttributes(); i++) { if (i != testSet.classIndex()) { ok = testSet.attribute(i).equals(m_trainingSet.attribute(i)); if (!ok) { break; } } } if (ok) { BatchClassifierEvent ce = new BatchClassifierEvent(this, m_Classifier, new DataSetEvent(this, m_trainingSet), new DataSetEvent(this, e.getTestSet()), e.getRunNumber(), e.getMaxRunNumber(), e.getSetNumber(), e.getMaxSetNumber()); ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); if (m_log != null && !e.isStructureOnly()) { m_log.statusMessage(statusMessagePrefix() + "Finished."); } notifyBatchClassifierListeners(ce); } else { stop(); String errorMessage = statusMessagePrefix() + "ERROR: structure of training and test sets is not compatible!"; if (m_log != null) { m_log.statusMessage(errorMessage); m_log.logMessage("[Classifier] " + errorMessage); } else { System.err.println("[Classifier] " + errorMessage); } } } } } } } else { /* System.err.println("[Classifier] accepting test set: run " + e.getRunNumber() + " fold " + e.getSetNumber()); */ if (m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1] == null) { // store an event with a null model and training set (to be filled in later) m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1] = new BatchClassifierEvent(this, null, null, new DataSetEvent(this, e.getTestSet()), e.getRunNumber(), e.getMaxRunNumber(), e.getSetNumber(), e.getMaxSetNumber()); if (e.getRunNumber() == e.getMaxRunNumber() && e.getSetNumber() == e.getMaxSetNumber()) { // block on the last fold of the last run /* System.err.println("[Classifier] blocking on last fold of last run..."); block(true); */ m_reject = true; if (m_block) { block(true); } } } else { // Otherwise, there is a model here waiting for a test set... m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1]. setTestSet(new DataSetEvent(this, e.getTestSet())); checkCompletedRun(e.getRunNumber(), e.getMaxRunNumber(), e.getMaxSetNumber()); } } } private synchronized void classifierTrainingComplete(BatchClassifierEvent ce) { // check the output queues if we have an incoming test set connection if (m_listenees.containsKey("testSet")) { String msg = "[Classifier] " + statusMessagePrefix() + " storing model for run " + ce.getRunNumber() + " fold " + ce.getSetNumber(); if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } if (m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1] == null) { // store the event - test data filled in later m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1] = ce; } else { // there is a test set here waiting for a model and training set m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1]. setClassifier(ce.getClassifier()); m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1]. setTrainSet(ce.getTrainSet()); } checkCompletedRun(ce.getRunNumber(), ce.getMaxRunNumber(), ce.getMaxSetNumber()); } } private synchronized void checkCompletedRun(int runNum, int maxRunNum, int maxSets) { // look to see if there are any completed classifiers that we can pass // on for evaluation for (int i = 0; i < maxSets; i++) { if (m_outputQueues[runNum - 1][i] != null) { if (m_outputQueues[runNum - 1][i].getClassifier() != null && m_outputQueues[runNum - 1][i].getTestSet() != null) { String msg = "[Classifier] " + statusMessagePrefix() + " dispatching run/set " + runNum + "/" + (i+1) + " to listeners."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } // dispatch this one m_outputQueues[runNum - 1][i].setGroupIdentifier(m_currentBatchIdentifier.getTime()); notifyBatchClassifierListeners(m_outputQueues[runNum - 1][i]); // save memory m_outputQueues[runNum - 1][i] = null; // mark as done m_completedSets[runNum - 1][i] = true; } } } // scan for completion boolean done = true; for (int i = 0; i < maxRunNum; i++) { for (int j = 0; j < maxSets; j++) { if (!m_completedSets[i][j]) { done = false; break; } } if (!done) { break; } } if (done) { String msg = "[Classifier] " + statusMessagePrefix() + " last classifier unblocking..."