1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * RegressionSplitEvaluator.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.classifiers.Classifier; |
---|
27 | import weka.classifiers.AbstractClassifier; |
---|
28 | import weka.classifiers.Evaluation; |
---|
29 | import weka.classifiers.rules.ZeroR; |
---|
30 | import weka.core.AdditionalMeasureProducer; |
---|
31 | import weka.core.Attribute; |
---|
32 | import weka.core.Instance; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.OptionHandler; |
---|
36 | import weka.core.RevisionHandler; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.Summarizable; |
---|
39 | import weka.core.Utils; |
---|
40 | |
---|
41 | import java.io.ByteArrayOutputStream; |
---|
42 | import java.io.ObjectOutputStream; |
---|
43 | import java.io.ObjectStreamClass; |
---|
44 | import java.io.Serializable; |
---|
45 | import java.lang.management.ManagementFactory; |
---|
46 | import java.lang.management.ThreadMXBean; |
---|
47 | import java.util.Enumeration; |
---|
48 | import java.util.Vector; |
---|
49 | |
---|
50 | /** |
---|
51 | <!-- globalinfo-start --> |
---|
52 | * A SplitEvaluator that produces results for a classification scheme on a numeric class attribute. |
---|
53 | * <p/> |
---|
54 | <!-- globalinfo-end --> |
---|
55 | * |
---|
56 | <!-- options-start --> |
---|
57 | * Valid options are: <p/> |
---|
58 | * |
---|
59 | * <pre> -W <class name> |
---|
60 | * The full class name of the classifier. |
---|
61 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
62 | * |
---|
63 | * <pre> |
---|
64 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
65 | * </pre> |
---|
66 | * |
---|
67 | * <pre> -D |
---|
68 | * If set, classifier is run in debug mode and |
---|
69 | * may output additional info to the console</pre> |
---|
70 | * |
---|
71 | <!-- options-end --> |
---|
72 | * |
---|
73 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
74 | * @version $Revision: 5987 $ |
---|
75 | */ |
---|
76 | public class RegressionSplitEvaluator |
---|
77 | implements SplitEvaluator, OptionHandler, AdditionalMeasureProducer, |
---|
78 | RevisionHandler { |
---|
79 | |
---|
80 | /** for serialization */ |
---|
81 | static final long serialVersionUID = -328181640503349202L; |
---|
82 | |
---|
83 | /** The template classifier */ |
---|
84 | protected Classifier m_Template = new ZeroR(); |
---|
85 | |
---|
86 | /** The classifier used for evaluation */ |
---|
87 | protected Classifier m_Classifier; |
---|
88 | |
---|
89 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
90 | protected String [] m_AdditionalMeasures = null; |
---|
91 | |
---|
92 | /** Array of booleans corresponding to the measures in m_AdditionalMeasures |
---|
93 | indicating which of the AdditionalMeasures the current classifier |
---|
94 | can produce */ |
---|
95 | protected boolean [] m_doesProduce = null; |
---|
96 | |
---|
97 | /** Holds the statistics for the most recent application of the classifier */ |
---|
98 | protected String m_result = null; |
---|
99 | |
---|
100 | /** The classifier options (if any) */ |
---|
101 | protected String m_ClassifierOptions = ""; |
---|
102 | |
---|
103 | /** The classifier version */ |
---|
104 | protected String m_ClassifierVersion = ""; |
---|
105 | |
---|
106 | /** The length of a key */ |
---|
107 | private static final int KEY_SIZE = 3; |
---|
108 | |
---|
109 | /** The length of a result */ |
---|
110 | private static final int RESULT_SIZE = 23; |
---|
111 | |
---|
112 | /** |
---|
113 | * No args constructor. |
---|
114 | */ |
---|
115 | public RegressionSplitEvaluator() { |
---|
116 | |
---|
117 | updateOptions(); |
