1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * Classifier.java |
---|
19 | * Copyright (C) 2002 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | package weka.gui.beans; |
---|
24 | |
---|
25 | import java.awt.BorderLayout; |
---|
26 | import java.beans.EventSetDescriptor; |
---|
27 | import java.io.BufferedInputStream; |
---|
28 | import java.io.BufferedOutputStream; |
---|
29 | import java.io.File; |
---|
30 | import java.io.FileInputStream; |
---|
31 | import java.io.FileOutputStream; |
---|
32 | import java.io.ObjectInputStream; |
---|
33 | import java.io.ObjectOutputStream; |
---|
34 | import java.io.Serializable; |
---|
35 | import java.util.Date; |
---|
36 | import java.util.Enumeration; |
---|
37 | import java.util.Hashtable; |
---|
38 | import java.util.Vector; |
---|
39 | import java.util.concurrent.LinkedBlockingQueue; |
---|
40 | import java.util.concurrent.ThreadPoolExecutor; |
---|
41 | import java.util.concurrent.TimeUnit; |
---|
42 | |
---|
43 | import javax.swing.JFileChooser; |
---|
44 | import javax.swing.JOptionPane; |
---|
45 | import javax.swing.JPanel; |
---|
46 | import javax.swing.filechooser.FileFilter; |
---|
47 | |
---|
48 | import weka.classifiers.rules.ZeroR; |
---|
49 | import weka.core.Instances; |
---|
50 | import weka.core.OptionHandler; |
---|
51 | import weka.core.Utils; |
---|
52 | import weka.core.xml.KOML; |
---|
53 | import weka.core.xml.XStream; |
---|
54 | import weka.experiment.Task; |
---|
55 | import weka.experiment.TaskStatusInfo; |
---|
56 | import weka.gui.ExtensionFileFilter; |
---|
57 | import weka.gui.Logger; |
---|
58 | |
---|
59 | /** |
---|
60 | * Bean that wraps around weka.classifiers |
---|
61 | * |
---|
62 | * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> |
---|
63 | * @version $Revision: 6197 $ |
---|
64 | * @since 1.0 |
---|
65 | * @see JPanel |
---|
66 | * @see BeanCommon |
---|
67 | * @see Visible |
---|
68 | * @see WekaWrapper |
---|
69 | * @see Serializable |
---|
70 | * @see UserRequestAcceptor |
---|
71 | * @see TrainingSetListener |
---|
72 | * @see TestSetListener |
---|
73 | */ |
---|
74 | public class Classifier |
---|
75 | extends JPanel |
---|
76 | implements BeanCommon, Visible, |
---|
77 | WekaWrapper, EventConstraints, |
---|
78 | Serializable, UserRequestAcceptor, |
---|
79 | TrainingSetListener, TestSetListener, |
---|
80 | InstanceListener, ConfigurationProducer { |
---|
81 | |
---|
82 | /** for serialization */ |
---|
83 | private static final long serialVersionUID = 659603893917736008L; |
---|
84 | |
---|
85 | protected BeanVisual m_visual = |
---|
86 | new BeanVisual("Classifier", |
---|
87 | BeanVisual.ICON_PATH+"DefaultClassifier.gif", |
---|
88 | BeanVisual.ICON_PATH+"DefaultClassifier_animated.gif"); |
---|
89 | |
---|
90 | private static int IDLE = 0; |
---|
91 | private static int BUILDING_MODEL = 1; |
---|
92 | private static int CLASSIFYING = 2; |
---|
93 | |
---|
94 | private int m_state = IDLE; |
---|
95 | |
---|
96 | //private Thread m_buildThread = null; |
---|
97 | |
---|
98 | /** |
---|
99 | * Global info for the wrapped classifier (if it exists). |
---|
100 | */ |
---|
101 | protected String m_globalInfo; |
---|
102 | |
---|
103 | /** |
---|
104 | * Objects talking to us |
---|
105 | */ |
---|
106 | private Hashtable m_listenees = new Hashtable(); |
---|
107 | |
---|
108 | /** |
---|
109 | * Objects listening for batch classifier events |
---|
110 | */ |
---|
111 | private Vector m_batchClassifierListeners = new Vector(); |
---|
112 | |
---|
113 | /** |
---|
114 | * Objects listening for incremental classifier events |
---|
115 | */ |
---|
116 | private Vector m_incrementalClassifierListeners = new Vector(); |
---|
117 | |
---|
118 | /** |
---|
119 | * Objects listening for graph events |
---|
120 | */ |
---|
121 | private Vector m_graphListeners = new Vector(); |
---|
122 | |
---|
123 | /** |
---|
124 | * Objects listening for text events |
---|
125 | */ |
---|
126 | private Vector m_textListeners = new Vector(); |
---|
127 | |
---|
128 | /** |
---|
129 | * Holds training instances for batch training. Not transient because |
---|
130 | * header is retained for validating any instance events that this |
---|
131 | * classifier might be asked to predict in the future. |
---|
132 | */ |
---|
133 | private Instances m_trainingSet; |
---|
134 | private transient Instances m_testingSet; |
---|
135 | private weka.classifiers.Classifier m_Classifier = new ZeroR(); |
---|
136 | /** Template used for creating copies when building in parallel */ |
---|
137 | private weka.classifiers.Classifier m_ClassifierTemplate = m_Classifier; |
---|
138 | |
---|
139 | private IncrementalClassifierEvent m_ie = |
---|
140 | new IncrementalClassifierEvent(this); |
---|
141 | |
---|
142 | /** the extension for serialized models (binary Java serialization) */ |
---|
143 | public final static String FILE_EXTENSION = "model"; |
---|
144 | |
---|
145 | private transient JFileChooser m_fileChooser = null; |
---|
146 | |
---|
147 | protected FileFilter m_binaryFilter = |
---|
148 | new ExtensionFileFilter("."+FILE_EXTENSION, "Binary serialized model file (*" |
---|
149 | + FILE_EXTENSION + ")"); |
---|
150 | |
---|
151 | protected FileFilter m_KOMLFilter = |
---|
152 | new ExtensionFileFilter(KOML.FILE_EXTENSION + FILE_EXTENSION, |
---|
153 | "XML serialized model file (*" |
---|
154 | + KOML.FILE_EXTENSION + FILE_EXTENSION + ")"); |
---|
155 | |
---|
156 | protected FileFilter m_XStreamFilter = |
---|
157 | new ExtensionFileFilter(XStream.FILE_EXTENSION + FILE_EXTENSION, |
---|
158 | "XML serialized model file (*" |
---|
159 | + XStream.FILE_EXTENSION + FILE_EXTENSION + ")"); |
---|
160 | |
---|
161 | /** |
---|
162 | * If the classifier is an incremental classifier, should we |
---|
163 | * update it (ie train it on incoming instances). This makes it |
---|
164 | * possible incrementally test on a separate stream of instances |
---|
165 | * without updating the classifier, or mix batch training/testing |
---|
166 | * with incremental training/testing |
---|
167 | */ |
---|
168 | private boolean m_updateIncrementalClassifier = true; |
---|
169 | |
---|
170 | private transient Logger m_log = null; |
---|
171 | |
---|
172 | /** |
---|
173 | * Event to handle when processing incremental updates |
---|
174 | */ |
---|
175 | private InstanceEvent m_incrementalEvent; |
---|
176 | |
---|
177 | /** |
---|
178 | * Number of threads to use to train models with |
---|
179 | */ |
---|
180 | protected int m_executionSlots = 2; |
---|
181 | |
---|
182 | // protected int m_queueSize = 5; |
---|
183 | |
---|
184 | /** |
---|
185 | * Pool of threads to train models on incoming data |
---|
186 | */ |
---|
187 | protected transient ThreadPoolExecutor m_executorPool; |
---|
188 | |
---|
189 | /** |
---|
190 | * Stores completed models and associated data sets. |
---|
191 | */ |
---|
192 | protected transient BatchClassifierEvent[][] m_outputQueues; |
---|
193 | |
---|
194 | /** |
---|
195 | * Stores which sets from which runs have been completed. |
---|
196 | */ |
---|
197 | protected transient boolean[][] m_completedSets; |
---|
198 | |
---|
199 | /** |
---|
200 | * Identifier for the current batch. A batch is a group |
---|
201 | * of related runs/sets. |
---|
202 | */ |
---|
203 | protected transient Date m_currentBatchIdentifier; |
---|
204 | |
---|
205 | /** |
---|
206 | * Holds original icon label text |
---|
207 | */ |
---|
208 | protected String m_oldText = ""; |
---|
209 | |
---|
210 | /** |
---|
211 | * true if we should reject any further training |
---|
212 | * data sets, until all processing has been finished, |
---|
213 | * once we've received the last fold of |
---|
214 | * the last run. |
---|
215 | */ |
---|
216 | protected boolean m_reject = false; |
---|
217 | |
---|
218 | /** |
---|
219 | * True if we should block rather reject until |
---|
220 | * all processing has been completed. |
---|
221 | */ |
---|
222 | protected boolean m_block = false; |
---|
223 | |
---|
224 | /** |
---|
225 | * Global info (if it exists) for the wrapped classifier |
---|
226 | * |
---|
227 | * @return the global info |
---|
228 | */ |
---|
229 | public String globalInfo() { |
---|
230 | return m_globalInfo; |
---|
231 | } |
---|
232 | |
---|
233 | /** |
---|
234 | * Creates a new <code>Classifier</code> instance. |
---|
235 | */ |
---|
236 | public Classifier() { |
---|
237 | setLayout(new BorderLayout()); |
---|
238 | add(m_visual, BorderLayout.CENTER); |
---|
239 | setClassifierTemplate(m_ClassifierTemplate); |
---|
240 | |
---|
241 | //setupFileChooser(); |
---|
242 | } |
---|
243 | |
---|
244 | private void startExecutorPool() { |
---|
245 | |
---|
246 | if (m_executorPool != null) { |
---|
247 | m_executorPool.shutdownNow(); |
---|
248 | } |
---|
249 | |
---|
250 | m_executorPool = new ThreadPoolExecutor(m_executionSlots, m_executionSlots, |
---|
251 | 120, TimeUnit.SECONDS, new LinkedBlockingQueue<Runnable>()); |
---|
252 | } |
---|
253 | |
---|
254 | /** |
---|
255 | * Set a custom (descriptive) name for this bean |
---|
256 | * |
---|
257 | * @param name the name to use |
---|
258 | */ |
---|
259 | public void setCustomName(String name) { |
---|
260 | m_visual.setText(name); |
---|
261 | } |
---|
262 | |
---|
263 | /** |
---|
264 | * Get the custom (descriptive) name for this bean (if one has been set) |
---|
265 | * |
---|
266 | * @return the custom name (or the default name) |
---|
267 | */ |
---|
268 | public String getCustomName() { |
---|
269 | return m_visual.getText(); |
---|
270 | } |
---|
271 | |
---|
272 | protected void setupFileChooser() { |
---|
273 | if (m_fileChooser == null) { |
---|
274 | m_fileChooser = |
---|
275 | new JFileChooser(new File(System.getProperty("user.dir"))); |
---|
276 | } |
---|
277 | |
---|
278 | m_fileChooser.addChoosableFileFilter(m_binaryFilter); |
---|
279 | if (KOML.isPresent()) { |
---|
280 | m_fileChooser.addChoosableFileFilter(m_KOMLFilter); |
---|
281 | } |