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } //m_visual.setText(m_oldText); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "Finished."); } // m_outputQueues = null; // free memory m_reject = false; block(false); m_state = IDLE; } } /*private synchronized void checkCompletedRun(int runNum, int maxRunNum, int maxSets) { boolean runOK = true; for (int i = 0; i < maxSets; i++) { if (m_outputQueues[runNum - 1][i] == null) { runOK = false; break; } else if (m_outputQueues[runNum - 1][i].getClassifier() == null || m_outputQueues[runNum - 1][i].getTestSet() == null) { runOK = false; break; } } if (runOK) { String msg = "[Classifier] " + statusMessagePrefix() + " dispatching run " + runNum + " to listeners."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } // dispatch this run to listeners for (int i = 0; i < maxSets; i++) { notifyBatchClassifierListeners(m_outputQueues[runNum - 1][i]); // save memory m_outputQueues[runNum - 1][i] = null; } if (runNum == maxRunNum) { // unblock msg = "[Classifier] " + statusMessagePrefix() + " last classifier unblocking..."; if (m_log != null) { m_log.logMessage(msg); } else { System.err.println(msg); } //m_visual.setText(m_oldText); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "Finished."); } // m_outputQueues = null; // free memory m_reject = false; block(false); m_state = IDLE; } } } */ /** * Sets the visual appearance of this wrapper bean * * @param newVisual a BeanVisual value */ public void setVisual(BeanVisual newVisual) { m_visual = newVisual; } /** * Gets the visual appearance of this wrapper bean */ public BeanVisual getVisual() { return m_visual; } /** * Use the default visual appearance for this bean */ public void useDefaultVisual() { // try to get a default for this package of classifiers String name = m_ClassifierTemplate.getClass().toString(); String packageName = name.substring(0, name.lastIndexOf('.')); packageName = packageName.substring(packageName.lastIndexOf('.')+1, packageName.length()); if (!m_visual.loadIcons(BeanVisual.ICON_PATH+"Default_"+packageName +"Classifier.gif", BeanVisual.ICON_PATH+"Default_"+packageName +"Classifier_animated.gif")) { m_visual.loadIcons(BeanVisual. ICON_PATH+"DefaultClassifier.gif", BeanVisual. ICON_PATH+"DefaultClassifier_animated.gif"); } } /** * Add a batch classifier listener * * @param cl a BatchClassifierListener value */ public synchronized void addBatchClassifierListener(BatchClassifierListener cl) { m_batchClassifierListeners.addElement(cl); } /** * Remove a batch classifier listener * * @param cl a BatchClassifierListener value */ public synchronized void removeBatchClassifierListener(BatchClassifierListener cl) { m_batchClassifierListeners.remove(cl); } /** * Notify all batch classifier listeners of a batch classifier event * * @param ce a BatchClassifierEvent value */ private synchronized void notifyBatchClassifierListeners(BatchClassifierEvent ce) { Vector l; synchronized (this) { l = (Vector)m_batchClassifierListeners.clone(); } if (l.size() > 0) { for(int i = 0; i < l.size(); i++) { ((BatchClassifierListener)l.elementAt(i)).acceptClassifier(ce); } } } /** * Add a graph listener * * @param cl a GraphListener value */ public synchronized void addGraphListener(GraphListener cl) { m_graphListeners.addElement(cl); } /** * Remove a graph listener * * @param cl a GraphListener value */ public synchronized void removeGraphListener(GraphListener cl) { m_graphListeners.remove(cl); } /** * Notify all graph listeners of a graph event * * @param ge a GraphEvent value */ private void notifyGraphListeners(GraphEvent ge) { Vector l; synchronized (this) { l = (Vector)m_graphListeners.clone(); } if (l.size() > 0) { for(int i = 0; i < l.size(); i++) { ((GraphListener)l.elementAt(i)).acceptGraph(ge); } } } /** * Add a text listener * * @param cl a TextListener value */ public synchronized void addTextListener(TextListener cl) { m_textListeners.addElement(cl); } /** * Remove a text listener * * @param cl a TextListener value */ public synchronized void