---|
118 | } |
---|
119 | |
---|
120 | /** |
---|
121 | * Returns a string describing this split evaluator |
---|
122 | * @return a description of the split evaluator suitable for |
---|
123 | * displaying in the explorer/experimenter gui |
---|
124 | */ |
---|
125 | public String globalInfo() { |
---|
126 | return "A SplitEvaluator that produces results for a classification " |
---|
127 | +"scheme on a numeric class attribute."; |
---|
128 | } |
---|
129 | |
---|
130 | /** |
---|
131 | * Returns an enumeration describing the available options.. |
---|
132 | * |
---|
133 | * @return an enumeration of all the available options. |
---|
134 | */ |
---|
135 | public Enumeration listOptions() { |
---|
136 | |
---|
137 | Vector newVector = new Vector(1); |
---|
138 | |
---|
139 | newVector.addElement(new Option( |
---|
140 | "\tThe full class name of the classifier.\n" |
---|
141 | +"\teg: weka.classifiers.bayes.NaiveBayes", |
---|
142 | "W", 1, |
---|
143 | "-W <class name>")); |
---|
144 | |
---|
145 | if ((m_Template != null) && |
---|
146 | (m_Template instanceof OptionHandler)) { |
---|
147 | newVector.addElement(new Option( |
---|
148 | "", |
---|
149 | "", 0, "\nOptions specific to classifier " |
---|
150 | + m_Template.getClass().getName() + ":")); |
---|
151 | Enumeration enu = ((OptionHandler)m_Template).listOptions(); |
---|
152 | while (enu.hasMoreElements()) { |
---|
153 | newVector.addElement(enu.nextElement()); |
---|
154 | } |
---|
155 | } |
---|
156 | return newVector.elements(); |
---|
157 | } |
---|
158 | |
---|
159 | /** |
---|
160 | * Parses a given list of options. <p/> |
---|
161 | * |
---|
162 | <!-- options-start --> |
---|
163 | * Valid options are: <p/> |
---|
164 | * |
---|
165 | * <pre> -W <class name> |
---|
166 | * The full class name of the classifier. |
---|
167 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
168 | * |
---|
169 | * <pre> |
---|
170 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
171 | * </pre> |
---|
172 | * |
---|
173 | * <pre> -D |
---|
174 | * If set, classifier is run in debug mode and |
---|
175 | * may output additional info to the console</pre> |
---|
176 | * |
---|
177 | <!-- options-end --> |
---|
178 | * |
---|
179 | * All option after -- will be passed to the classifier. |
---|
180 | * |
---|
181 | * @param options the list of options as an array of strings |
---|
182 | * @throws Exception if an option is not supported |
---|
183 | */ |
---|
184 | public void setOptions(String[] options) throws Exception { |
---|
185 | |
---|
186 | String cName = Utils.getOption('W', options); |
---|
187 | if (cName.length() == 0) { |
---|
188 | throw new Exception("A classifier must be specified with" |
---|
189 | + " the -W option."); |
---|
190 | } |
---|
191 | // Do it first without options, so if an exception is thrown during |
---|
192 | // the option setting, listOptions will contain options for the actual |
---|
193 | // Classifier. |
---|
194 | setClassifier(AbstractClassifier.forName(cName, null)); |
---|
195 | if (getClassifier() instanceof OptionHandler) { |
---|
196 | ((OptionHandler) getClassifier()) |
---|
197 | .setOptions(Utils.partitionOptions(options)); |
---|
198 | updateOptions(); |
---|
199 | } |
---|
200 | } |
---|
201 | |
---|
202 | /** |
---|
203 | * Gets the current settings of the Classifier. |
---|
204 | * |
---|
205 | * @return an array of strings suitable for passing to setOptions |
---|
206 | */ |
---|
207 | public String [] getOptions() { |
---|
208 | |
---|
209 | String [] classifierOptions = new String [0]; |
---|
210 | if ((m_Template != null) && |
---|
