1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * PairedCorrectedTTester.java |
---|
19 | * Copyright (C) 2003 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.core.Attribute; |
---|
27 | import weka.core.FastVector; |
---|
28 | import weka.core.Instance; |
---|
29 | import weka.core.Instances; |
---|
30 | import weka.core.Option; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.Utils; |
---|
33 | import weka.core.TechnicalInformation; |
---|
34 | import weka.core.TechnicalInformation.Type; |
---|
35 | import weka.core.TechnicalInformation.Field; |
---|
36 | import weka.core.TechnicalInformationHandler; |
---|
37 | |
---|
38 | import java.io.BufferedReader; |
---|
39 | import java.io.FileReader; |
---|
40 | import java.util.Enumeration; |
---|
41 | |
---|
42 | /** |
---|
43 | * Behaves the same as PairedTTester, only it uses the corrected |
---|
44 | * resampled t-test statistic.<p/> |
---|
45 | * |
---|
46 | * For more information see:<p/> |
---|
47 | * |
---|
48 | <!-- technical-plaintext-start --> |
---|
49 | * Claude Nadeau, Yoshua Bengio (2001). Inference for the Generalization Error. Machine Learning.. |
---|
50 | <!-- technical-plaintext-end --> |
---|
51 | * |
---|
52 | * <p/> |
---|
53 | * |
---|
54 | <!-- technical-bibtex-start --> |
---|
55 | * BibTeX: |
---|
56 | * <pre> |
---|
57 | * @article{Nadeau2001, |
---|
58 | * author = {Claude Nadeau and Yoshua Bengio}, |
---|
59 | * journal = {Machine Learning}, |
---|
60 | * title = {Inference for the Generalization Error}, |
---|
61 | * year = {2001}, |
---|
62 | * PDF = {http://www.iro.umontreal.ca/\~lisa/bib/pub_subject/comparative/pointeurs/nadeau_MLJ1597.pdf} |
---|
63 | * } |
---|
64 | * </pre> |
---|
65 | * <p/> |
---|
66 | <!-- technical-bibtex-end --> |
---|
67 | * |
---|
68 | <!-- options-start --> |
---|
69 | * Valid options are: <p/> |
---|
70 | * |
---|
71 | * <pre> -D <index,index2-index4,...> |
---|
72 | * Specify list of columns that specify a unique |
---|
73 | * dataset. |
---|
74 | * First and last are valid indexes. (default none)</pre> |
---|
75 | * |
---|
76 | * <pre> -R <index> |
---|
77 | * Set the index of the column containing the run number</pre> |
---|
78 | * |
---|
79 | * <pre> -F <index> |
---|
80 | * Set the index of the column containing the fold number</pre> |
---|
81 | * |
---|
82 | * <pre> -G <index1,index2-index4,...> |
---|
83 | * Specify list of columns that specify a unique |
---|
84 | * 'result generator' (eg: classifier name and options). |
---|
85 | * First and last are valid indexes. (default none)</pre> |
---|
86 | * |
---|
87 | * <pre> -S <significance level> |
---|
88 | * Set the significance level for comparisons (default 0.05)</pre> |
---|
89 | * |
---|
90 | * <pre> -V |
---|
91 | * Show standard deviations</pre> |
---|
92 | * |
---|
93 | * <pre> -L |
---|
94 | * Produce table comparisons in Latex table format</pre> |
---|
95 | * |
---|
96 | * <pre> -csv |
---|
97 | * Produce table comparisons in CSV table format</pre> |
---|
98 | * |
---|
99 | * <pre> -html |
---|
100 | * Produce table comparisons in HTML table format</pre> |
---|
101 | * |
---|
102 | * <pre> -significance |
---|
103 | * Produce table comparisons with only the significance values</pre> |
---|
104 | * |
---|
105 | * <pre> -gnuplot |
---|
106 | * Produce table comparisons output suitable for GNUPlot</pre> |
---|
107 | * |
---|