---|
282 | if (XStream.isPresent()) { |
---|
283 | m_fileChooser.addChoosableFileFilter(m_XStreamFilter); |
---|
284 | } |
---|
285 | m_fileChooser.setFileFilter(m_binaryFilter); |
---|
286 | } |
---|
287 | |
---|
288 | /** |
---|
289 | * Get the number of execution slots (threads) used |
---|
290 | * to train models. |
---|
291 | * |
---|
292 | * @return the number of execution slots. |
---|
293 | */ |
---|
294 | public int getExecutionSlots() { |
---|
295 | return m_executionSlots; |
---|
296 | } |
---|
297 | |
---|
298 | /** |
---|
299 | * Set the number of execution slots (threads) to use to |
---|
300 | * train models with. |
---|
301 | * |
---|
302 | * @param slots the number of execution slots to use. |
---|
303 | */ |
---|
304 | public void setExecutionSlots(int slots) { |
---|
305 | m_executionSlots = slots; |
---|
306 | } |
---|
307 | |
---|
308 | /** |
---|
309 | * Set whether to block on receiving the last fold |
---|
310 | * of the last run rather than rejecting any further |
---|
311 | * data until all processing is complete. |
---|
312 | * |
---|
313 | * @param block true if we should block on the |
---|
314 | * last fold of the last run. |
---|
315 | */ |
---|
316 | public void setBlockOnLastFold(boolean block) { |
---|
317 | m_block = block; |
---|
318 | } |
---|
319 | |
---|
320 | /** |
---|
321 | * Gets whether we are blocking on the last fold of the |
---|
322 | * last run rather than rejecting any further data until |
---|
323 | * all processing has been completed. |
---|
324 | * |
---|
325 | * @return true if we are blocking on the last fold |
---|
326 | * of the last run |
---|
327 | */ |
---|
328 | public boolean getBlockOnLastFold() { |
---|
329 | return m_block; |
---|
330 | } |
---|
331 | |
---|
332 | /** |
---|
333 | * Set the template classifier for this wrapper |
---|
334 | * |
---|
335 | * @param c a <code>weka.classifiers.Classifier</code> value |
---|
336 | */ |
---|
337 | public void setClassifierTemplate(weka.classifiers.Classifier c) { |
---|
338 | boolean loadImages = true; |
---|
339 | if (c.getClass().getName(). |
---|
340 | compareTo(m_ClassifierTemplate.getClass().getName()) == 0) { |
---|
341 | loadImages = false; |
---|
342 | } else { |
---|
343 | // classifier has changed so any batch training status is now |
---|
344 | // invalid |
---|
345 | m_trainingSet = null; |
---|
346 | } |
---|
347 | m_ClassifierTemplate = c; |
---|
348 | String classifierName = c.getClass().toString(); |
---|
349 | classifierName = classifierName.substring(classifierName. |
---|
350 | lastIndexOf('.')+1, |
---|
351 | classifierName.length()); |
---|
352 | if (loadImages) { |
---|
353 | if (!m_visual.loadIcons(BeanVisual.ICON_PATH+classifierName+".gif", |
---|
354 | BeanVisual.ICON_PATH+classifierName+"_animated.gif")) { |
---|
355 | useDefaultVisual(); |
---|
356 | } |
---|
357 | } |
---|
358 | m_visual.setText(classifierName); |
---|
359 | |
---|
360 | if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier) && |
---|
361 | (m_listenees.containsKey("instance"))) { |
---|
362 | if (m_log != null) { |
---|
363 | m_log.logMessage("[Classifier] " + statusMessagePrefix() + " WARNING : " |
---|
364 | + getCustomName() +" is not an incremental classifier"); |
---|
365 | } |
---|
366 | } |
---|
367 | // get global info |
---|
368 | m_globalInfo = KnowledgeFlowApp.getGlobalInfo(m_ClassifierTemplate); |
---|
369 | } |
---|
370 | |
---|
371 | /** |
---|
372 | * Return the classifier template currently in use. |
---|
373 | * |
---|
374 | * @return the classifier template currently in use. |
---|
375 | */ |
---|
376 | public weka.classifiers.Classifier getClassifierTemplate() { |
---|
377 | return m_ClassifierTemplate; |
---|
378 | } |
---|
379 | |
---|
380 | private void setTrainedClassifier(weka.classifiers.Classifier tc) { |
---|
381 | m_Classifier = tc; |
---|
382 | |
---|
383 | // set the template |
---|
384 | weka.classifiers.Classifier newTemplate = null; |
---|
385 | try { |
---|
386 | String[] options = ((OptionHandler)tc).getOptions(); |
---|
387 | newTemplate = weka.classifiers.AbstractClassifier.forName(tc.getClass().getName(), options); |
---|
388 | setClassifierTemplate(newTemplate); |
---|
389 | } catch (Exception ex) { |
---|
390 | if (m_log != null) { |
---|
391 | m_log.logMessage("[Classifier] " + statusMessagePrefix() + ex.getMessage()); |
---|
392 | String errorMessage = statusMessagePrefix() |
---|
393 | + "ERROR: see log for details."; |
---|
394 | m_log.statusMessage(errorMessage); |
---|
395 | } else { |
---|
396 | ex.printStackTrace(); |
---|
397 | } |
---|
398 | } |
---|
399 | } |
---|
400 | |
---|
401 | /** |
---|
402 | * Returns true if this classifier has an incoming connection that is |
---|
403 | * an instance stream |
---|
404 | * |
---|
405 | * @return true if has an incoming connection that is an instance stream |
---|
406 | */ |
---|
407 | public boolean hasIncomingStreamInstances() { |
---|
408 | if (m_listenees.size() == 0) { |
---|
409 | return false; |
---|
410 | } |
---|
411 | if (m_listenees.containsKey("instance")) { |
---|
412 | return true; |
---|
413 | } |
---|
414 | return false; |
---|
415 | } |
---|
416 | |
---|
417 | /** |
---|
418 | * Returns true if this classifier has an incoming connection that is |
---|
419 | * a batch set of instances |
---|
420 | * |
---|
421 | * @return a <code>boolean</code> value |
---|
422 | */ |
---|
423 | public boolean hasIncomingBatchInstances() { |
---|
424 | if (m_listenees.size() == 0) { |
---|
425 | return false; |
---|
426 | } |
---|
427 | if (m_listenees.containsKey("trainingSet") || |
---|
428 | m_listenees.containsKey("testSet")) { |
---|
429 | return true; |
---|
430 | } |
---|
431 | return false; |
---|
432 | } |
---|
433 | |
---|
434 | /** |
---|
435 | * Get the currently trained classifier. |
---|
436 | * |
---|
437 | * @return a <code>weka.classifiers.Classifier</code> value |
---|
438 | */ |
---|
439 | public weka.classifiers.Classifier getClassifier() { |
---|
440 | return m_Classifier; |
---|
441 | } |
---|
442 | |
---|
443 | /** |
---|
444 | * Sets the algorithm (classifier) for this bean |
---|
445 | * |
---|
446 | * @param algorithm an <code>Object</code> value |
---|
447 | * @exception IllegalArgumentException if an error occurs |
---|
448 | */ |
---|
449 | public void setWrappedAlgorithm(Object algorithm) |
---|
450 | { |
---|
451 | |
---|
452 | if (!(algorithm instanceof weka.classifiers.Classifier)) { |
---|
453 | throw new IllegalArgumentException(algorithm.getClass()+" : incorrect " |
---|
454 | +"type of algorithm (Classifier)"); |
---|
455 | } |
---|
456 | setClassifierTemplate((weka.classifiers.Classifier)algorithm); |
---|
457 | } |
---|
458 | |
---|
459 | /** |
---|
460 | * Returns the wrapped classifier |
---|
461 | * |
---|
462 | * @return an <code>Object</code> value |
---|
463 | */ |
---|
464 | public Object getWrappedAlgorithm() { |
---|
465 | return getClassifierTemplate(); |
---|
466 | } |
---|
467 | |
---|
468 | /** |
---|
469 | * Get whether an incremental classifier will be updated on the |
---|
470 | * incoming instance stream. |
---|
471 | * |
---|
472 | * @return true if an incremental classifier is to be updated. |
---|
473 | */ |
---|
474 | public boolean getUpdateIncrementalClassifier() { |
---|
475 | return m_updateIncrementalClassifier; |
---|
476 | } |
---|
477 | |
---|
478 | /** |
---|
479 | * Set whether an incremental classifier will be updated on the |
---|
480 | * incoming instance stream. |
---|
481 | * |
---|
482 | * @param update true if an incremental classifier is to be updated. |
---|
483 | */ |
---|
484 | public void setUpdateIncrementalClassifier(boolean update) { |
---|
485 | m_updateIncrementalClassifier = update; |
---|
486 | } |
---|
487 | |
---|
488 | /** |
---|
489 | * Accepts an instance for incremental processing. |
---|
490 | * |
---|
491 | * @param e an <code>InstanceEvent</code> value |
---|
492 | */ |
---|
493 | public void acceptInstance(InstanceEvent e) { |
---|
494 | m_incrementalEvent = e; |
---|
495 | handleIncrementalEvent(); |
---|
496 | } |
---|
497 | |
---|
498 | /** |
---|
499 | * Handles initializing and updating an incremental classifier |
---|
500 | */ |
---|
501 | private void handleIncrementalEvent() { |
---|
502 | if (m_executorPool != null && |
---|
503 | (m_executorPool.getQueue().size() > 0 || |
---|
504 | m_executorPool.getActiveCount() > 0)) { |
---|
505 | |
---|
506 | String messg = "[Classifier] " + statusMessagePrefix() |
---|
507 | + " is currently batch training!"; |
---|
508 | if (m_log != null) { |
---|
509 | m_log.logMessage(messg); |
---|
510 | m_log.statusMessage(statusMessagePrefix() + "WARNING: " |
---|
511 | + "Can't accept instance - batch training in progress."); |
---|
512 | } else { |
---|
513 | System.err.println(messg); |
---|
514 | } |
---|
515 | return; |
---|
516 | } |
---|
517 | |
---|
518 | if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) { |
---|
519 | // clear any warnings/errors from the log |
---|
520 | if (m_log != null) { |
---|
521 | m_log.statusMessage(statusMessagePrefix() + "remove"); |
---|
522 | } |
---|
523 | |
---|
524 | // Instances dataset = m_incrementalEvent.getInstance().dataset(); |
---|
525 | Instances dataset = m_incrementalEvent.getStructure(); |
---|
526 | // default to the last column if no class is set |
---|
527 | if (dataset.classIndex() < 0) { |
---|
528 | stop(); |
---|
529 | String errorMessage = statusMessagePrefix() |
---|
530 | + "ERROR: no class attribute set in incoming stream!"; |
---|
531 | if (m_log != null) { |
---|
532 | m_log.statusMessage(errorMessage); |
---|
533 | m_log.logMessage("[" + getCustomName() + "] " + errorMessage); |
---|
534 | } else { |
---|
535 | System.err.println("[" + getCustomName() + "] " + errorMessage); |
---|
536 | } |
---|
537 | return; |
---|
538 | |
---|
539 | // System.err.println("Classifier : setting class index..."); |
---|
540 | //dataset.setClassIndex(dataset.numAttributes()-1); |