211 | (m_Template instanceof OptionHandler)) { |
---|
212 | classifierOptions = ((OptionHandler)m_Template).getOptions(); |
---|
213 | } |
---|
214 | |
---|
215 | String [] options = new String [classifierOptions.length + 3]; |
---|
216 | int current = 0; |
---|
217 | |
---|
218 | if (getClassifier() != null) { |
---|
219 | options[current++] = "-W"; |
---|
220 | options[current++] = getClassifier().getClass().getName(); |
---|
221 | } |
---|
222 | options[current++] = "--"; |
---|
223 | |
---|
224 | System.arraycopy(classifierOptions, 0, options, current, |
---|
225 | classifierOptions.length); |
---|
226 | current += classifierOptions.length; |
---|
227 | while (current < options.length) { |
---|
228 | options[current++] = ""; |
---|
229 | } |
---|
230 | return options; |
---|
231 | } |
---|
232 | |
---|
233 | /** |
---|
234 | * Set a list of method names for additional measures to look for |
---|
235 | * in Classifiers. This could contain many measures (of which only a |
---|
236 | * subset may be produceable by the current Classifier) if an experiment |
---|
237 | * is the type that iterates over a set of properties. |
---|
238 | * @param additionalMeasures an array of method names. |
---|
239 | */ |
---|
240 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
241 | m_AdditionalMeasures = additionalMeasures; |
---|
242 | |
---|
243 | // determine which (if any) of the additional measures this classifier |
---|
244 | // can produce |
---|
245 | if (m_AdditionalMeasures != null && m_AdditionalMeasures.length > 0) { |
---|
246 | m_doesProduce = new boolean [m_AdditionalMeasures.length]; |
---|
247 | |
---|
248 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
249 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
250 | enumerateMeasures(); |
---|
251 | while (en.hasMoreElements()) { |
---|
252 | String mname = (String)en.nextElement(); |
---|
253 | for (int j=0;j<m_AdditionalMeasures.length;j++) { |
---|
254 | if (mname.compareToIgnoreCase(m_AdditionalMeasures[j]) == 0) { |
---|
255 | m_doesProduce[j] = true; |
---|
256 | } |
---|
257 | } |
---|
258 | } |
---|
259 | } |
---|
260 | } else { |
---|
261 | m_doesProduce = null; |
---|
262 | } |
---|
263 | } |
---|
264 | |
---|
265 | |
---|
266 | /** |
---|
267 | * Returns an enumeration of any additional measure names that might be |
---|
268 | * in the classifier |
---|
269 | * @return an enumeration of the measure names |
---|
270 | */ |
---|
271 | public Enumeration enumerateMeasures() { |
---|
272 | Vector newVector = new Vector(); |
---|
273 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
274 | Enumeration en = ((AdditionalMeasureProducer)m_Template). |
---|
275 | enumerateMeasures(); |
---|
276 | while (en.hasMoreElements()) { |
---|
277 | String mname = (String)en.nextElement(); |
---|
278 | newVector.addElement(mname); |
---|
279 | } |
---|
280 | } |
---|
281 | return newVector.elements(); |
---|
282 | } |
---|
283 | |
---|
284 | /** |
---|
285 | * Returns the value of the named measure |
---|
286 | * @param additionalMeasureName the name of the measure to query for its value |
---|
287 | * @return the value of the named measure |
---|
288 | * @throws IllegalArgumentException if the named measure is not supported |
---|
289 | */ |
---|
290 | public double getMeasure(String additionalMeasureName) { |
---|
291 | if (m_Template instanceof AdditionalMeasureProducer) { |
---|
292 | if (m_Classifier == null) { |
---|
293 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " + |
---|
294 | "Can't return result for measure, " + |
---|
295 | "classifier has not been built yet."); |
---|
296 | } |
---|
297 | return ((AdditionalMeasureProducer)m_Classifier). |