removeTextListener(TextListener cl) { m_textListeners.remove(cl); } /** * We don't have to keep track of configuration listeners (see the * documentation for ConfigurationListener/ConfigurationEvent). * * @param cl a ConfigurationListener. */ public synchronized void addConfigurationListener(ConfigurationListener cl) { } /** * We don't have to keep track of configuration listeners (see the * documentation for ConfigurationListener/ConfigurationEvent). * * @param cl a ConfigurationListener. */ public synchronized void removeConfigurationListener(ConfigurationListener cl) { } /** * Notify all text listeners of a text event * * @param ge a TextEvent value */ private void notifyTextListeners(TextEvent ge) { Vector l; synchronized (this) { l = (Vector)m_textListeners.clone(); } if (l.size() > 0) { for(int i = 0; i < l.size(); i++) { ((TextListener)l.elementAt(i)).acceptText(ge); } } } /** * Add an incremental classifier listener * * @param cl an IncrementalClassifierListener value */ public synchronized void addIncrementalClassifierListener(IncrementalClassifierListener cl) { m_incrementalClassifierListeners.add(cl); } /** * Remove an incremental classifier listener * * @param cl an IncrementalClassifierListener value */ public synchronized void removeIncrementalClassifierListener(IncrementalClassifierListener cl) { m_incrementalClassifierListeners.remove(cl); } /** * Notify all incremental classifier listeners of an incremental classifier * event * * @param ce an IncrementalClassifierEvent value */ private void notifyIncrementalClassifierListeners(IncrementalClassifierEvent ce) { Vector l; synchronized (this) { l = (Vector)m_incrementalClassifierListeners.clone(); } if (l.size() > 0) { for(int i = 0; i < l.size(); i++) { ((IncrementalClassifierListener)l.elementAt(i)).acceptClassifier(ce); } } } /** * Returns true if, at this time, * the object will accept a connection with respect to the named event * * @param eventName the event * @return true if the object will accept a connection */ public boolean connectionAllowed(String eventName) { /* if (eventName.compareTo("instance") == 0) { if (!(m_Classifier instanceof weka.classifiers.UpdateableClassifier)) { return false; } } */ if (m_listenees.containsKey(eventName)) { return false; } return true; } /** * Returns true if, at this time, * the object will accept a connection according to the supplied * EventSetDescriptor * * @param esd the EventSetDescriptor * @return true if the object will accept a connection */ public boolean connectionAllowed(EventSetDescriptor esd) { return connectionAllowed(esd.getName()); } /** * Notify this object that it has been registered as a listener with * a source with respect to the named event * * @param eventName the event * @param source the source with which this object has been registered as * a listener */ public synchronized void connectionNotification(String eventName, Object source) { if (eventName.compareTo("instance") == 0) { if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier)) { if (m_log != null) { String msg = statusMessagePrefix() + "WARNING: " + m_ClassifierTemplate.getClass().getName() + " Is not an updateable classifier. This " +"classifier will only be evaluated on incoming " +"instance events and not trained on them."; m_log.logMessage("[Classifier] " + msg); m_log.statusMessage(msg); } } } if (connectionAllowed(eventName)) { m_listenees.put(eventName, source); /* if (eventName.compareTo("instance") == 0) { startIncrementalHandler(); } */ } } /** * Notify this object that it has been deregistered as a listener with * a source with respect to the supplied event name * * @param eventName the event * @param source the source with which this object has been registered as * a listener */ public synchronized void disconnectionNotification(String eventName, Object source) { m_listenees.remove(eventName); if (eventName.compareTo("instance") == 0) { stop(); // kill the incremental handler thread if it is running } } /** * Function