---|
541 | } |
---|
542 | try { |
---|
543 | // initialize classifier if m_trainingSet is null |
---|
544 | // otherwise assume that classifier has been pre-trained in batch |
---|
545 | // mode, *if* headers match |
---|
546 | if (m_trainingSet == null || !m_trainingSet.equalHeaders(dataset)) { |
---|
547 | if (!(m_ClassifierTemplate instanceof |
---|
548 | weka.classifiers.UpdateableClassifier)) { |
---|
549 | stop(); // stop all processing |
---|
550 | if (m_log != null) { |
---|
551 | String msg = (m_trainingSet == null) |
---|
552 | ? statusMessagePrefix() |
---|
553 | + "ERROR: classifier has not been batch " |
---|
554 | +"trained; can't process instance events." |
---|
555 | : statusMessagePrefix() |
---|
556 | + "ERROR: instance event's structure is different from " |
---|
557 | +"the data that " |
---|
558 | + "was used to batch train this classifier; can't continue."; |
---|
559 | m_log.logMessage("[Classifier] " + msg); |
---|
560 | m_log.statusMessage(msg); |
---|
561 | } |
---|
562 | return; |
---|
563 | } |
---|
564 | |
---|
565 | if (m_trainingSet != null && |
---|
566 | (!dataset.equalHeaders(m_trainingSet))) { |
---|
567 | if (m_log != null) { |
---|
568 | String msg = statusMessagePrefix() |
---|
569 | + " WARNING : structure of instance events differ " |
---|
570 | +"from data used in batch training this " |
---|
571 | +"classifier. Resetting classifier..."; |
---|
572 | m_log.logMessage("[Classifier] " + msg); |
---|
573 | m_log.statusMessage(msg); |
---|
574 | } |
---|
575 | m_trainingSet = null; |
---|
576 | } |
---|
577 | if (m_trainingSet == null) { |
---|
578 | // initialize the classifier if it hasn't been trained yet |
---|
579 | m_trainingSet = new Instances(dataset, 0); |
---|
580 | m_Classifier = weka.classifiers.AbstractClassifier.makeCopy(m_ClassifierTemplate); |
---|
581 | m_Classifier.buildClassifier(m_trainingSet); |
---|
582 | } |
---|
583 | } |
---|
584 | } catch (Exception ex) { |
---|
585 | stop(); |
---|
586 | if (m_log != null) { |
---|
587 | m_log.statusMessage(statusMessagePrefix() |
---|
588 | + "ERROR (See log for details)"); |
---|
589 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
590 | + " problem during incremental processing. " |
---|
591 | + ex.getMessage()); |
---|
592 | } |
---|
593 | ex.printStackTrace(); |
---|
594 | } |
---|
595 | // Notify incremental classifier listeners of new batch |
---|
596 | System.err.println("NOTIFYING NEW BATCH"); |
---|
597 | m_ie.setStructure(dataset); |
---|
598 | m_ie.setClassifier(m_Classifier); |
---|
599 | |
---|
600 | notifyIncrementalClassifierListeners(m_ie); |
---|
601 | return; |
---|
602 | } else { |
---|
603 | if (m_trainingSet == null) { |
---|
604 | // simply return. If the training set is still null after |
---|
605 | // the first instance then the classifier must not be updateable |
---|
606 | // and hasn't been previously batch trained - therefore we can't |
---|
607 | // do anything meaningful |
---|
608 | return; |
---|
609 | } |
---|
610 | } |
---|
611 | |
---|
612 | try { |
---|
613 | // test on this instance |
---|
614 | if (m_incrementalEvent.getInstance().dataset().classIndex() < 0) { |
---|
615 | // System.err.println("Classifier : setting class index..."); |
---|
616 | m_incrementalEvent.getInstance().dataset().setClassIndex( |
---|
617 | m_incrementalEvent.getInstance().dataset().numAttributes()-1); |
---|
618 | } |
---|
619 | |
---|
620 | int status = IncrementalClassifierEvent.WITHIN_BATCH; |
---|
621 | /* if (m_incrementalEvent.getStatus() == InstanceEvent.FORMAT_AVAILABLE) { |
---|
622 | status = IncrementalClassifierEvent.NEW_BATCH; */ |
---|
623 | /* } else */ if (m_incrementalEvent.getStatus() == |
---|
624 | InstanceEvent.BATCH_FINISHED) { |
---|
625 | status = IncrementalClassifierEvent.BATCH_FINISHED; |
---|
626 | } |
---|
627 | |
---|
628 | m_ie.setStatus(status); m_ie.setClassifier(m_Classifier); |
---|
629 | m_ie.setCurrentInstance(m_incrementalEvent.getInstance()); |
---|
630 | |
---|
631 | notifyIncrementalClassifierListeners(m_ie); |
---|
632 | |
---|
633 | // now update on this instance (if class is not missing and classifier |
---|
634 | // is updateable and user has specified that classifier is to be |
---|
635 | // updated) |
---|
636 | if (m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier && |
---|
637 | m_updateIncrementalClassifier == true && |
---|
638 | !(m_incrementalEvent.getInstance(). |
---|
639 | isMissing(m_incrementalEvent.getInstance(). |
---|
640 | dataset().classIndex()))) { |
---|
641 | ((weka.classifiers.UpdateableClassifier)m_Classifier). |
---|
642 | updateClassifier(m_incrementalEvent.getInstance()); |
---|
643 | } |
---|
644 | if (m_incrementalEvent.getStatus() == |
---|
645 | InstanceEvent.BATCH_FINISHED) { |
---|
646 | if (m_textListeners.size() > 0) { |
---|
647 | String modelString = m_Classifier.toString(); |
---|
648 | String titleString = m_Classifier.getClass().getName(); |
---|
649 | |
---|
650 | titleString = titleString. |
---|
651 | substring(titleString.lastIndexOf('.') + 1, |
---|
652 | titleString.length()); |
---|
653 | modelString = "=== Classifier model ===\n\n" + |
---|
654 | "Scheme: " +titleString+"\n" + |
---|
655 | "Relation: " + m_trainingSet.relationName() + "\n\n" |
---|
656 | + modelString; |
---|
657 | titleString = "Model: " + titleString; |
---|
658 | TextEvent nt = new TextEvent(this, |
---|
659 | modelString, |
---|
660 | titleString); |
---|
661 | notifyTextListeners(nt); |
---|
662 | } |
---|
663 | } |
---|
664 | } catch (Exception ex) { |
---|
665 | stop(); |
---|
666 | if (m_log != null) { |
---|
667 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
668 | + ex.getMessage()); |
---|
669 | m_log.statusMessage(statusMessagePrefix() |
---|
670 | + "ERROR (see log for details)"); |
---|
671 | ex.printStackTrace(); |
---|
672 | } else { |
---|
673 | ex.printStackTrace(); |
---|
674 | } |
---|
675 | } |
---|
676 | } |
---|
677 | |
---|
678 | protected class TrainingTask implements Runnable, Task { |
---|
679 | private int m_runNum; |
---|
680 | private int m_maxRunNum; |
---|
681 | private int m_setNum; |
---|
682 | private int m_maxSetNum; |
---|
683 | private Instances m_train = null; |
---|
684 | private TaskStatusInfo m_taskInfo = new TaskStatusInfo(); |
---|
685 | |
---|
686 | public TrainingTask(int runNum, int maxRunNum, |
---|
687 | int setNum, int maxSetNum, Instances train) { |
---|
688 | m_runNum = runNum; |
---|
689 | m_maxRunNum = maxRunNum; |
---|
690 | m_setNum = setNum; |
---|
691 | m_maxSetNum = maxSetNum; |
---|
692 | m_train = train; |
---|
693 | m_taskInfo.setExecutionStatus(TaskStatusInfo.TO_BE_RUN); |
---|
694 | } |
---|
695 | |
---|
696 | public void run() { |
---|
697 | execute(); |
---|
698 | } |
---|
699 | |
---|
700 | public void execute() { |
---|
701 | try { |
---|
702 | if (m_train != null) { |
---|
703 | if (m_train.classIndex() < 0) { |
---|
704 | // stop all processing |
---|
705 | stop(); |
---|
706 | String errorMessage = statusMessagePrefix() |
---|
707 | + "ERROR: no class attribute set in test data!"; |
---|
708 | if (m_log != null) { |
---|
709 | m_log.statusMessage(errorMessage); |
---|
710 | m_log.logMessage("[Classifier] " + errorMessage); |
---|
711 | } else { |
---|
712 | System.err.println("[Classifier] " + errorMessage); |
---|
713 | } |
---|
714 | return; |
---|
715 | |
---|
716 | // assume last column is the class |
---|
717 | /* m_train.setClassIndex(m_train.numAttributes()-1); |
---|
718 | if (m_log != null) { |
---|
719 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
720 | + " : assuming last " |
---|
721 | +"column is the class"); |
---|
722 | } */ |
---|
723 | } |
---|
724 | if (m_runNum == 1 && m_setNum == 1) { |
---|
725 | // set this back to idle once the last fold |
---|
726 | // of the last run has completed |
---|
727 | m_state = BUILDING_MODEL; // global state |
---|
728 | |
---|
729 | // local status of this runnable |
---|
730 | m_taskInfo.setExecutionStatus(TaskStatusInfo.PROCESSING); |
---|
731 | } |
---|
732 | |
---|
733 | //m_visual.setAnimated(); |
---|
734 | //m_visual.setText("Building model..."); |
---|
735 | String msg = statusMessagePrefix() |
---|
736 | + "Building model for run " + m_runNum + " fold " + m_setNum; |
---|
737 | if (m_log != null) { |
---|
738 | m_log.statusMessage(msg); |
---|
739 | } else { |
---|
740 | System.err.println(msg); |
---|
741 | } |
---|
742 | // buildClassifier(); |
---|
743 | |
---|
744 | // copy the classifier configuration |
---|
745 | weka.classifiers.Classifier classifierCopy = |
---|
746 | weka.classifiers.AbstractClassifier.makeCopy(m_ClassifierTemplate); |
---|
747 | |
---|
748 | // build this model |
---|
749 | classifierCopy.buildClassifier(m_train); |
---|
750 | if (m_runNum == m_maxRunNum && m_setNum == m_maxSetNum) { |
---|
751 | // Save the last classifier (might be used later on for |
---|
752 | // classifying further test sets. |
---|
753 | m_Classifier = classifierCopy; |
---|
754 | m_trainingSet = m_train; |
---|
755 | } |
---|
756 | |
---|
757 | //if (m_batchClassifierListeners.size() > 0) { |
---|
758 | // notify anyone who might be interested in just the model |
---|
759 | // and training set. |
---|
760 | BatchClassifierEvent ce = |
---|
761 | new BatchClassifierEvent(Classifier.this, classifierCopy, |
---|
762 | new DataSetEvent(this, m_train), |
---|
763 | null, // no test set (yet) |
---|
764 | m_setNum, m_maxSetNum); |
---|
765 | ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); |
---|
766 | notifyBatchClassifierListeners(ce); |
---|
767 | |
---|
768 | // store in the output queue (if we have incoming test set events) |
---|
769 | ce = |
---|
770 | new BatchClassifierEvent(Classifier.this, classifierCopy, |
---|
771 | new DataSetEvent(this, m_train), |
---|
772 | null, // no test set (yet) |
---|
773 | m_setNum, m_maxSetNum); |
---|
774 | ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); |
---|
775 | classifierTrainingComplete(ce); |