---|
298 | getMeasure(additionalMeasureName); |
---|
299 | } else { |
---|
300 | throw new IllegalArgumentException("ClassifierSplitEvaluator: " |
---|
301 | +"Can't return value for : "+additionalMeasureName |
---|
302 | +". "+m_Template.getClass().getName()+" " |
---|
303 | +"is not an AdditionalMeasureProducer"); |
---|
304 | } |
---|
305 | } |
---|
306 | |
---|
307 | /** |
---|
308 | * Gets the data types of each of the key columns produced for a single run. |
---|
309 | * The number of key fields must be constant |
---|
310 | * for a given SplitEvaluator. |
---|
311 | * |
---|
312 | * @return an array containing objects of the type of each key column. The |
---|
313 | * objects should be Strings, or Doubles. |
---|
314 | */ |
---|
315 | public Object [] getKeyTypes() { |
---|
316 | |
---|
317 | Object [] keyTypes = new Object[KEY_SIZE]; |
---|
318 | keyTypes[0] = ""; |
---|
319 | keyTypes[1] = ""; |
---|
320 | keyTypes[2] = ""; |
---|
321 | return keyTypes; |
---|
322 | } |
---|
323 | |
---|
324 | /** |
---|
325 | * Gets the names of each of the key columns produced for a single run. |
---|
326 | * The number of key fields must be constant |
---|
327 | * for a given SplitEvaluator. |
---|
328 | * |
---|
329 | * @return an array containing the name of each key column |
---|
330 | */ |
---|
331 | public String [] getKeyNames() { |
---|
332 | |
---|
333 | String [] keyNames = new String[KEY_SIZE]; |
---|
334 | keyNames[0] = "Scheme"; |
---|
335 | keyNames[1] = "Scheme_options"; |
---|
336 | keyNames[2] = "Scheme_version_ID"; |
---|
337 | return keyNames; |
---|
338 | } |
---|
339 | |
---|
340 | /** |
---|
341 | * Gets the key describing the current SplitEvaluator. For example |
---|
342 | * This may contain the name of the classifier used for classifier |
---|
343 | * predictive evaluation. The number of key fields must be constant |
---|
344 | * for a given SplitEvaluator. |
---|
345 | * |
---|
346 | * @return an array of objects containing the key. |
---|
347 | */ |
---|
348 | public Object [] getKey(){ |
---|
349 | |
---|
350 | Object [] key = new Object[KEY_SIZE]; |
---|
351 | key[0] = m_Template.getClass().getName(); |
---|
352 | key[1] = m_ClassifierOptions; |
---|
353 | key[2] = m_ClassifierVersion; |
---|
354 | return key; |
---|
355 | } |
---|
356 | |
---|
357 | /** |
---|
358 | * Gets the data types of each of the result columns produced for a |
---|
359 | * single run. The number of result fields must be constant |
---|
360 | * for a given SplitEvaluator. |
---|
361 | * |
---|
362 | * @return an array containing objects of the type of each result column. |
---|
363 | * The objects should be Strings, or Doubles. |
---|
364 | */ |
---|
365 | public Object [] getResultTypes() { |
---|
366 | int addm = (m_AdditionalMeasures != null) |
---|
367 | ? m_AdditionalMeasures.length |
---|
368 | : 0; |
---|
369 | Object [] resultTypes = new Object[RESULT_SIZE+addm]; |
---|
370 | Double doub = new Double(0); |
---|
371 | int current = 0; |
---|
372 | resultTypes[current++] = doub; |
---|
373 | resultTypes[current++] = doub; |
---|
374 | |
---|
375 | resultTypes[current++] = doub; |
---|
376 | resultTypes[current++] = doub; |
---|
377 | resultTypes[current++] = doub; |
---|
378 | resultTypes[current++] = doub; |
---|
379 | resultTypes[current++] = doub; |
---|
380 | |
---|
381 | resultTypes[current++] = doub; |
---|
382 | resultTypes[current++] = doub; |
---|
383 | resultTypes[current++] = doub; |
---|
384 | resultTypes[current++] = doub; |
---|
385 | resultTypes[current++] = doub; |
---|
386 | resultTypes[current++] = doub; |
---|
387 | |
---|