used to stop code that calls acceptTrainingSet. This is * needed as classifier construction is performed inside a separate * thread of execution. * * @param tf a boolean value */ private synchronized void block(boolean tf) { if (tf) { try { // only block if thread is still doing something useful! // if (m_state != IDLE) { wait(); //} } catch (InterruptedException ex) { } } else { notifyAll(); } } /** * Stop any classifier action */ public void stop() { // tell all listenees (upstream beans) to stop Enumeration en = m_listenees.keys(); while (en.hasMoreElements()) { Object tempO = m_listenees.get(en.nextElement()); if (tempO instanceof BeanCommon) { ((BeanCommon)tempO).stop(); } } // shutdown the executor pool and reclaim storage if (m_executorPool != null) { m_executorPool.shutdownNow(); m_executorPool.purge(); m_executorPool = null; } m_reject = false; block(false); m_visual.setStatic(); if (m_oldText.length() > 0) { //m_visual.setText(m_oldText); } // stop the build thread /*if (m_buildThread != null) { m_buildThread.interrupt(); m_buildThread.stop(); m_buildThread = null; m_visual.setStatic(); } */ } public void loadModel() { try { if (m_fileChooser == null) { // i.e. after de-serialization setupFileChooser(); } int returnVal = m_fileChooser.showOpenDialog(this); if (returnVal == JFileChooser.APPROVE_OPTION) { File loadFrom = m_fileChooser.getSelectedFile(); // add extension if necessary if (m_fileChooser.getFileFilter() == m_binaryFilter) { if (!loadFrom.getName().toLowerCase().endsWith("." + FILE_EXTENSION)) { loadFrom = new File(loadFrom.getParent(), loadFrom.getName() + "." + FILE_EXTENSION); } } else if (m_fileChooser.getFileFilter() == m_KOMLFilter) { if (!loadFrom.getName().toLowerCase().endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) { loadFrom = new File(loadFrom.getParent(), loadFrom.getName() + KOML.FILE_EXTENSION + FILE_EXTENSION); } } else if (m_fileChooser.getFileFilter() == m_XStreamFilter) { if (!loadFrom.getName().toLowerCase().endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) { loadFrom = new File(loadFrom.getParent(), loadFrom.getName() + XStream.FILE_EXTENSION + FILE_EXTENSION); } } weka.classifiers.Classifier temp = null; Instances tempHeader = null; // KOML ? if ((KOML.isPresent()) && (loadFrom.getAbsolutePath().toLowerCase(). endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION))) { Vector v = (Vector) KOML.read(loadFrom.getAbsolutePath()); temp = (weka.classifiers.Classifier) v.elementAt(0); if (v.size() == 2) { // try and grab the header tempHeader = (Instances) v.elementAt(1); } } /* XStream */ else if ((XStream.isPresent()) && (loadFrom.getAbsolutePath().toLowerCase(). endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION))) { Vector v = (Vector) XStream.read(loadFrom.getAbsolutePath()); temp = (weka.classifiers.Classifier) v.elementAt(0); if (v.size() == 2) { // try and grab the header tempHeader = (Instances) v.elementAt(1); } } /* binary */ else { ObjectInputStream is = new ObjectInputStream(new BufferedInputStream( new FileInputStream(loadFrom))); // try and read the model temp = (weka.classifiers.Classifier)is.readObject(); // try and read the header (if present) try { tempHeader = (Instances)is.readObject(); } catch (Exception ex) { // System.err.println("No header..."); // quietly ignore } is.close(); } // Update name and icon setTrainedClassifier(temp); // restore header m_trainingSet = tempHeader; if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "Loaded model."); m_log.logMessage("[Classifier] " + statusMessagePrefix() + "Loaded classifier: " + m_Classifier.getClass().toString()); } } } catch (Exception ex) { JOptionPane.showMessageDialog(Classifier.this, "Problem loading classifier.