---|
776 | //} |
---|
777 | |
---|
778 | if (classifierCopy instanceof weka.core.Drawable && |
---|
779 | m_graphListeners.size() > 0) { |
---|
780 | String grphString = |
---|
781 | ((weka.core.Drawable)classifierCopy).graph(); |
---|
782 | int grphType = ((weka.core.Drawable)classifierCopy).graphType(); |
---|
783 | String grphTitle = classifierCopy.getClass().getName(); |
---|
784 | grphTitle = grphTitle.substring(grphTitle. |
---|
785 | lastIndexOf('.')+1, |
---|
786 | grphTitle.length()); |
---|
787 | grphTitle = "Set " + m_setNum + " (" |
---|
788 | + m_train.relationName() + ") " |
---|
789 | + grphTitle; |
---|
790 | |
---|
791 | GraphEvent ge = new GraphEvent(Classifier.this, |
---|
792 | grphString, |
---|
793 | grphTitle, |
---|
794 | grphType); |
---|
795 | notifyGraphListeners(ge); |
---|
796 | } |
---|
797 | |
---|
798 | if (m_textListeners.size() > 0) { |
---|
799 | String modelString = classifierCopy.toString(); |
---|
800 | String titleString = classifierCopy.getClass().getName(); |
---|
801 | |
---|
802 | titleString = titleString. |
---|
803 | substring(titleString.lastIndexOf('.') + 1, |
---|
804 | titleString.length()); |
---|
805 | modelString = "=== Classifier model ===\n\n" + |
---|
806 | "Scheme: " +titleString+"\n" + |
---|
807 | "Relation: " + m_train.relationName() + |
---|
808 | ((m_maxSetNum > 1) |
---|
809 | ? "\nTraining Fold: " + m_setNum |
---|
810 | :"") |
---|
811 | + "\n\n" |
---|
812 | + modelString; |
---|
813 | titleString = "Model: " + titleString; |
---|
814 | |
---|
815 | TextEvent nt = new TextEvent(Classifier.this, |
---|
816 | modelString, |
---|
817 | titleString); |
---|
818 | notifyTextListeners(nt); |
---|
819 | } |
---|
820 | } |
---|
821 | } catch (Exception ex) { |
---|
822 | ex.printStackTrace(); |
---|
823 | if (m_log != null) { |
---|
824 | String titleString = "[Classifier] " + statusMessagePrefix(); |
---|
825 | |
---|
826 | titleString += " run " + m_runNum + " fold " + m_setNum |
---|
827 | + " failed to complete."; |
---|
828 | m_log.logMessage(titleString + " (build classifier). " |
---|
829 | + ex.getMessage()); |
---|
830 | m_log.statusMessage(statusMessagePrefix() |
---|
831 | + "ERROR (see log for details)"); |
---|
832 | ex.printStackTrace(); |
---|
833 | } |
---|
834 | m_taskInfo.setExecutionStatus(TaskStatusInfo.FAILED); |
---|
835 | // Stop all processing |
---|
836 | stop(); |
---|
837 | } finally { |
---|
838 | m_visual.setStatic(); |
---|
839 | if (m_log != null) { |
---|
840 | m_log.statusMessage(statusMessagePrefix() + "Finished."); |
---|
841 | } |
---|
842 | m_state = IDLE; |
---|
843 | if (Thread.currentThread().isInterrupted()) { |
---|
844 | // prevent any classifier events from being fired |
---|
845 | m_trainingSet = null; |
---|
846 | if (m_log != null) { |
---|
847 | String titleString = "[Classifier] " + statusMessagePrefix(); |
---|
848 | |
---|
849 | m_log.logMessage(titleString + " (" |
---|
850 | + " run " + m_runNum + " fold " + m_setNum + ") interrupted!"); |
---|
851 | m_log.statusMessage(statusMessagePrefix() + "INTERRUPTED"); |
---|
852 | |
---|
853 | /* // are we the last active thread? |
---|
854 | if (m_executorPool.getActiveCount() == 1) { |
---|
855 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
856 | + " last classifier unblocking..."; |
---|
857 | System.err.println(msg + " (interrupted)"); |
---|
858 | m_log.logMessage(msg + " (interrupted)"); |
---|
859 | // m_log.statusMessage(statusMessagePrefix() + "finished."); |
---|
860 | m_block = false; |
---|
861 | m_state = IDLE; |
---|
862 | block(false); |
---|
863 | } */ |
---|
864 | } |
---|
865 | /*System.err.println("Queue size: " + m_executorPool.getQueue().size() + |
---|
866 | " Active count: " + m_executorPool.getActiveCount()); */ |
---|
867 | } /* else { |
---|
868 | // check to see if we are the last active thread |
---|
869 | if (m_executorPool == null || |
---|
870 | (m_executorPool.getQueue().size() == 0 && |
---|
871 | m_executorPool.getActiveCount() == 1)) { |
---|
872 | |
---|
873 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
874 | + " last classifier unblocking..."; |
---|
875 | System.err.println(msg); |
---|
876 | if (m_log != null) { |
---|
877 | m_log.logMessage(msg); |
---|
878 | } else { |
---|
879 | System.err.println(msg); |
---|
880 | } |
---|
881 | //m_visual.setText(m_oldText); |
---|
882 | |
---|
883 | if (m_log != null) { |
---|
884 | m_log.statusMessage(statusMessagePrefix() + "Finished."); |
---|
885 | } |
---|
886 | // m_outputQueues = null; // free memory |
---|
887 | m_block = false; |
---|
888 | block(false); |
---|
889 | } |
---|
890 | } */ |
---|
891 | } |
---|
892 | } |
---|
893 | |
---|
894 | public TaskStatusInfo getTaskStatus() { |
---|
895 | // TODO |
---|
896 | return null; |
---|
897 | } |
---|
898 | } |
---|
899 | |
---|
900 | /** |
---|
901 | * Accepts a training set and builds batch classifier |
---|
902 | * |
---|
903 | * @param e a <code>TrainingSetEvent</code> value |
---|
904 | */ |
---|
905 | public void acceptTrainingSet(final TrainingSetEvent e) { |
---|
906 | |
---|
907 | if (e.isStructureOnly()) { |
---|
908 | // no need to build a classifier, instead just generate a dummy |
---|
909 | // BatchClassifierEvent in order to pass on instance structure to |
---|
910 | // any listeners - eg. PredictionAppender can use it to determine |
---|
911 | // the final structure of instances with predictions appended |
---|
912 | BatchClassifierEvent ce = |
---|
913 | new BatchClassifierEvent(this, m_Classifier, |
---|
914 | new DataSetEvent(this, e.getTrainingSet()), |
---|
915 | new DataSetEvent(this, e.getTrainingSet()), |
---|
916 | e.getSetNumber(), e.getMaxSetNumber()); |
---|
917 | |
---|
918 | notifyBatchClassifierListeners(ce); |
---|
919 | return; |
---|
920 | } |
---|
921 | |
---|
922 | if (m_reject) { |
---|
923 | //block(true); |
---|
924 | if (m_log != null) { |
---|
925 | m_log.statusMessage(statusMessagePrefix() + "BUSY. Can't accept data " |
---|
926 | + "at this time."); |
---|
927 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
928 | + " BUSY. Can't accept data at this time."); |
---|
929 | } |
---|
930 | return; |
---|
931 | } |
---|
932 | |
---|
933 | // Do some initialization if this is the first set of the first run |
---|
934 | if (e.getRunNumber() == 1 && e.getSetNumber() == 1) { |
---|
935 | // m_oldText = m_visual.getText(); |
---|
936 | // store the training header |
---|
937 | m_trainingSet = new Instances(e.getTrainingSet(), 0); |
---|
938 | m_state = BUILDING_MODEL; |
---|
939 | |
---|
940 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
941 | + " starting executor pool (" |
---|
942 | + getExecutionSlots() + " slots)..."; |
---|
943 | if (m_log != null) { |
---|
944 | m_log.logMessage(msg); |
---|
945 | } else { |
---|
946 | System.err.println(msg); |
---|
947 | } |
---|
948 | // start the execution pool |
---|
949 | if (m_executorPool == null) { |
---|
950 | startExecutorPool(); |
---|
951 | } |
---|
952 | |
---|
953 | // setup output queues |
---|
954 | msg = "[Classifier] " + statusMessagePrefix() + " setup output queues."; |
---|
955 | if (m_log != null) { |
---|
956 | m_log.logMessage(msg); |
---|
957 | } else { |
---|
958 | System.err.println(msg); |
---|
959 | } |
---|
960 | |
---|
961 | m_outputQueues = |
---|
962 | new BatchClassifierEvent[e.getMaxRunNumber()][e.getMaxSetNumber()]; |
---|
963 | m_completedSets = new boolean[e.getMaxRunNumber()][e.getMaxSetNumber()]; |
---|
964 | m_currentBatchIdentifier = new Date(); |
---|
965 | } |
---|
966 | |
---|
967 | // create a new task and schedule for execution |
---|
968 | TrainingTask newTask = new TrainingTask(e.getRunNumber(), e.getMaxRunNumber(), |
---|
969 | e.getSetNumber(), e.getMaxSetNumber(), e.getTrainingSet()); |
---|
970 | String msg = "[Classifier] " + statusMessagePrefix() + " scheduling run " |
---|
971 | + e.getRunNumber() +" fold " + e.getSetNumber() + " for execution..."; |
---|
972 | if (m_log != null) { |
---|
973 | m_log.logMessage(msg); |
---|
974 | } else { |
---|
975 | System.err.println(msg); |
---|
976 | } |
---|
977 | |
---|
978 | // delay just a little bit |
---|
979 | /*try { |
---|
980 | Thread.sleep(10); |
---|
981 | } catch (Exception ex){} */ |
---|
982 | m_executorPool.execute(newTask); |
---|
983 | } |
---|
984 | |
---|
985 | /** |
---|
986 | * Accepts a test set for a batch trained classifier |
---|
987 | * |
---|
988 | * @param e a <code>TestSetEvent</code> value |
---|
989 | */ |
---|
990 | public synchronized void acceptTestSet(TestSetEvent e) { |
---|
991 | if (m_reject) { |
---|
992 | if (m_log != null) { |
---|
993 | m_log.statusMessage(statusMessagePrefix() + "BUSY. Can't accept data " |
---|
994 | + "at this time."); |
---|
995 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
996 | + " BUSY. Can't accept data at this time."); |
---|
997 | } |
---|
998 | return; |
---|
999 | } |
---|
1000 | |
---|
1001 | Instances testSet = e.getTestSet(); |
---|
1002 | if (testSet != null) { |
---|
1003 | if (testSet.classIndex() < 0) { |
---|
1004 | // testSet.setClassIndex(testSet.numAttributes() - 1); |
---|
1005 | // stop all processing |
---|
1006 | stop(); |
---|
1007 | String errorMessage = statusMessagePrefix() |
---|
1008 | + "ERROR: no class attribute set in test data!"; |
---|
1009 | if (m_log != null) { |
---|
1010 | m_log.statusMessage(errorMessage); |
---|
1011 | m_log.logMessage("[Classifier] " + errorMessage); |
---|
1012 | } else { |
---|
1013 | System.err.println("[Classifier] " + errorMessage); |
---|
1014 | } |
---|
1015 | return; |
---|
1016 | } |
---|
1017 | } |
---|
1018 | |
---|
1019 | // If we just have a test set connection or |
---|
1020 | // there is just one run involving one set (and we are not |
---|
1021 | // currently building a model), then use the |
---|
1022 | // last saved model |
---|
1023 | if (m_Classifier != null && m_state == IDLE && |
---|
1024 | (!m_listenees.containsKey("trainingSet") || |
---|