388 | // Timing stats |
---|
389 | resultTypes[current++] = doub; |
---|
390 | resultTypes[current++] = doub; |
---|
391 | resultTypes[current++] = doub; |
---|
392 | resultTypes[current++] = doub; |
---|
393 | |
---|
394 | // sizes |
---|
395 | resultTypes[current++] = doub; |
---|
396 | resultTypes[current++] = doub; |
---|
397 | resultTypes[current++] = doub; |
---|
398 | |
---|
399 | // Prediction interval statistics |
---|
400 | resultTypes[current++] = doub; |
---|
401 | resultTypes[current++] = doub; |
---|
402 | |
---|
403 | resultTypes[current++] = ""; |
---|
404 | |
---|
405 | // add any additional measures |
---|
406 | for (int i=0;i<addm;i++) { |
---|
407 | resultTypes[current++] = doub; |
---|
408 | } |
---|
409 | if (current != RESULT_SIZE+addm) { |
---|
410 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
411 | } |
---|
412 | return resultTypes; |
---|
413 | } |
---|
414 | |
---|
415 | /** |
---|
416 | * Gets the names of each of the result columns produced for a single run. |
---|
417 | * The number of result fields must be constant |
---|
418 | * for a given SplitEvaluator. |
---|
419 | * |
---|
420 | * @return an array containing the name of each result column |
---|
421 | */ |
---|
422 | public String [] getResultNames() { |
---|
423 | int addm = (m_AdditionalMeasures != null) |
---|
424 | ? m_AdditionalMeasures.length |
---|
425 | : 0; |
---|
426 | String [] resultNames = new String[RESULT_SIZE+addm]; |
---|
427 | int current = 0; |
---|
428 | resultNames[current++] = "Number_of_training_instances"; |
---|
429 | resultNames[current++] = "Number_of_testing_instances"; |
---|
430 | |
---|
431 | // Sensitive stats - certainty of predictions |
---|
432 | resultNames[current++] = "Mean_absolute_error"; |
---|
433 | resultNames[current++] = "Root_mean_squared_error"; |
---|
434 | resultNames[current++] = "Relative_absolute_error"; |
---|
435 | resultNames[current++] = "Root_relative_squared_error"; |
---|
436 | resultNames[current++] = "Correlation_coefficient"; |
---|
437 | |
---|
438 | // SF stats |
---|
439 | resultNames[current++] = "SF_prior_entropy"; |
---|
440 | resultNames[current++] = "SF_scheme_entropy"; |
---|
441 | resultNames[current++] = "SF_entropy_gain"; |
---|
442 | resultNames[current++] = "SF_mean_prior_entropy"; |
---|
443 | resultNames[current++] = "SF_mean_scheme_entropy"; |
---|
444 | resultNames[current++] = "SF_mean_entropy_gain"; |
---|
445 | |
---|
446 | // Timing stats |
---|
447 | resultNames[current++] = "Elapsed_Time_training"; |
---|
448 | resultNames[current++] = "Elapsed_Time_testing"; |
---|
449 | resultNames[current++] = "UserCPU_Time_training"; |
---|
450 | resultNames[current++] = "UserCPU_Time_testing"; |
---|
451 | |
---|
452 | // sizes |
---|
453 | resultNames[current++] = "Serialized_Model_Size"; |
---|
454 | resultNames[current++] = "Serialized_Train_Set_Size"; |
---|
455 | resultNames[current++] = "Serialized_Test_Set_Size"; |
---|
456 | |
---|
457 | // Prediction interval statistics |
---|
458 | resultNames[current++] = "Coverage_of_Test_Cases_By_Regions"; |
---|
459 | resultNames[current++] = "Size_of_Predicted_Regions"; |
---|
460 | |
---|
461 | // Classifier defined extras |
---|
462 | resultNames[current++] = "Summary"; |
---|
463 | // add any additional measures |
---|
464 | for (int i=0;i<addm;i++) { |
---|
465 | resultNames[current++] = m_AdditionalMeasures[i]; |
---|
466 | } |
---|
467 | if (current != RESULT_SIZE+addm) { |
---|
468 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
469 | } |
---|
470 | return resultNames; |
---|
471 | } |
---|
472 | |
---|
473 | /** |
---|