108 | <!-- options-end --> |
---|
109 | * |
---|
110 | * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) |
---|
111 | * @version $Revision: 1.13 $ |
---|
112 | */ |
---|
113 | public class PairedCorrectedTTester |
---|
114 | extends PairedTTester |
---|
115 | implements TechnicalInformationHandler { |
---|
116 | |
---|
117 | /** for serialization */ |
---|
118 | static final long serialVersionUID = -3105268939845653323L; |
---|
119 | |
---|
120 | /** |
---|
121 | * Returns an instance of a TechnicalInformation object, containing |
---|
122 | * detailed information about the technical background of this class, |
---|
123 | * e.g., paper reference or book this class is based on. |
---|
124 | * |
---|
125 | * @return the technical information about this class |
---|
126 | */ |
---|
127 | public TechnicalInformation getTechnicalInformation() { |
---|
128 | TechnicalInformation result; |
---|
129 | |
---|
130 | result = new TechnicalInformation(Type.ARTICLE); |
---|
131 | result.setValue(Field.AUTHOR, "Claude Nadeau and Yoshua Bengio"); |
---|
132 | result.setValue(Field.YEAR, "2001"); |
---|
133 | result.setValue(Field.TITLE, "Inference for the Generalization Error"); |
---|
134 | result.setValue(Field.JOURNAL, "Machine Learning"); |
---|
135 | result.setValue(Field.PDF, "http://www.iro.umontreal.ca/~lisa/bib/pub_subject/comparative/pointeurs/nadeau_MLJ1597.pdf"); |
---|
136 | |
---|
137 | return result; |
---|
138 | } |
---|
139 | |
---|
140 | /** |
---|
141 | * Computes a paired t-test comparison for a specified dataset between |
---|
142 | * two resultsets. |
---|
143 | * |
---|
144 | * @param datasetSpecifier the dataset specifier |
---|
145 | * @param resultset1Index the index of the first resultset |
---|
146 | * @param resultset2Index the index of the second resultset |
---|
147 | * @param comparisonColumn the column containing values to compare |
---|
148 | * @return the results of the paired comparison |
---|
149 | * @throws Exception if an error occurs |
---|
150 | */ |
---|
151 | public PairedStats calculateStatistics(Instance datasetSpecifier, |
---|
152 | int resultset1Index, |
---|
153 | int resultset2Index, |
---|
154 | int comparisonColumn) throws Exception { |
---|
155 | |
---|
156 | if (m_Instances.attribute(comparisonColumn).type() |
---|
157 | != Attribute.NUMERIC) { |
---|
158 | throw new Exception("Comparison column " + (comparisonColumn + 1) |
---|
159 | + " (" |
---|
160 | + m_Instances.attribute(comparisonColumn).name() |
---|
161 | + ") is not numeric"); |
---|
162 | } |
---|
163 | if (!m_ResultsetsValid) { |
---|
164 | prepareData(); |
---|
165 | } |
---|
166 | |
---|
167 | Resultset resultset1 = (Resultset) m_Resultsets.elementAt(resultset1Index); |
---|
168 | Resultset resultset2 = (Resultset) m_Resultsets.elementAt(resultset2Index); |
---|
169 | FastVector dataset1 = resultset1.dataset(datasetSpecifier); |
---|
170 | FastVector dataset2 = resultset2.dataset(datasetSpecifier); |
---|
171 | String datasetName = templateString(datasetSpecifier); |
---|
172 | if (dataset1 == null) { |
---|
173 | throw new Exception("No results for dataset=" + datasetName |
---|
174 | + " for resultset=" + resultset1.templateString()); |
---|
175 | } else if (dataset2 == null) { |
---|
176 | throw new Exception("No results for dataset=" + datasetName |
---|
177 | + " for resultset=" + resultset2.templateString()); |
---|