1025 | (e.getMaxRunNumber() == 1 && e.getMaxSetNumber() == 1))) { |
---|
1026 | // if this is structure only then just return at this point |
---|
1027 | if (e.getTestSet() != null && e.isStructureOnly()) { |
---|
1028 | return; |
---|
1029 | } |
---|
1030 | |
---|
1031 | // check that we have a training set/header (if we don't, |
---|
1032 | // then it means that no model has been loaded |
---|
1033 | if (m_trainingSet == null) { |
---|
1034 | stop(); |
---|
1035 | String errorMessage = statusMessagePrefix() |
---|
1036 | + "ERROR: no trained/loaded classifier to use for prediction!"; |
---|
1037 | if (m_log != null) { |
---|
1038 | m_log.statusMessage(errorMessage); |
---|
1039 | m_log.logMessage("[Classifier] " + errorMessage); |
---|
1040 | } else { |
---|
1041 | System.err.println("[Classifier] " + errorMessage); |
---|
1042 | } |
---|
1043 | return; |
---|
1044 | } |
---|
1045 | |
---|
1046 | testSet = e.getTestSet(); |
---|
1047 | if (e.getRunNumber() == 1 && e.getSetNumber() == 1) { |
---|
1048 | m_currentBatchIdentifier = new Date(); |
---|
1049 | } |
---|
1050 | |
---|
1051 | if (testSet != null) { |
---|
1052 | if (m_trainingSet.equalHeaders(testSet)) { |
---|
1053 | BatchClassifierEvent ce = |
---|
1054 | new BatchClassifierEvent(this, m_Classifier, |
---|
1055 | new DataSetEvent(this, m_trainingSet), |
---|
1056 | new DataSetEvent(this, e.getTestSet()), |
---|
1057 | e.getRunNumber(), e.getMaxRunNumber(), |
---|
1058 | e.getSetNumber(), e.getMaxSetNumber()); |
---|
1059 | ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); |
---|
1060 | |
---|
1061 | if (m_log != null && !e.isStructureOnly()) { |
---|
1062 | m_log.statusMessage(statusMessagePrefix() + "Finished."); |
---|
1063 | } |
---|
1064 | notifyBatchClassifierListeners(ce); |
---|
1065 | } else { |
---|
1066 | // if headers do not match check to see if it's |
---|
1067 | // just the class that is different and that |
---|
1068 | // all class values are missing |
---|
1069 | if (testSet.numInstances() > 0) { |
---|
1070 | if (testSet.classIndex() == m_trainingSet.classIndex() && |
---|
1071 | testSet.attributeStats(testSet.classIndex()).missingCount == |
---|
1072 | testSet.numInstances()) { |
---|
1073 | // now check the other attributes against the training |
---|
1074 | // structure |
---|
1075 | boolean ok = true; |
---|
1076 | for (int i = 0; i < testSet.numAttributes(); i++) { |
---|
1077 | if (i != testSet.classIndex()) { |
---|
1078 | ok = testSet.attribute(i).equals(m_trainingSet.attribute(i)); |
---|
1079 | if (!ok) { |
---|
1080 | break; |
---|
1081 | } |
---|
1082 | } |
---|
1083 | } |
---|
1084 | |
---|
1085 | if (ok) { |
---|
1086 | BatchClassifierEvent ce = |
---|
1087 | new BatchClassifierEvent(this, m_Classifier, |
---|
1088 | new DataSetEvent(this, m_trainingSet), |
---|
1089 | new DataSetEvent(this, e.getTestSet()), |
---|
1090 | e.getRunNumber(), e.getMaxRunNumber(), |
---|
1091 | e.getSetNumber(), e.getMaxSetNumber()); |
---|
1092 | ce.setGroupIdentifier(m_currentBatchIdentifier.getTime()); |
---|
1093 | |
---|
1094 | if (m_log != null && !e.isStructureOnly()) { |
---|
1095 | m_log.statusMessage(statusMessagePrefix() + "Finished."); |
---|
1096 | } |
---|
1097 | notifyBatchClassifierListeners(ce); |
---|
1098 | } else { |
---|
1099 | stop(); |
---|
1100 | String errorMessage = statusMessagePrefix() |
---|
1101 | + "ERROR: structure of training and test sets is not compatible!"; |
---|
1102 | if (m_log != null) { |
---|
1103 | m_log.statusMessage(errorMessage); |
---|
1104 | m_log.logMessage("[Classifier] " + errorMessage); |
---|
1105 | } else { |
---|
1106 | System.err.println("[Classifier] " + errorMessage); |
---|
1107 | } |
---|
1108 | } |
---|
1109 | } |
---|
1110 | } |
---|
1111 | } |
---|
1112 | } |
---|
1113 | } else { |
---|
1114 | /* System.err.println("[Classifier] accepting test set: run " |
---|
1115 | + e.getRunNumber() + " fold " + e.getSetNumber()); */ |
---|
1116 | |
---|
1117 | if (m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1] == null) { |
---|
1118 | // store an event with a null model and training set (to be filled in later) |
---|
1119 | m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1] = |
---|
1120 | new BatchClassifierEvent(this, null, null, |
---|
1121 | new DataSetEvent(this, e.getTestSet()), |
---|
1122 | e.getRunNumber(), e.getMaxRunNumber(), |
---|
1123 | e.getSetNumber(), e.getMaxSetNumber()); |
---|
1124 | if (e.getRunNumber() == e.getMaxRunNumber() && |
---|
1125 | e.getSetNumber() == e.getMaxSetNumber()) { |
---|
1126 | |
---|
1127 | // block on the last fold of the last run |
---|
1128 | /* System.err.println("[Classifier] blocking on last fold of last run..."); |
---|
1129 | block(true); */ |
---|
1130 | m_reject = true; |
---|
1131 | if (m_block) { |
---|
1132 | block(true); |
---|
1133 | } |
---|
1134 | } |
---|
1135 | } else { |
---|
1136 | // Otherwise, there is a model here waiting for a test set... |
---|
1137 | m_outputQueues[e.getRunNumber() - 1][e.getSetNumber() - 1]. |
---|
1138 | setTestSet(new DataSetEvent(this, e.getTestSet())); |
---|
1139 | checkCompletedRun(e.getRunNumber(), e.getMaxRunNumber(), e.getMaxSetNumber()); |
---|
1140 | } |
---|
1141 | } |
---|
1142 | } |
---|
1143 | |
---|
1144 | private synchronized void classifierTrainingComplete(BatchClassifierEvent ce) { |
---|
1145 | // check the output queues if we have an incoming test set connection |
---|
1146 | if (m_listenees.containsKey("testSet")) { |
---|
1147 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
1148 | + " storing model for run " + ce.getRunNumber() |
---|
1149 | + " fold " + ce.getSetNumber(); |
---|
1150 | if (m_log != null) { |
---|
1151 | m_log.logMessage(msg); |
---|
1152 | } else { |
---|
1153 | System.err.println(msg); |
---|
1154 | } |
---|
1155 | |
---|
1156 | if (m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1] == null) { |
---|
1157 | // store the event - test data filled in later |
---|
1158 | m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1] = ce; |
---|
1159 | } else { |
---|
1160 | // there is a test set here waiting for a model and training set |
---|
1161 | m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1]. |
---|
1162 | setClassifier(ce.getClassifier()); |
---|
1163 | m_outputQueues[ce.getRunNumber() - 1][ce.getSetNumber() - 1]. |
---|
1164 | setTrainSet(ce.getTrainSet()); |
---|
1165 | |
---|
1166 | } |
---|
1167 | checkCompletedRun(ce.getRunNumber(), ce.getMaxRunNumber(), ce.getMaxSetNumber()); |
---|
1168 | } |
---|
1169 | } |
---|
1170 | |
---|
1171 | private synchronized void checkCompletedRun(int runNum, int maxRunNum, int maxSets) { |
---|
1172 | // look to see if there are any completed classifiers that we can pass |
---|
1173 | // on for evaluation |
---|
1174 | for (int i = 0; i < maxSets; i++) { |
---|
1175 | if (m_outputQueues[runNum - 1][i] != null) { |
---|
1176 | if (m_outputQueues[runNum - 1][i].getClassifier() != null && |
---|
1177 | m_outputQueues[runNum - 1][i].getTestSet() != null) { |
---|
1178 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
1179 | + " dispatching run/set " + runNum + "/" + (i+1) + " to listeners."; |
---|
1180 | if (m_log != null) { |
---|
1181 | m_log.logMessage(msg); |
---|
1182 | } else { |
---|
1183 | System.err.println(msg); |
---|
1184 | } |
---|
1185 | |
---|
1186 | // dispatch this one |
---|
1187 | m_outputQueues[runNum - 1][i].setGroupIdentifier(m_currentBatchIdentifier.getTime()); |
---|
1188 | notifyBatchClassifierListeners(m_outputQueues[runNum - 1][i]); |
---|
1189 | // save memory |
---|
1190 | m_outputQueues[runNum - 1][i] = null; |
---|
1191 | // mark as done |
---|
1192 | m_completedSets[runNum - 1][i] = true; |
---|
1193 | } |
---|
1194 | } |
---|
1195 | } |
---|
1196 | |
---|
1197 | // scan for completion |
---|
1198 | boolean done = true; |
---|
1199 | for (int i = 0; i < maxRunNum; i++) { |
---|
1200 | for (int j = 0; j < maxSets; j++) { |
---|
1201 | if (!m_completedSets[i][j]) { |
---|
1202 | done = false; |
---|
1203 | break; |
---|
1204 | } |
---|
1205 | } |
---|
1206 | if (!done) { |
---|
1207 | break; |
---|
1208 | } |
---|
1209 | } |
---|
1210 | |
---|
1211 | if (done) { |
---|
1212 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
1213 | + " last classifier unblocking..."; |
---|
1214 | |
---|
1215 | if (m_log != null) { |
---|
1216 | m_log.logMessage(msg); |
---|
1217 | } else { |
---|
1218 | System.err.println(msg); |
---|
1219 | } |
---|
1220 | //m_visual.setText(m_oldText); |
---|
1221 | |
---|
1222 | if (m_log != null) { |
---|
1223 | m_log.statusMessage(statusMessagePrefix() + "Finished."); |
---|
1224 | } |
---|
1225 | // m_outputQueues = null; // free memory |
---|
1226 | m_reject = false; |
---|
1227 | block(false); |
---|
1228 | m_state = IDLE; |
---|
1229 | } |
---|
1230 | } |
---|
1231 | |
---|
1232 | /*private synchronized void checkCompletedRun(int runNum, int maxRunNum, int maxSets) { |
---|
1233 | boolean runOK = true; |
---|
1234 | for (int i = 0; i < maxSets; i++) { |
---|
1235 | if (m_outputQueues[runNum - 1][i] == null) { |
---|
1236 | runOK = false; |
---|
1237 | break; |
---|
1238 | } else if (m_outputQueues[runNum - 1][i].getClassifier() == null || |
---|
1239 | m_outputQueues[runNum - 1][i].getTestSet() == null) { |
---|
1240 | runOK = false; |
---|
1241 | break; |
---|
1242 | } |
---|
1243 | } |
---|
1244 | |
---|
1245 | if (runOK) { |
---|
1246 | String msg = "[Classifier] " + statusMessagePrefix() |
---|
1247 | + " dispatching run " + runNum + " to listeners."; |
---|
1248 | if (m_log != null) { |
---|
1249 | m_log.logMessage(msg); |
---|
1250 | } else { |
---|
1251 | System.err.println(msg); |
---|
1252 | } |
---|
1253 | // dispatch this run to listeners |
---|
1254 | for (int i = 0; i < maxSets; i++) { |
---|
1255 | notifyBatchClassifierListeners(m_outputQueues[runNum - 1][i]); |
---|
1256 | // save memory |
---|
1257 | m_outputQueues[runNum - 1][i] = null; |
---|
1258 | } |
---|
1259 | |
---|