\n", "Load Model", JOptionPane.ERROR_MESSAGE); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "ERROR: unable to load " + "model (see log)."); m_log.logMessage("[Classifier] " + statusMessagePrefix() + "Problem loading classifier. " + ex.getMessage()); } } } public void saveModel() { try { if (m_fileChooser == null) { // i.e. after de-serialization setupFileChooser(); } int returnVal = m_fileChooser.showSaveDialog(this); if (returnVal == JFileChooser.APPROVE_OPTION) { File saveTo = m_fileChooser.getSelectedFile(); String fn = saveTo.getAbsolutePath(); if (m_fileChooser.getFileFilter() == m_binaryFilter) { if (!fn.toLowerCase().endsWith("." + FILE_EXTENSION)) { fn += "." + FILE_EXTENSION; } } else if (m_fileChooser.getFileFilter() == m_KOMLFilter) { if (!fn.toLowerCase().endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) { fn += KOML.FILE_EXTENSION + FILE_EXTENSION; } } else if (m_fileChooser.getFileFilter() == m_XStreamFilter) { if (!fn.toLowerCase().endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) { fn += XStream.FILE_EXTENSION + FILE_EXTENSION; } } saveTo = new File(fn); // now serialize model // KOML? if ((KOML.isPresent()) && saveTo.getAbsolutePath().toLowerCase(). endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) { SerializedModelSaver.saveKOML(saveTo, m_Classifier, (m_trainingSet != null) ? new Instances(m_trainingSet, 0) : null); /* Vector v = new Vector(); v.add(m_Classifier); if (m_trainingSet != null) { v.add(new Instances(m_trainingSet, 0)); } v.trimToSize(); KOML.write(saveTo.getAbsolutePath(), v); */ } /* XStream */ else if ((XStream.isPresent()) && saveTo.getAbsolutePath().toLowerCase(). endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) { SerializedModelSaver.saveXStream(saveTo, m_Classifier, (m_trainingSet != null) ? new Instances(m_trainingSet, 0) : null); /* Vector v = new Vector(); v.add(m_Classifier); if (m_trainingSet != null) { v.add(new Instances(m_trainingSet, 0)); } v.trimToSize(); XStream.write(saveTo.getAbsolutePath(), v); */ } else /* binary */ { ObjectOutputStream os = new ObjectOutputStream(new BufferedOutputStream( new FileOutputStream(saveTo))); os.writeObject(m_Classifier); if (m_trainingSet != null) { Instances header = new Instances(m_trainingSet, 0); os.writeObject(header); } os.close(); } if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "Model saved."); m_log.logMessage("[Classifier] " + statusMessagePrefix() + " Saved classifier " + getCustomName()); } } } catch (Exception ex) { JOptionPane.showMessageDialog(Classifier.this, "Problem saving classifier.\n", "Save Model", JOptionPane.ERROR_MESSAGE); if (m_log != null) { m_log.statusMessage(statusMessagePrefix() + "ERROR: unable to" + " save model (see log)."); m_log.logMessage("[Classifier] " + statusMessagePrefix() + " Problem saving classifier " + getCustomName() + ex.getMessage()); } } } /** * Set a logger * * @param logger a Logger value */ public void setLog(Logger logger) { m_log = logger; } /** * Return an enumeration of requests that can be made by the user * * @return an Enumeration value */ public Enumeration enumerateRequests() { Vector newVector = new Vector(0); if (m_executorPool != null && (m_executorPool.getQueue().size() > 0 || m_executorPool.getActiveCount() > 0)) { newVector.addElement("Stop"); } if ((m_executorPool == null || (m_executorPool.getQueue().size() == 0 && m_executorPool.getActiveCount() == 0)) && m_Classifier != null) { newVector.addElement("Save model"); } if (m_executorPool == null || (m_executorPool.getQueue().size() == 0 && m_executorPool.getActiveCount() == 0)) { newVector.addElement("Load model"); } return newVector.elements(); } /** * Perform a particular request * * @param request the request to perform * @exception IllegalArgumentException if an error occurs */ public void performRequest(String request) { if (request.compareTo("Stop") == 0) { stop(); } else if (request.compareTo("Save model") == 0) { saveModel(); } else if (request.compareTo("Load model") == 0) { loadModel(); } else { throw new IllegalArgumentException(request + " not supported (Classifier)"); } } /** * Returns true, if at the current time, the event described by the * supplied event descriptor could be generated. * * @param esd an EventSetDescriptor