178 | } else if (dataset1.size() != dataset2.size()) { |
---|
179 | throw new Exception("Results for dataset=" + datasetName |
---|
180 | + " differ in size for resultset=" |
---|
181 | + resultset1.templateString() |
---|
182 | + " and resultset=" |
---|
183 | + resultset2.templateString() |
---|
184 | ); |
---|
185 | } |
---|
186 | |
---|
187 | // calculate the test/train ratio |
---|
188 | double testTrainRatio = 0.0; |
---|
189 | int trainSizeIndex = -1; |
---|
190 | int testSizeIndex = -1; |
---|
191 | // find the columns with the train/test sizes |
---|
192 | for (int i=0; i<m_Instances.numAttributes(); i++) { |
---|
193 | if (m_Instances.attribute(i).name().toLowerCase().equals("number_of_training_instances")) { |
---|
194 | trainSizeIndex = i; |
---|
195 | } else if (m_Instances.attribute(i).name().toLowerCase().equals("number_of_testing_instances")) { |
---|
196 | testSizeIndex = i; |
---|
197 | } |
---|
198 | } |
---|
199 | if (trainSizeIndex >= 0 && testSizeIndex >= 0) { |
---|
200 | double totalTrainSize = 0.0; |
---|
201 | double totalTestSize = 0.0; |
---|
202 | for (int k = 0; k < dataset1.size(); k ++) { |
---|
203 | Instance current = (Instance) dataset1.elementAt(k); |
---|
204 | totalTrainSize += current.value(trainSizeIndex); |
---|
205 | totalTestSize += current.value(testSizeIndex); |
---|
206 | } |
---|
207 | testTrainRatio = totalTestSize / totalTrainSize; |
---|
208 | } |
---|
209 | PairedStats pairedStats = |
---|
210 | new PairedStatsCorrected(m_SignificanceLevel, testTrainRatio); |
---|
211 | |
---|
212 | for (int k = 0; k < dataset1.size(); k ++) { |
---|
213 | Instance current1 = (Instance) dataset1.elementAt(k); |
---|
214 | Instance current2 = (Instance) dataset2.elementAt(k); |
---|
215 | if (current1.isMissing(comparisonColumn)) { |
---|
216 | System.err.println("Instance has missing value in comparison " |
---|
217 | + "column!\n" + current1); |
---|
218 | continue; |
---|
219 | } |
---|
220 | if (current2.isMissing(comparisonColumn)) { |
---|
221 | System.err.println("Instance has missing value in comparison " |
---|
222 | + "column!\n" + current2); |
---|
223 | continue; |
---|
224 | } |
---|
225 | if (current1.value(m_RunColumn) != current2.value(m_RunColumn)) { |
---|
226 | System.err.println("Run numbers do not match!\n" |
---|
227 | + current1 + current2); |
---|
228 | } |
---|
229 | if (m_FoldColumn != -1) { |
---|
230 | if (current1.value(m_FoldColumn) != current2.value(m_FoldColumn)) { |
---|
231 | System.err.println("Fold numbers do not match!\n" |
---|
232 | + current1 + current2); |
---|
233 | } |
---|
234 | } |
---|
235 | |
---|
236 | double value1 = current1.value(comparisonColumn); |
---|
237 | double value2 = current2.value(comparisonColumn); |
---|
238 | pairedStats.add(value1, value2); |
---|
239 | } |
---|
240 | pairedStats.calculateDerived(); |
---|
241 | return pairedStats; |
---|
242 | } |
---|
243 | |
---|
244 | /** |
---|
245 | * Test the class from the command line. |
---|
246 | * |
---|
247 | * @param args contains options for the instance ttests |
---|
248 | */ |
---|
249 | public static void main(String args[]) { |
---|
250 | |
---|
251 | try { |
---|
252 | PairedCorrectedTTester tt = new PairedCorrectedTTester(); |
---|
253 | String datasetName = Utils.getOption('t', args); |
---|
254 | String compareColStr = Utils.getOption('c', args); |
---|