1260 | if (runNum == maxRunNum) { |
---|
1261 | // unblock |
---|
1262 | msg = "[Classifier] " + statusMessagePrefix() |
---|
1263 | + " last classifier unblocking..."; |
---|
1264 | |
---|
1265 | if (m_log != null) { |
---|
1266 | m_log.logMessage(msg); |
---|
1267 | } else { |
---|
1268 | System.err.println(msg); |
---|
1269 | } |
---|
1270 | //m_visual.setText(m_oldText); |
---|
1271 | |
---|
1272 | if (m_log != null) { |
---|
1273 | m_log.statusMessage(statusMessagePrefix() + "Finished."); |
---|
1274 | } |
---|
1275 | // m_outputQueues = null; // free memory |
---|
1276 | m_reject = false; |
---|
1277 | block(false); |
---|
1278 | m_state = IDLE; |
---|
1279 | } |
---|
1280 | } |
---|
1281 | } */ |
---|
1282 | |
---|
1283 | /** |
---|
1284 | * Sets the visual appearance of this wrapper bean |
---|
1285 | * |
---|
1286 | * @param newVisual a <code>BeanVisual</code> value |
---|
1287 | */ |
---|
1288 | public void setVisual(BeanVisual newVisual) { |
---|
1289 | m_visual = newVisual; |
---|
1290 | } |
---|
1291 | |
---|
1292 | /** |
---|
1293 | * Gets the visual appearance of this wrapper bean |
---|
1294 | */ |
---|
1295 | public BeanVisual getVisual() { |
---|
1296 | return m_visual; |
---|
1297 | } |
---|
1298 | |
---|
1299 | /** |
---|
1300 | * Use the default visual appearance for this bean |
---|
1301 | */ |
---|
1302 | public void useDefaultVisual() { |
---|
1303 | // try to get a default for this package of classifiers |
---|
1304 | String name = m_ClassifierTemplate.getClass().toString(); |
---|
1305 | String packageName = name.substring(0, name.lastIndexOf('.')); |
---|
1306 | packageName = |
---|
1307 | packageName.substring(packageName.lastIndexOf('.')+1, |
---|
1308 | packageName.length()); |
---|
1309 | if (!m_visual.loadIcons(BeanVisual.ICON_PATH+"Default_"+packageName |
---|
1310 | +"Classifier.gif", |
---|
1311 | BeanVisual.ICON_PATH+"Default_"+packageName |
---|
1312 | +"Classifier_animated.gif")) { |
---|
1313 | m_visual.loadIcons(BeanVisual. |
---|
1314 | ICON_PATH+"DefaultClassifier.gif", |
---|
1315 | BeanVisual. |
---|
1316 | ICON_PATH+"DefaultClassifier_animated.gif"); |
---|
1317 | } |
---|
1318 | } |
---|
1319 | |
---|
1320 | /** |
---|
1321 | * Add a batch classifier listener |
---|
1322 | * |
---|
1323 | * @param cl a <code>BatchClassifierListener</code> value |
---|
1324 | */ |
---|
1325 | public synchronized void |
---|
1326 | addBatchClassifierListener(BatchClassifierListener cl) { |
---|
1327 | m_batchClassifierListeners.addElement(cl); |
---|
1328 | } |
---|
1329 | |
---|
1330 | /** |
---|
1331 | * Remove a batch classifier listener |
---|
1332 | * |
---|
1333 | * @param cl a <code>BatchClassifierListener</code> value |
---|
1334 | */ |
---|
1335 | public synchronized void |
---|
1336 | removeBatchClassifierListener(BatchClassifierListener cl) { |
---|
1337 | m_batchClassifierListeners.remove(cl); |
---|
1338 | } |
---|
1339 | |
---|
1340 | /** |
---|
1341 | * Notify all batch classifier listeners of a batch classifier event |
---|
1342 | * |
---|
1343 | * @param ce a <code>BatchClassifierEvent</code> value |
---|
1344 | */ |
---|
1345 | private synchronized void notifyBatchClassifierListeners(BatchClassifierEvent ce) { |
---|
1346 | Vector l; |
---|
1347 | synchronized (this) { |
---|
1348 | l = (Vector)m_batchClassifierListeners.clone(); |
---|
1349 | } |
---|
1350 | if (l.size() > 0) { |
---|
1351 | for(int i = 0; i < l.size(); i++) { |
---|
1352 | ((BatchClassifierListener)l.elementAt(i)).acceptClassifier(ce); |
---|
1353 | } |
---|
1354 | } |
---|
1355 | } |
---|
1356 | |
---|
1357 | /** |
---|
1358 | * Add a graph listener |
---|
1359 | * |
---|
1360 | * @param cl a <code>GraphListener</code> value |
---|
1361 | */ |
---|
1362 | public synchronized void addGraphListener(GraphListener cl) { |
---|
1363 | m_graphListeners.addElement(cl); |
---|
1364 | } |
---|
1365 | |
---|
1366 | /** |
---|
1367 | * Remove a graph listener |
---|
1368 | * |
---|
1369 | * @param cl a <code>GraphListener</code> value |
---|
1370 | */ |
---|
1371 | public synchronized void removeGraphListener(GraphListener cl) { |
---|
1372 | m_graphListeners.remove(cl); |
---|
1373 | } |
---|
1374 | |
---|
1375 | /** |
---|
1376 | * Notify all graph listeners of a graph event |
---|
1377 | * |
---|
1378 | * @param ge a <code>GraphEvent</code> value |
---|
1379 | */ |
---|
1380 | private void notifyGraphListeners(GraphEvent ge) { |
---|
1381 | Vector l; |
---|
1382 | synchronized (this) { |
---|
1383 | l = (Vector)m_graphListeners.clone(); |
---|
1384 | } |
---|
1385 | if (l.size() > 0) { |
---|
1386 | for(int i = 0; i < l.size(); i++) { |
---|
1387 | ((GraphListener)l.elementAt(i)).acceptGraph(ge); |
---|
1388 | } |
---|
1389 | } |
---|
1390 | } |
---|
1391 | |
---|
1392 | /** |
---|
1393 | * Add a text listener |
---|
1394 | * |
---|
1395 | * @param cl a <code>TextListener</code> value |
---|
1396 | */ |
---|
1397 | public synchronized void addTextListener(TextListener cl) { |
---|
1398 | m_textListeners.addElement(cl); |
---|
1399 | } |
---|
1400 | |
---|
1401 | /** |
---|
1402 | * Remove a text listener |
---|
1403 | * |
---|
1404 | * @param cl a <code>TextListener</code> value |
---|
1405 | */ |
---|
1406 | public synchronized void removeTextListener(TextListener cl) { |
---|
1407 | m_textListeners.remove(cl); |
---|
1408 | } |
---|
1409 | |
---|
1410 | /** |
---|
1411 | * We don't have to keep track of configuration listeners (see the |
---|
1412 | * documentation for ConfigurationListener/ConfigurationEvent). |
---|
1413 | * |
---|
1414 | * @param cl a ConfigurationListener. |
---|
1415 | */ |
---|
1416 | public synchronized void addConfigurationListener(ConfigurationListener cl) { |
---|
1417 | |
---|
1418 | } |
---|
1419 | |
---|
1420 | /** |
---|
1421 | * We don't have to keep track of configuration listeners (see the |
---|
1422 | * documentation for ConfigurationListener/ConfigurationEvent). |
---|
1423 | * |
---|
1424 | * @param cl a ConfigurationListener. |
---|
1425 | */ |
---|
1426 | public synchronized void removeConfigurationListener(ConfigurationListener cl) { |
---|
1427 | |
---|
1428 | } |
---|
1429 | |
---|
1430 | /** |
---|
1431 | * Notify all text listeners of a text event |
---|
1432 | * |
---|
1433 | * @param ge a <code>TextEvent</code> value |
---|
1434 | */ |
---|
1435 | private void notifyTextListeners(TextEvent ge) { |
---|
1436 | Vector l; |
---|
1437 | synchronized (this) { |
---|
1438 | l = (Vector)m_textListeners.clone(); |
---|
1439 | } |
---|
1440 | if (l.size() > 0) { |
---|
1441 | for(int i = 0; i < l.size(); i++) { |
---|
1442 | ((TextListener)l.elementAt(i)).acceptText(ge); |
---|
1443 | } |
---|
1444 | } |
---|
1445 | } |
---|
1446 | |
---|
1447 | /** |
---|
1448 | * Add an incremental classifier listener |
---|
1449 | * |
---|
1450 | * @param cl an <code>IncrementalClassifierListener</code> value |
---|
1451 | */ |
---|
1452 | public synchronized void |
---|
1453 | addIncrementalClassifierListener(IncrementalClassifierListener cl) { |
---|
1454 | m_incrementalClassifierListeners.add(cl); |
---|
1455 | } |
---|
1456 | |
---|
1457 | /** |
---|
1458 | * Remove an incremental classifier listener |
---|
1459 | * |
---|
1460 | * @param cl an <code>IncrementalClassifierListener</code> value |
---|
1461 | */ |
---|
1462 | public synchronized void |
---|
1463 | removeIncrementalClassifierListener(IncrementalClassifierListener cl) { |
---|
1464 | m_incrementalClassifierListeners.remove(cl); |
---|
1465 | } |
---|
1466 | |
---|
1467 | /** |
---|
1468 | * Notify all incremental classifier listeners of an incremental classifier |
---|
1469 | * event |
---|
1470 | * |
---|
1471 | * @param ce an <code>IncrementalClassifierEvent</code> value |
---|
1472 | */ |
---|
1473 | private void |
---|
1474 | notifyIncrementalClassifierListeners(IncrementalClassifierEvent ce) { |
---|
1475 | Vector l; |
---|
1476 | synchronized (this) { |
---|
1477 | l = (Vector)m_incrementalClassifierListeners.clone(); |
---|
1478 | } |
---|
1479 | if (l.size() > 0) { |
---|
1480 | for(int i = 0; i < l.size(); i++) { |
---|
1481 | ((IncrementalClassifierListener)l.elementAt(i)).acceptClassifier(ce); |
---|
1482 | } |
---|
1483 | } |
---|
1484 | } |
---|
1485 | |
---|
1486 | /** |
---|
1487 | * Returns true if, at this time, |
---|
1488 | * the object will accept a connection with respect to the named event |
---|
1489 | * |
---|
1490 | * @param eventName the event |
---|
1491 | * @return true if the object will accept a connection |
---|
1492 | */ |
---|
1493 | public boolean connectionAllowed(String eventName) { |
---|
1494 | /* if (eventName.compareTo("instance") == 0) { |
---|
1495 | if (!(m_Classifier instanceof weka.classifiers.UpdateableClassifier)) { |
---|
1496 | return false; |
---|
1497 | } |
---|
1498 | } */ |
---|
1499 | if (m_listenees.containsKey(eventName)) { |
---|
1500 | return false; |
---|
1501 | } |
---|
1502 | return true; |
---|
1503 | } |
---|
1504 | |
---|
1505 | /** |
---|
1506 | * Returns true if, at this time, |
---|
1507 | * the object will accept a connection according to the supplied |
---|
1508 | * EventSetDescriptor |
---|
1509 | * |
---|
1510 | * @param esd the EventSetDescriptor |
---|
1511 | * @return true if the object will accept a connection |
---|
1512 | */ |
---|
1513 | public boolean connectionAllowed(EventSetDescriptor esd) { |
---|
1514 | return connectionAllowed(esd.getName()); |
---|
1515 | } |
---|
1516 | |
---|
1517 | /** |
---|
1518 | * Notify this object that it has been registered as a listener with |
---|
1519 | * a source with respect to the named event |
---|
1520 | * |
---|
1521 | * @param eventName the event |
---|
1522 | * @param source the source with which this object has been registered as |
---|
1523 | * a listener |
---|
1524 | */ |
---|
1525 | public synchronized void connectionNotification(String eventName, |
---|
1526 | Object source) { |
---|
1527 | if (eventName.compareTo("instance") == 0) { |
---|