474 | * Gets the results for the supplied train and test datasets. Now performs |
---|
475 | * a deep copy of the classifier before it is built and evaluated (just in case |
---|
476 | * the classifier is not initialized properly in buildClassifier()). |
---|
477 | * |
---|
478 | * @param train the training Instances. |
---|
479 | * @param test the testing Instances. |
---|
480 | * @return the results stored in an array. The objects stored in |
---|
481 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
482 | * @throws Exception if a problem occurs while getting the results |
---|
483 | */ |
---|
484 | public Object [] getResult(Instances train, Instances test) |
---|
485 | throws Exception { |
---|
486 | |
---|
487 | if (train.classAttribute().type() != Attribute.NUMERIC) { |
---|
488 | throw new Exception("Class attribute is not numeric!"); |
---|
489 | } |
---|
490 | if (m_Template == null) { |
---|
491 | throw new Exception("No classifier has been specified"); |
---|
492 | } |
---|
493 | ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean(); |
---|
494 | boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported(); |
---|
495 | if(!thMonitor.isThreadCpuTimeEnabled()) |
---|
496 | thMonitor.setThreadCpuTimeEnabled(true); |
---|
497 | |
---|
498 | int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0; |
---|
499 | Object [] result = new Object[RESULT_SIZE+addm]; |
---|
500 | long thID = Thread.currentThread().getId(); |
---|
501 | long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1, |
---|
502 | trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed; |
---|
503 | Evaluation eval = new Evaluation(train); |
---|
504 | m_Classifier = AbstractClassifier.makeCopy(m_Template); |
---|
505 | |
---|
506 | trainTimeStart = System.currentTimeMillis(); |
---|
507 | if(canMeasureCPUTime) |
---|
508 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
509 | m_Classifier.buildClassifier(train); |
---|
510 | if(canMeasureCPUTime) |
---|
511 | trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
512 | trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
513 | testTimeStart = System.currentTimeMillis(); |
---|
514 | if(canMeasureCPUTime) |
---|
515 | CPUStartTime = thMonitor.getThreadUserTime(thID); |
---|
516 | eval.evaluateModel(m_Classifier, test); |
---|
517 | if(canMeasureCPUTime) |
---|
518 | testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime; |
---|
519 | testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
520 | thMonitor = null; |
---|
521 | |
---|
522 | m_result = eval.toSummaryString(); |
---|
523 | // The results stored are all per instance -- can be multiplied by the |
---|
524 | // number of instances to get absolute numbers |
---|
525 | int current = 0; |
---|
526 | result[current++] = new Double(train.numInstances()); |
---|
527 | result[current++] = new Double(eval.numInstances()); |
---|
528 | |
---|
529 | result[current++] = new Double(eval.meanAbsoluteError()); |
---|
530 | result[current++] = new Double(eval.rootMeanSquaredError()); |
---|
531 | result[current++] = new Double(eval.relativeAbsoluteError()); |
---|
532 | result[current++] = new Double(eval.rootRelativeSquaredError()); |
---|
533 | result[current++] = new Double(eval.correlationCoefficient()); |
---|
534 | |
---|
535 | result[current++] = new Double(eval.SFPriorEntropy()); |
---|
536 | result[current++] = new Double(eval.SFSchemeEntropy()); |
---|
537 | result[current++] = new Double(eval.SFEntropyGain()); |
---|
538 | result[current++] = new Double(eval.SFMeanPriorEntropy()); |
---|
539 | result[current++] = new Double(eval.SFMeanSchemeEntropy()); |
---|