255 | String baseColStr = Utils.getOption('b', args); |
---|
256 | boolean summaryOnly = Utils.getFlag('s', args); |
---|
257 | boolean rankingOnly = Utils.getFlag('r', args); |
---|
258 | try { |
---|
259 | if ((datasetName.length() == 0) |
---|
260 | || (compareColStr.length() == 0)) { |
---|
261 | throw new Exception("-t and -c options are required"); |
---|
262 | } |
---|
263 | tt.setOptions(args); |
---|
264 | Utils.checkForRemainingOptions(args); |
---|
265 | } catch (Exception ex) { |
---|
266 | String result = ""; |
---|
267 | Enumeration enu = tt.listOptions(); |
---|
268 | while (enu.hasMoreElements()) { |
---|
269 | Option option = (Option) enu.nextElement(); |
---|
270 | result += option.synopsis() + '\n' |
---|
271 | + option.description() + '\n'; |
---|
272 | } |
---|
273 | throw new Exception( |
---|
274 | "Usage:\n\n" |
---|
275 | + "-t <file>\n" |
---|
276 | + "\tSet the dataset containing data to evaluate\n" |
---|
277 | + "-b <index>\n" |
---|
278 | + "\tSet the resultset to base comparisons against (optional)\n" |
---|
279 | + "-c <index>\n" |
---|
280 | + "\tSet the column to perform a comparison on\n" |
---|
281 | + "-s\n" |
---|
282 | + "\tSummarize wins over all resultset pairs\n\n" |
---|
283 | + "-r\n" |
---|
284 | + "\tGenerate a resultset ranking\n\n" |
---|
285 | + result); |
---|
286 | } |
---|
287 | Instances data = new Instances(new BufferedReader( |
---|
288 | new FileReader(datasetName))); |
---|
289 | tt.setInstances(data); |
---|
290 | // tt.prepareData(); |
---|
291 | int compareCol = Integer.parseInt(compareColStr) - 1; |
---|
292 | System.out.println(tt.header(compareCol)); |
---|
293 | if (rankingOnly) { |
---|
294 | System.out.println(tt.multiResultsetRanking(compareCol)); |
---|
295 | } else if (summaryOnly) { |
---|
296 | System.out.println(tt.multiResultsetSummary(compareCol)); |
---|
297 | } else { |
---|
298 | System.out.println(tt.resultsetKey()); |
---|
299 | if (baseColStr.length() == 0) { |
---|
300 | for (int i = 0; i < tt.getNumResultsets(); i++) { |
---|
301 | System.out.println(tt.multiResultsetFull(i, compareCol)); |
---|
302 | } |
---|
303 | } else { |
---|
304 | int baseCol = Integer.parseInt(baseColStr) - 1; |
---|
305 | System.out.println(tt.multiResultsetFull(baseCol, compareCol)); |
---|
306 | } |
---|
307 | } |
---|
308 | } catch(Exception e) { |
---|
309 | e.printStackTrace(); |
---|
310 | System.err.println(e.getMessage()); |
---|
311 | } |
---|
312 | } |
---|
313 | |
---|
314 | /** |
---|
315 | * returns the name of the tester |
---|
316 | * |
---|
317 | * @return the display name |
---|
318 | */ |
---|
319 | public String getDisplayName() { |
---|
320 | return "Paired T-Tester (corrected)"; |
---|
321 | } |
---|
322 | |
---|
323 | /** |
---|
324 | * returns a string that is displayed as tooltip on the "perform test" |
---|
325 | * button in the experimenter |
---|
326 | * |
---|
327 | * @return the string for the tool tip |
---|
328 | */ |
---|
329 | public String getToolTipText() { |
---|
330 | return "Performs test using corrected resampled t-test statistic (Nadeau and Bengio)"; |
---|
331 | } |
---|
332 | |
---|
333 | /** |
---|
334 | * Returns the revision string. |
---|
335 | * |
---|
336 | * @return the revision |
---|
337 | */ |
---|
338 | public String getRevision() { |
---|
339 | return RevisionUtils.extract("$Revision: 1.13 $"); |
---|
340 | } |
---|
341 | } |
---|