| 1 | /* |
|---|
| 2 | * This program is free software; you can redistribute it and/or modify |
|---|
| 3 | * it under the terms of the GNU General Public License as published by |
|---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
|---|
| 5 | * (at your option) any later version. |
|---|
| 6 | * |
|---|
| 7 | * This program is distributed in the hope that it will be useful, |
|---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
|---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|---|
| 10 | * GNU General Public License for more details. |
|---|
| 11 | * |
|---|
| 12 | * You should have received a copy of the GNU General Public License |
|---|
| 13 | * along with this program; if not, write to the Free Software |
|---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | /* |
|---|
| 18 | * PairedStatsCorrected.java |
|---|
| 19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
|---|
| 20 | * |
|---|
| 21 | */ |
|---|
| 22 | |
|---|
| 23 | package weka.experiment; |
|---|
| 24 | |
|---|
| 25 | import weka.core.RevisionUtils; |
|---|
| 26 | import weka.core.Utils; |
|---|
| 27 | import weka.core.Statistics; |
|---|
| 28 | |
|---|
| 29 | /** |
|---|
| 30 | * A class for storing stats on a paired comparison. This version is |
|---|
| 31 | * based on the corrected resampled t-test statistic, which uses the |
|---|
| 32 | * ratio of the number of test examples/the number of training examples.<p> |
|---|
| 33 | * |
|---|
| 34 | * For more information see:<p> |
|---|
| 35 | * |
|---|
| 36 | * Claude Nadeau and Yoshua Bengio, "Inference for the Generalization Error," |
|---|
| 37 | * Machine Learning, 2001. |
|---|
| 38 | * |
|---|
| 39 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
|---|
| 40 | * @version $Revision: 1.5 $ |
|---|
| 41 | */ |
|---|
| 42 | public class PairedStatsCorrected |
|---|
| 43 | extends PairedStats { |
|---|
| 44 | |
|---|
| 45 | /** The ratio used to correct the significane test */ |
|---|
| 46 | protected double m_testTrainRatio; |
|---|
| 47 | |
|---|
| 48 | /** |
|---|
| 49 | * Creates a new PairedStatsCorrected object with the supplied |
|---|
| 50 | * significance level and train/test ratio. |
|---|
| 51 | * |
|---|
| 52 | * @param sig the significance level for comparisons |
|---|
| 53 | * @param testTrainRatio the number test examples/training examples |
|---|
| 54 | */ |
|---|
| 55 | public PairedStatsCorrected(double sig, double testTrainRatio) { |
|---|
| 56 | |
|---|
| 57 | super(sig); |
|---|
| 58 | m_testTrainRatio = testTrainRatio; |
|---|
| 59 | } |
|---|
| 60 | |
|---|
| 61 | /** |
|---|
| 62 | * Calculates the derived statistics (significance etc). |
|---|
| 63 | */ |
|---|
| 64 | public void calculateDerived() { |
|---|
| 65 | |
|---|
| 66 | xStats.calculateDerived(); |
|---|
| 67 | yStats.calculateDerived(); |
|---|
| 68 | differencesStats.calculateDerived(); |
|---|
| 69 | |
|---|
| 70 | correlation = Double.NaN; |
|---|
| 71 | if (!Double.isNaN(xStats.stdDev) && !Double.isNaN(yStats.stdDev) |
|---|
| 72 | && !Utils.eq(xStats.stdDev, 0)) { |
|---|
| 73 | double slope = (xySum - xStats.sum * yStats.sum / count) |
|---|
| 74 | / (xStats.sumSq - xStats.sum * xStats.mean); |
|---|
| 75 | if (!Utils.eq(yStats.stdDev, 0)) { |
|---|
| 76 | correlation = slope * xStats.stdDev / yStats.stdDev; |
|---|
| 77 | } else { |
|---|
| 78 | correlation = 1.0; |
|---|
| 79 | } |
|---|
| 80 | } |
|---|
| 81 | |
|---|
| 82 | if (Utils.gr(differencesStats.stdDev, 0)) { |
|---|
| 83 | |
|---|
| 84 | double tval = differencesStats.mean |
|---|
| 85 | / Math.sqrt((1 / count + m_testTrainRatio) |
|---|
| 86 | * differencesStats.stdDev * differencesStats.stdDev); |
|---|
| 87 | |
|---|
| 88 | if (count > 1) { |
|---|
| 89 | differencesProbability = Statistics.FProbability(tval * tval, 1, |
|---|
| 90 | (int) count - 1); |
|---|
| 91 | } else differencesProbability = 1; |
|---|
| 92 | } else { |
|---|
| 93 | if (differencesStats.sumSq == 0) { |
|---|
| 94 | differencesProbability = 1.0; |
|---|
| 95 | } else { |
|---|
| 96 | differencesProbability = 0.0; |
|---|
| 97 | } |
|---|
| 98 | } |
|---|
| 99 | differencesSignificance = 0; |
|---|
| 100 | if (differencesProbability <= sigLevel) { |
|---|
| 101 | if (xStats.mean > yStats.mean) { |
|---|
| 102 | differencesSignificance = 1; |
|---|
| 103 | } else { |
|---|
| 104 | differencesSignificance = -1; |
|---|
| 105 | } |
|---|
| 106 | } |
|---|
| 107 | } |
|---|
| 108 | |
|---|
| 109 | /** |
|---|
| 110 | * Returns the revision string. |
|---|
| 111 | * |
|---|
| 112 | * @return the revision |
|---|
| 113 | */ |
|---|
| 114 | public String getRevision() { |
|---|
| 115 | return RevisionUtils.extract("$Revision: 1.5 $"); |
|---|
| 116 | } |
|---|
| 117 | } |
|---|