540 | result[current++] = new Double(eval.SFMeanEntropyGain()); |
---|
541 | |
---|
542 | // Timing stats |
---|
543 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
544 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
545 | if(canMeasureCPUTime) { |
---|
546 | result[current++] = new Double((trainCPUTimeElapsed/1000000.0) / 1000.0); |
---|
547 | result[current++] = new Double((testCPUTimeElapsed /1000000.0) / 1000.0); |
---|
548 | } |
---|
549 | else { |
---|
550 | result[current++] = new Double(Utils.missingValue()); |
---|
551 | result[current++] = new Double(Utils.missingValue()); |
---|
552 | } |
---|
553 | |
---|
554 | // sizes |
---|
555 | ByteArrayOutputStream bastream = new ByteArrayOutputStream(); |
---|
556 | ObjectOutputStream oostream = new ObjectOutputStream(bastream); |
---|
557 | oostream.writeObject(m_Classifier); |
---|
558 | result[current++] = new Double(bastream.size()); |
---|
559 | bastream = new ByteArrayOutputStream(); |
---|
560 | oostream = new ObjectOutputStream(bastream); |
---|
561 | oostream.writeObject(train); |
---|
562 | result[current++] = new Double(bastream.size()); |
---|
563 | bastream = new ByteArrayOutputStream(); |
---|
564 | oostream = new ObjectOutputStream(bastream); |
---|
565 | oostream.writeObject(test); |
---|
566 | result[current++] = new Double(bastream.size()); |
---|
567 | |
---|
568 | // Prediction interval statistics |
---|
569 | result[current++] = new Double(eval.coverageOfTestCasesByPredictedRegions()); |
---|
570 | result[current++] = new Double(eval.sizeOfPredictedRegions()); |
---|
571 | |
---|
572 | if (m_Classifier instanceof Summarizable) { |
---|
573 | result[current++] = ((Summarizable)m_Classifier).toSummaryString(); |
---|
574 | } else { |
---|
575 | result[current++] = null; |
---|
576 | } |
---|
577 | |
---|
578 | for (int i=0;i<addm;i++) { |
---|
579 | if (m_doesProduce[i]) { |
---|
580 | try { |
---|
581 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
582 | getMeasure(m_AdditionalMeasures[i]); |
---|
583 | if (!Utils.isMissingValue(dv)) { |
---|
584 | Double value = new Double(dv); |
---|
585 | result[current++] = value; |
---|
586 | } else { |
---|
587 | result[current++] = null; |
---|
588 | } |
---|
589 | } catch (Exception ex) { |
---|
590 | System.err.println(ex); |
---|
591 | } |
---|
592 | } else { |
---|
593 | result[current++] = null; |
---|
594 | } |
---|
595 | } |
---|
596 | |
---|
597 | if (current != RESULT_SIZE+addm) { |
---|
598 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
599 | } |
---|
600 | return result; |
---|
601 | } |
---|
602 | |
---|
603 | /** |
---|
604 | * Returns the tip text for this property |
---|
605 | * @return tip text for this property suitable for |
---|
606 | * displaying in the explorer/experimenter gui |
---|
607 | */ |
---|
608 | public String classifierTipText() { |
---|
609 | return "The classifier to use."; |
---|
610 | } |
---|
611 | |
---|
612 | /** |
---|
613 | * Get the value of Classifier. |
---|
614 | * |
---|
615 | * @return Value of Classifier. |
---|
616 | */ |
---|
617 | public Classifier getClassifier() { |
---|
618 | |
---|
619 | return m_Template; |
---|
620 | } |
---|
621 | |
---|
622 | /** |
---|
623 | * Sets the classifier. |
---|
624 | * |
---|
625 | * @param newClassifier the new classifier to use. |
---|
626 | */ |
---|
627 | public void setClassifier(Classifier newClassifier) { |
---|
628 | |
---|
629 | m_Template = newClassifier; |
---|
630 | updateOptions(); |
---|
631 | |
---|
632 | System.err.println("RegressionSplitEvaluator: In set classifier"); |
---|
633 | } |
---|
634 | |
---|
635 | /** |
---|