1528 | if (!(m_ClassifierTemplate instanceof weka.classifiers.UpdateableClassifier)) { |
---|
1529 | if (m_log != null) { |
---|
1530 | String msg = statusMessagePrefix() + "WARNING: " |
---|
1531 | + m_ClassifierTemplate.getClass().getName() |
---|
1532 | + " Is not an updateable classifier. This " |
---|
1533 | +"classifier will only be evaluated on incoming " |
---|
1534 | +"instance events and not trained on them."; |
---|
1535 | m_log.logMessage("[Classifier] " + msg); |
---|
1536 | m_log.statusMessage(msg); |
---|
1537 | } |
---|
1538 | } |
---|
1539 | } |
---|
1540 | |
---|
1541 | if (connectionAllowed(eventName)) { |
---|
1542 | m_listenees.put(eventName, source); |
---|
1543 | /* if (eventName.compareTo("instance") == 0) { |
---|
1544 | startIncrementalHandler(); |
---|
1545 | } */ |
---|
1546 | } |
---|
1547 | } |
---|
1548 | |
---|
1549 | /** |
---|
1550 | * Notify this object that it has been deregistered as a listener with |
---|
1551 | * a source with respect to the supplied event name |
---|
1552 | * |
---|
1553 | * @param eventName the event |
---|
1554 | * @param source the source with which this object has been registered as |
---|
1555 | * a listener |
---|
1556 | */ |
---|
1557 | public synchronized void disconnectionNotification(String eventName, |
---|
1558 | Object source) { |
---|
1559 | m_listenees.remove(eventName); |
---|
1560 | if (eventName.compareTo("instance") == 0) { |
---|
1561 | stop(); // kill the incremental handler thread if it is running |
---|
1562 | } |
---|
1563 | } |
---|
1564 | |
---|
1565 | /** |
---|
1566 | * Function used to stop code that calls acceptTrainingSet. This is |
---|
1567 | * needed as classifier construction is performed inside a separate |
---|
1568 | * thread of execution. |
---|
1569 | * |
---|
1570 | * @param tf a <code>boolean</code> value |
---|
1571 | */ |
---|
1572 | private synchronized void block(boolean tf) { |
---|
1573 | |
---|
1574 | if (tf) { |
---|
1575 | try { |
---|
1576 | // only block if thread is still doing something useful! |
---|
1577 | // if (m_state != IDLE) { |
---|
1578 | wait(); |
---|
1579 | //} |
---|
1580 | } catch (InterruptedException ex) { |
---|
1581 | } |
---|
1582 | } else { |
---|
1583 | notifyAll(); |
---|
1584 | } |
---|
1585 | } |
---|
1586 | |
---|
1587 | |
---|
1588 | /** |
---|
1589 | * Stop any classifier action |
---|
1590 | */ |
---|
1591 | public void stop() { |
---|
1592 | // tell all listenees (upstream beans) to stop |
---|
1593 | Enumeration en = m_listenees.keys(); |
---|
1594 | while (en.hasMoreElements()) { |
---|
1595 | Object tempO = m_listenees.get(en.nextElement()); |
---|
1596 | if (tempO instanceof BeanCommon) { |
---|
1597 | ((BeanCommon)tempO).stop(); |
---|
1598 | } |
---|
1599 | } |
---|
1600 | |
---|
1601 | // shutdown the executor pool and reclaim storage |
---|
1602 | if (m_executorPool != null) { |
---|
1603 | m_executorPool.shutdownNow(); |
---|
1604 | m_executorPool.purge(); |
---|
1605 | m_executorPool = null; |
---|
1606 | } |
---|
1607 | m_reject = false; |
---|
1608 | block(false); |
---|
1609 | m_visual.setStatic(); |
---|
1610 | if (m_oldText.length() > 0) { |
---|
1611 | //m_visual.setText(m_oldText); |
---|
1612 | } |
---|
1613 | |
---|
1614 | // stop the build thread |
---|
1615 | /*if (m_buildThread != null) { |
---|
1616 | m_buildThread.interrupt(); |
---|
1617 | m_buildThread.stop(); |
---|
1618 | m_buildThread = null; |
---|
1619 | m_visual.setStatic(); |
---|
1620 | } */ |
---|
1621 | } |
---|
1622 | |
---|
1623 | public void loadModel() { |
---|
1624 | try { |
---|
1625 | if (m_fileChooser == null) { |
---|
1626 | // i.e. after de-serialization |
---|
1627 | setupFileChooser(); |
---|
1628 | } |
---|
1629 | int returnVal = m_fileChooser.showOpenDialog(this); |
---|
1630 | if (returnVal == JFileChooser.APPROVE_OPTION) { |
---|
1631 | File loadFrom = m_fileChooser.getSelectedFile(); |
---|
1632 | |
---|
1633 | // add extension if necessary |
---|
1634 | if (m_fileChooser.getFileFilter() == m_binaryFilter) { |
---|
1635 | if (!loadFrom.getName().toLowerCase().endsWith("." + FILE_EXTENSION)) { |
---|
1636 | loadFrom = new File(loadFrom.getParent(), |
---|
1637 | loadFrom.getName() + "." + FILE_EXTENSION); |
---|
1638 | } |
---|
1639 | } else if (m_fileChooser.getFileFilter() == m_KOMLFilter) { |
---|
1640 | if (!loadFrom.getName().toLowerCase().endsWith(KOML.FILE_EXTENSION |
---|
1641 | + FILE_EXTENSION)) { |
---|
1642 | loadFrom = new File(loadFrom.getParent(), |
---|
1643 | loadFrom.getName() + KOML.FILE_EXTENSION |
---|
1644 | + FILE_EXTENSION); |
---|
1645 | } |
---|
1646 | } else if (m_fileChooser.getFileFilter() == m_XStreamFilter) { |
---|
1647 | if (!loadFrom.getName().toLowerCase().endsWith(XStream.FILE_EXTENSION |
---|
1648 | + FILE_EXTENSION)) { |
---|
1649 | loadFrom = new File(loadFrom.getParent(), |
---|
1650 | loadFrom.getName() + XStream.FILE_EXTENSION |
---|
1651 | + FILE_EXTENSION); |
---|
1652 | } |
---|
1653 | } |
---|
1654 | |
---|
1655 | weka.classifiers.Classifier temp = null; |
---|
1656 | Instances tempHeader = null; |
---|
1657 | // KOML ? |
---|
1658 | if ((KOML.isPresent()) && |
---|
1659 | (loadFrom.getAbsolutePath().toLowerCase(). |
---|
1660 | endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION))) { |
---|
1661 | Vector v = (Vector) KOML.read(loadFrom.getAbsolutePath()); |
---|
1662 | temp = (weka.classifiers.Classifier) v.elementAt(0); |
---|
1663 | if (v.size() == 2) { |
---|
1664 | // try and grab the header |
---|
1665 | tempHeader = (Instances) v.elementAt(1); |
---|
1666 | } |
---|
1667 | } /* XStream */ else if ((XStream.isPresent()) && |
---|
1668 | (loadFrom.getAbsolutePath().toLowerCase(). |
---|
1669 | endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION))) { |
---|
1670 | Vector v = (Vector) XStream.read(loadFrom.getAbsolutePath()); |
---|
1671 | temp = (weka.classifiers.Classifier) v.elementAt(0); |
---|
1672 | if (v.size() == 2) { |
---|
1673 | // try and grab the header |
---|
1674 | tempHeader = (Instances) v.elementAt(1); |
---|
1675 | } |
---|
1676 | } /* binary */ else { |
---|
1677 | |
---|
1678 | ObjectInputStream is = |
---|
1679 | new ObjectInputStream(new BufferedInputStream( |
---|
1680 | new FileInputStream(loadFrom))); |
---|
1681 | // try and read the model |
---|
1682 | temp = (weka.classifiers.Classifier)is.readObject(); |
---|
1683 | // try and read the header (if present) |
---|
1684 | try { |
---|
1685 | tempHeader = (Instances)is.readObject(); |
---|
1686 | } catch (Exception ex) { |
---|
1687 | // System.err.println("No header..."); |
---|
1688 | // quietly ignore |
---|
1689 | } |
---|
1690 | is.close(); |
---|
1691 | } |
---|
1692 | |
---|
1693 | // Update name and icon |
---|
1694 | setTrainedClassifier(temp); |
---|
1695 | // restore header |
---|
1696 | m_trainingSet = tempHeader; |
---|
1697 | |
---|
1698 | if (m_log != null) { |
---|
1699 | m_log.statusMessage(statusMessagePrefix() + "Loaded model."); |
---|
1700 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
1701 | + "Loaded classifier: " |
---|
1702 | + m_Classifier.getClass().toString()); |
---|
1703 | } |
---|
1704 | } |
---|
1705 | } catch (Exception ex) { |
---|
1706 | JOptionPane.showMessageDialog(Classifier.this, |
---|
1707 | "Problem loading classifier.\n", |
---|
1708 | "Load Model", |
---|
1709 | JOptionPane.ERROR_MESSAGE); |
---|
1710 | if (m_log != null) { |
---|
1711 | m_log.statusMessage(statusMessagePrefix() + "ERROR: unable to load " + |
---|
1712 | "model (see log)."); |
---|
1713 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
1714 | + "Problem loading classifier. " |
---|
1715 | + ex.getMessage()); |
---|
1716 | } |
---|
1717 | } |
---|
1718 | } |
---|
1719 | |
---|
1720 | public void saveModel() { |
---|
1721 | try { |
---|
1722 | if (m_fileChooser == null) { |
---|
1723 | // i.e. after de-serialization |
---|
1724 | setupFileChooser(); |
---|
1725 | } |
---|
1726 | int returnVal = m_fileChooser.showSaveDialog(this); |
---|
1727 | if (returnVal == JFileChooser.APPROVE_OPTION) { |
---|
1728 | File saveTo = m_fileChooser.getSelectedFile(); |
---|
1729 | String fn = saveTo.getAbsolutePath(); |
---|
1730 | if (m_fileChooser.getFileFilter() == m_binaryFilter) { |
---|
1731 | if (!fn.toLowerCase().endsWith("." + FILE_EXTENSION)) { |
---|
1732 | fn += "." + FILE_EXTENSION; |
---|
1733 | } |
---|
1734 | } else if (m_fileChooser.getFileFilter() == m_KOMLFilter) { |
---|
1735 | if (!fn.toLowerCase().endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) { |
---|
1736 | fn += KOML.FILE_EXTENSION + FILE_EXTENSION; |
---|
1737 | } |
---|
1738 | } else if (m_fileChooser.getFileFilter() == m_XStreamFilter) { |
---|
1739 | if (!fn.toLowerCase().endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) { |
---|
1740 | fn += XStream.FILE_EXTENSION + FILE_EXTENSION; |
---|
1741 | } |
---|
1742 | } |
---|
1743 | saveTo = new File(fn); |
---|
1744 | |
---|
1745 | // now serialize model |
---|
1746 | // KOML? |
---|
1747 | if ((KOML.isPresent()) && |
---|
1748 | saveTo.getAbsolutePath().toLowerCase(). |
---|
1749 | endsWith(KOML.FILE_EXTENSION + FILE_EXTENSION)) { |
---|
1750 | SerializedModelSaver.saveKOML(saveTo, |
---|
1751 | m_Classifier, |
---|
1752 | (m_trainingSet != null) |
---|
1753 | ? new Instances(m_trainingSet, 0) |
---|
1754 | : null); |
---|
1755 | /* Vector v = new Vector(); |
---|
1756 | v.add(m_Classifier); |
---|
1757 | if (m_trainingSet != null) { |
---|
1758 | v.add(new Instances(m_trainingSet, 0)); |
---|
1759 | } |
---|
1760 | v.trimToSize(); |
---|
1761 | KOML.write(saveTo.getAbsolutePath(), v); */ |
---|
1762 | } /* XStream */ else if ((XStream.isPresent()) && |
---|
1763 | saveTo.getAbsolutePath().toLowerCase(). |
---|
1764 | endsWith(XStream.FILE_EXTENSION + FILE_EXTENSION)) { |
---|
1765 | |
---|
1766 | SerializedModelSaver.saveXStream(saveTo, |
---|
1767 | m_Classifier, |
---|
1768 | (m_trainingSet != null) |
---|
1769 | ? new Instances(m_trainingSet, 0) |
---|