value * @return a boolean value */ public boolean eventGeneratable(EventSetDescriptor esd) { String eventName = esd.getName(); return eventGeneratable(eventName); } /** * @param name of the event to check * @return true if eventName is one of the possible events * that this component can generate */ private boolean generatableEvent(String eventName) { if (eventName.compareTo("graph") == 0 || eventName.compareTo("text") == 0 || eventName.compareTo("batchClassifier") == 0 || eventName.compareTo("incrementalClassifier") == 0 || eventName.compareTo("configuration") == 0) { return true; } return false; } /** * Returns true, if at the current time, the named event could * be generated. Assumes that the supplied event name is * an event that could be generated by this bean * * @param eventName the name of the event in question * @return true if the named event could be generated at this point in * time */ public boolean eventGeneratable(String eventName) { if (!generatableEvent(eventName)) { return false; } if (eventName.compareTo("graph") == 0) { // can't generate a GraphEvent if classifier is not drawable if (!(m_Classifier instanceof weka.core.Drawable)) { return false; } // need to have a training set before the classifier // can generate a graph! if (!m_listenees.containsKey("trainingSet")) { return false; } // Source needs to be able to generate a trainingSet // before we can generate a graph Object source = m_listenees.get("trainingSet"); if (source instanceof EventConstraints) { if (!((EventConstraints)source).eventGeneratable("trainingSet")) { return false; } } } if (eventName.compareTo("batchClassifier") == 0) { /* if (!m_listenees.containsKey("testSet")) { return false; } if (!m_listenees.containsKey("trainingSet") && m_trainingSet == null) { return false; } */ if (!m_listenees.containsKey("testSet") && !m_listenees.containsKey("trainingSet")) { return false; } Object source = m_listenees.get("testSet"); if (source instanceof EventConstraints) { if (!((EventConstraints)source).eventGeneratable("testSet")) { return false; } } /* source = m_listenees.get("trainingSet"); if (source instanceof EventConstraints) { if (!((EventConstraints)source).eventGeneratable("trainingSet")) { return false; } } */ } if (eventName.compareTo("text") == 0) { if (!m_listenees.containsKey("trainingSet") && !m_listenees.containsKey("instance")) { return false; } Object source = m_listenees.get("trainingSet"); if (source != null && source instanceof EventConstraints) { if (!((EventConstraints)source).eventGeneratable("trainingSet")) { return false; } } source = m_listenees.get("instance"); if (source != null && source instanceof EventConstraints) { if (!((EventConstraints)source).eventGeneratable("instance")) { return false; } } } if (eventName.compareTo("incrementalClassifier") == 0) { /* if (!(m_Classifier instanceof weka.classifiers.UpdateableClassifier)) { return false; } */ if (!m_listenees.containsKey("instance")) { return false; } Object source = m_listenees.get("instance"); if (source instanceof EventConstraints) { if (!((EventConstraints)source).eventGeneratable("instance")) { return false; } } } if (eventName.equals("configuration") && m_Classifier == null) { return false; } return true; } /** * Returns true if. at this time, the bean is busy with some * (i.e. perhaps a worker thread is performing some calculation). * * @return true if the bean is busy. */ public boolean isBusy() { if (m_executorPool == null || (m_executorPool.getQueue().size() == 0 && m_executorPool.getActiveCount() == 0) && m_state == IDLE) { return false; } /* System.err.println("isBusy() Q:" + m_executorPool.getQueue().size() +" A:" + m_executorPool.getActiveCount()); */ return true; } private String statusMessagePrefix() { return getCustomName() + "$" + hashCode() + "|" + ((m_Classifier instanceof OptionHandler && Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()).length() > 0) ? Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()) + "|" : ""); } }