636 | * Updates the options that the current classifier is using. |
---|
637 | */ |
---|
638 | protected void updateOptions() { |
---|
639 | |
---|
640 | if (m_Template instanceof OptionHandler) { |
---|
641 | m_ClassifierOptions = Utils.joinOptions(((OptionHandler)m_Template) |
---|
642 | .getOptions()); |
---|
643 | } else { |
---|
644 | m_ClassifierOptions = ""; |
---|
645 | } |
---|
646 | if (m_Template instanceof Serializable) { |
---|
647 | ObjectStreamClass obs = ObjectStreamClass.lookup(m_Template |
---|
648 | .getClass()); |
---|
649 | m_ClassifierVersion = "" + obs.getSerialVersionUID(); |
---|
650 | } else { |
---|
651 | m_ClassifierVersion = ""; |
---|
652 | } |
---|
653 | } |
---|
654 | |
---|
655 | /** |
---|
656 | * Set the Classifier to use, given it's class name. A new classifier will be |
---|
657 | * instantiated. |
---|
658 | * |
---|
659 | * @param newClassifierName the Classifier class name. |
---|
660 | * @throws Exception if the class name is invalid. |
---|
661 | */ |
---|
662 | public void setClassifierName(String newClassifierName) throws Exception { |
---|
663 | |
---|
664 | try { |
---|
665 | setClassifier((Classifier)Class.forName(newClassifierName) |
---|
666 | .newInstance()); |
---|
667 | } catch (Exception ex) { |
---|
668 | throw new Exception("Can't find Classifier with class name: " |
---|
669 | + newClassifierName); |
---|
670 | } |
---|
671 | } |
---|
672 | |
---|
673 | /** |
---|
674 | * Gets the raw output from the classifier |
---|
675 | * @return the raw output from the classifier |
---|
676 | */ |
---|
677 | public String getRawResultOutput() { |
---|
678 | StringBuffer result = new StringBuffer(); |
---|
679 | |
---|
680 | if (m_Classifier == null) { |
---|
681 | return "<null> classifier"; |
---|
682 | } |
---|
683 | result.append(toString()); |
---|
684 | result.append("Classifier model: \n"+m_Classifier.toString()+'\n'); |
---|
685 | |
---|
686 | // append the performance statistics |
---|
687 | if (m_result != null) { |
---|
688 | result.append(m_result); |
---|
689 | |
---|
690 | if (m_doesProduce != null) { |
---|
691 | for (int i=0;i<m_doesProduce.length;i++) { |
---|
692 | if (m_doesProduce[i]) { |
---|
693 | try { |
---|
694 | double dv = ((AdditionalMeasureProducer)m_Classifier). |
---|
695 | getMeasure(m_AdditionalMeasures[i]); |
---|
696 | if (!Utils.isMissingValue(dv)) { |
---|
697 | Double value = new Double(dv); |
---|
698 | result.append(m_AdditionalMeasures[i]+" : "+value+'\n'); |
---|
699 | } else { |
---|
700 | result.append(m_AdditionalMeasures[i]+" : "+'?'+'\n'); |
---|
701 | } |
---|
702 | } catch (Exception ex) { |
---|
703 | System.err.println(ex); |
---|
704 | } |
---|
705 | } |
---|
706 | } |
---|
707 | } |
---|
708 | } |
---|
709 | return result.toString(); |
---|
710 | } |
---|
711 | |
---|
712 | /** |
---|
713 | * Returns a text description of the split evaluator. |
---|
714 | * |
---|
715 | * @return a text description of the split evaluator. |
---|
716 | */ |
---|
717 | public String toString() { |
---|
718 | |
---|
719 | String result = "RegressionSplitEvaluator: "; |
---|
720 | if (m_Template == null) { |
---|
721 | return result + "<null> classifier"; |
---|
722 | } |
---|
723 | return result + m_Template.getClass().getName() + " " |
---|
724 | + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")"; |
---|
725 | } |
---|
726 | |
---|
727 | /** |
---|
728 | * Returns the revision string. |
---|
729 | * |
---|
730 | * @return the revision |
---|
731 | */ |
---|
732 | public String getRevision() { |
---|
733 | return RevisionUtils.extract("$Revision: 5987 $"); |
---|
734 | } |
---|
735 | } // RegressionSplitEvaluator |
---|