1770 | : null); |
---|
1771 | /* Vector v = new Vector(); |
---|
1772 | v.add(m_Classifier); |
---|
1773 | if (m_trainingSet != null) { |
---|
1774 | v.add(new Instances(m_trainingSet, 0)); |
---|
1775 | } |
---|
1776 | v.trimToSize(); |
---|
1777 | XStream.write(saveTo.getAbsolutePath(), v); */ |
---|
1778 | } else /* binary */ { |
---|
1779 | ObjectOutputStream os = |
---|
1780 | new ObjectOutputStream(new BufferedOutputStream( |
---|
1781 | new FileOutputStream(saveTo))); |
---|
1782 | os.writeObject(m_Classifier); |
---|
1783 | if (m_trainingSet != null) { |
---|
1784 | Instances header = new Instances(m_trainingSet, 0); |
---|
1785 | os.writeObject(header); |
---|
1786 | } |
---|
1787 | os.close(); |
---|
1788 | } |
---|
1789 | if (m_log != null) { |
---|
1790 | m_log.statusMessage(statusMessagePrefix() + "Model saved."); |
---|
1791 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
1792 | + " Saved classifier " + getCustomName()); |
---|
1793 | } |
---|
1794 | } |
---|
1795 | } catch (Exception ex) { |
---|
1796 | JOptionPane.showMessageDialog(Classifier.this, |
---|
1797 | "Problem saving classifier.\n", |
---|
1798 | "Save Model", |
---|
1799 | JOptionPane.ERROR_MESSAGE); |
---|
1800 | if (m_log != null) { |
---|
1801 | m_log.statusMessage(statusMessagePrefix() + "ERROR: unable to" + |
---|
1802 | " save model (see log)."); |
---|
1803 | m_log.logMessage("[Classifier] " + statusMessagePrefix() |
---|
1804 | + " Problem saving classifier " + getCustomName() |
---|
1805 | + ex.getMessage()); |
---|
1806 | } |
---|
1807 | } |
---|
1808 | } |
---|
1809 | |
---|
1810 | /** |
---|
1811 | * Set a logger |
---|
1812 | * |
---|
1813 | * @param logger a <code>Logger</code> value |
---|
1814 | */ |
---|
1815 | public void setLog(Logger logger) { |
---|
1816 | m_log = logger; |
---|
1817 | } |
---|
1818 | |
---|
1819 | /** |
---|
1820 | * Return an enumeration of requests that can be made by the user |
---|
1821 | * |
---|
1822 | * @return an <code>Enumeration</code> value |
---|
1823 | */ |
---|
1824 | public Enumeration enumerateRequests() { |
---|
1825 | Vector newVector = new Vector(0); |
---|
1826 | if (m_executorPool != null && |
---|
1827 | (m_executorPool.getQueue().size() > 0 || |
---|
1828 | m_executorPool.getActiveCount() > 0)) { |
---|
1829 | newVector.addElement("Stop"); |
---|
1830 | } |
---|
1831 | |
---|
1832 | if ((m_executorPool == null || |
---|
1833 | (m_executorPool.getQueue().size() == 0 && |
---|
1834 | m_executorPool.getActiveCount() == 0)) && |
---|
1835 | m_Classifier != null) { |
---|
1836 | newVector.addElement("Save model"); |
---|
1837 | } |
---|
1838 | |
---|
1839 | if (m_executorPool == null || |
---|
1840 | (m_executorPool.getQueue().size() == 0 && |
---|
1841 | m_executorPool.getActiveCount() == 0)) { |
---|
1842 | newVector.addElement("Load model"); |
---|
1843 | } |
---|
1844 | return newVector.elements(); |
---|
1845 | } |
---|
1846 | |
---|
1847 | /** |
---|
1848 | * Perform a particular request |
---|
1849 | * |
---|
1850 | * @param request the request to perform |
---|
1851 | * @exception IllegalArgumentException if an error occurs |
---|
1852 | */ |
---|
1853 | public void performRequest(String request) { |
---|
1854 | if (request.compareTo("Stop") == 0) { |
---|
1855 | stop(); |
---|
1856 | } else if (request.compareTo("Save model") == 0) { |
---|
1857 | saveModel(); |
---|
1858 | } else if (request.compareTo("Load model") == 0) { |
---|
1859 | loadModel(); |
---|
1860 | } else { |
---|
1861 | throw new IllegalArgumentException(request |
---|
1862 | + " not supported (Classifier)"); |
---|
1863 | } |
---|
1864 | } |
---|
1865 | |
---|
1866 | /** |
---|
1867 | * Returns true, if at the current time, the event described by the |
---|
1868 | * supplied event descriptor could be generated. |
---|
1869 | * |
---|
1870 | * @param esd an <code>EventSetDescriptor</code> value |
---|
1871 | * @return a <code>boolean</code> value |
---|
1872 | */ |
---|
1873 | public boolean eventGeneratable(EventSetDescriptor esd) { |
---|
1874 | String eventName = esd.getName(); |
---|
1875 | return eventGeneratable(eventName); |
---|
1876 | } |
---|
1877 | |
---|
1878 | /** |
---|
1879 | * @param name of the event to check |
---|
1880 | * @return true if eventName is one of the possible events |
---|
1881 | * that this component can generate |
---|
1882 | */ |
---|
1883 | private boolean generatableEvent(String eventName) { |
---|
1884 | if (eventName.compareTo("graph") == 0 |
---|
1885 | || eventName.compareTo("text") == 0 |
---|
1886 | || eventName.compareTo("batchClassifier") == 0 |
---|
1887 | || eventName.compareTo("incrementalClassifier") == 0 |
---|
1888 | || eventName.compareTo("configuration") == 0) { |
---|
1889 | return true; |
---|
1890 | } |
---|
1891 | return false; |
---|
1892 | } |
---|
1893 | |
---|
1894 | /** |
---|
1895 | * Returns true, if at the current time, the named event could |
---|
1896 | * be generated. Assumes that the supplied event name is |
---|
1897 | * an event that could be generated by this bean |
---|
1898 | * |
---|
1899 | * @param eventName the name of the event in question |
---|
1900 | * @return true if the named event could be generated at this point in |
---|
1901 | * time |
---|
1902 | */ |
---|
1903 | public boolean eventGeneratable(String eventName) { |
---|
1904 | if (!generatableEvent(eventName)) { |
---|
1905 | return false; |
---|
1906 | } |
---|
1907 | if (eventName.compareTo("graph") == 0) { |
---|
1908 | // can't generate a GraphEvent if classifier is not drawable |
---|
1909 | if (!(m_Classifier instanceof weka.core.Drawable)) { |
---|
1910 | return false; |
---|
1911 | } |
---|
1912 | // need to have a training set before the classifier |
---|
1913 | // can generate a graph! |
---|
1914 | if (!m_listenees.containsKey("trainingSet")) { |
---|
1915 | return false; |
---|
1916 | } |
---|
1917 | // Source needs to be able to generate a trainingSet |
---|
1918 | // before we can generate a graph |
---|
1919 | Object source = m_listenees.get("trainingSet"); |
---|
1920 | if (source instanceof EventConstraints) { |
---|
1921 | if (!((EventConstraints)source).eventGeneratable("trainingSet")) { |
---|
1922 | return false; |
---|
1923 | } |
---|
1924 | } |
---|
1925 | } |
---|
1926 | |
---|
1927 | if (eventName.compareTo("batchClassifier") == 0) { |
---|
1928 | /* if (!m_listenees.containsKey("testSet")) { |
---|
1929 | return false; |
---|
1930 | } |
---|
1931 | if (!m_listenees.containsKey("trainingSet") && |
---|
1932 | m_trainingSet == null) { |
---|
1933 | return false; |
---|
1934 | } */ |
---|
1935 | if (!m_listenees.containsKey("testSet") && |
---|
1936 | !m_listenees.containsKey("trainingSet")) { |
---|
1937 | return false; |
---|
1938 | } |
---|
1939 | Object source = m_listenees.get("testSet"); |
---|
1940 | if (source instanceof EventConstraints) { |
---|
1941 | if (!((EventConstraints)source).eventGeneratable("testSet")) { |
---|
1942 | return false; |
---|
1943 | } |
---|
1944 | } |
---|
1945 | /* source = m_listenees.get("trainingSet"); |
---|
1946 | if (source instanceof EventConstraints) { |
---|
1947 | if (!((EventConstraints)source).eventGeneratable("trainingSet")) { |
---|
1948 | return false; |
---|
1949 | } |
---|
1950 | } */ |
---|
1951 | } |
---|
1952 | |
---|
1953 | if (eventName.compareTo("text") == 0) { |
---|
1954 | if (!m_listenees.containsKey("trainingSet") && |
---|
1955 | !m_listenees.containsKey("instance")) { |
---|
1956 | return false; |
---|
1957 | } |
---|
1958 | Object source = m_listenees.get("trainingSet"); |
---|
1959 | if (source != null && source instanceof EventConstraints) { |
---|
1960 | if (!((EventConstraints)source).eventGeneratable("trainingSet")) { |
---|
1961 | return false; |
---|
1962 | } |
---|
1963 | } |
---|
1964 | source = m_listenees.get("instance"); |
---|
1965 | if (source != null && source instanceof EventConstraints) { |
---|
1966 | if (!((EventConstraints)source).eventGeneratable("instance")) { |
---|
1967 | return false; |
---|
1968 | } |
---|
1969 | } |
---|
1970 | } |
---|
1971 | |
---|
1972 | if (eventName.compareTo("incrementalClassifier") == 0) { |
---|
1973 | /* if (!(m_Classifier instanceof weka.classifiers.UpdateableClassifier)) { |
---|
1974 | return false; |
---|
1975 | } */ |
---|
1976 | if (!m_listenees.containsKey("instance")) { |
---|
1977 | return false; |
---|
1978 | } |
---|
1979 | Object source = m_listenees.get("instance"); |
---|
1980 | if (source instanceof EventConstraints) { |
---|
1981 | if (!((EventConstraints)source).eventGeneratable("instance")) { |
---|
1982 | return false; |
---|
1983 | } |
---|
1984 | } |
---|
1985 | } |
---|
1986 | |
---|
1987 | if (eventName.equals("configuration") && m_Classifier == null) { |
---|
1988 | return false; |
---|
1989 | } |
---|
1990 | |
---|
1991 | return true; |
---|
1992 | } |
---|
1993 | |
---|
1994 | /** |
---|
1995 | * Returns true if. at this time, the bean is busy with some |
---|
1996 | * (i.e. perhaps a worker thread is performing some calculation). |
---|
1997 | * |
---|
1998 | * @return true if the bean is busy. |
---|
1999 | */ |
---|
2000 | public boolean isBusy() { |
---|
2001 | if (m_executorPool == null || |
---|
2002 | (m_executorPool.getQueue().size() == 0 && |
---|
2003 | m_executorPool.getActiveCount() == 0) && m_state == IDLE) { |
---|
2004 | return false; |
---|
2005 | } |
---|
2006 | /* System.err.println("isBusy() Q:" + m_executorPool.getQueue().size() |
---|
2007 | +" A:" + m_executorPool.getActiveCount()); */ |
---|
2008 | return true; |
---|
2009 | } |
---|
2010 | |
---|
2011 | private String statusMessagePrefix() { |
---|
2012 | return getCustomName() + "$" + hashCode() + "|" |
---|
2013 | + ((m_Classifier instanceof OptionHandler && |
---|
2014 | Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()).length() > 0) |
---|
2015 | ? Utils.joinOptions(((OptionHandler)m_Classifier).getOptions()) + "|" |
---|
2016 | : ""); |
---|
2017 | } |
---|
2018 | } |
---|