1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * LearningRateResultProducer.java |
---|
19 | * Copyright (C) 1999 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.core.AdditionalMeasureProducer; |
---|
27 | import weka.core.Instances; |
---|
28 | import weka.core.Option; |
---|
29 | import weka.core.OptionHandler; |
---|
30 | import weka.core.RevisionHandler; |
---|
31 | import weka.core.RevisionUtils; |
---|
32 | import weka.core.Utils; |
---|
33 | |
---|
34 | import java.util.Enumeration; |
---|
35 | import java.util.Random; |
---|
36 | import java.util.Vector; |
---|
37 | |
---|
38 | /** |
---|
39 | <!-- globalinfo-start --> |
---|
40 | * Tells a sub-ResultProducer to reproduce the current run for varying sized subsamples of the dataset. Normally used with an AveragingResultProducer and CrossValidationResultProducer combo to generate learning curve results. For non-numeric result fields, the first value is used. |
---|
41 | * <p/> |
---|
42 | <!-- globalinfo-end --> |
---|
43 | * |
---|
44 | <!-- options-start --> |
---|
45 | * Valid options are: <p/> |
---|
46 | * |
---|
47 | * <pre> -X <num steps> |
---|
48 | * The number of steps in the learning rate curve. |
---|
49 | * (default 10)</pre> |
---|
50 | * |
---|
51 | * <pre> -W <class name> |
---|
52 | * The full class name of a ResultProducer. |
---|
53 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
54 | * |
---|
55 | * <pre> |
---|
56 | * Options specific to result producer weka.experiment.AveragingResultProducer: |
---|
57 | * </pre> |
---|
58 | * |
---|
59 | * <pre> -F <field name> |
---|
60 | * The name of the field to average over. |
---|
61 | * (default "Fold")</pre> |
---|
62 | * |
---|
63 | * <pre> -X <num results> |
---|
64 | * The number of results expected per average. |
---|
65 | * (default 10)</pre> |
---|
66 | * |
---|
67 | * <pre> -S |
---|
68 | * Calculate standard deviations. |
---|
69 | * (default only averages)</pre> |
---|
70 | * |
---|
71 | * <pre> -W <class name> |
---|
72 | * The full class name of a ResultProducer. |
---|
73 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
74 | * |
---|
75 | * <pre> |
---|
76 | * Options specific to result producer weka.experiment.CrossValidationResultProducer: |
---|
77 | * </pre> |
---|
78 | * |
---|
79 | * <pre> -X <number of folds> |
---|
80 | * The number of folds to use for the cross-validation. |
---|
81 | * (default 10)</pre> |
---|
82 | * |
---|
83 | * <pre> -D |
---|
84 | * Save raw split evaluator output.</pre> |
---|
85 | * |
---|
86 | * <pre> -O <file/directory name/path> |
---|
87 | * The filename where raw output will be stored. |
---|
88 | * If a directory name is specified then then individual |
---|
89 | * outputs will be gzipped, otherwise all output will be |
---|
90 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
91 | * |
---|
92 | * <pre> -W <class name> |
---|
93 | * The full class name of a SplitEvaluator. |
---|
94 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
95 | * |
---|
96 | * <pre> |
---|
97 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
98 | * </pre> |
---|
99 | * |
---|
100 | * <pre> -W <class name> |
---|
101 | * The full class name of the classifier. |
---|
102 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
103 | * |
---|
104 | * <pre> -C <index> |
---|
105 | * The index of the class for which IR statistics |
---|
106 | * are to be output. (default 1)</pre> |
---|
107 | * |
---|
108 | * <pre> -I <index> |
---|
109 | * The index of an attribute to output in the |
---|
110 | * results. This attribute should identify an |
---|
111 | * instance in order to know which instances are |
---|
112 | * in the test set of a cross validation. if 0 |
---|
113 | * no output (default 0).</pre> |
---|
114 | * |
---|
115 | * <pre> -P |
---|
116 | * Add target and prediction columns to the result |
---|
117 | * for each fold.</pre> |
---|
118 | * |
---|
119 | * <pre> |
---|
120 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
121 | * </pre> |
---|
122 | * |
---|
123 | * <pre> -D |
---|
124 | * If set, classifier is run in debug mode and |
---|
125 | * may output additional info to the console</pre> |
---|
126 | * |
---|
127 | <!-- options-end --> |
---|
128 | * |
---|
129 | * All options after -- will be passed to the result producer. |
---|
130 | * |
---|
131 | * @author Len Trigg (trigg@cs.waikato.ac.nz) |
---|
132 | * @version $Revision: 5597 $ |
---|
133 | */ |
---|
134 | public class LearningRateResultProducer |
---|
135 | implements ResultListener, ResultProducer, OptionHandler, |
---|
136 | AdditionalMeasureProducer, RevisionHandler { |
---|
137 | |
---|
138 | /** for serialization */ |
---|
139 | static final long serialVersionUID = -3841159673490861331L; |
---|
140 | |
---|
141 | /** The dataset of interest */ |
---|
142 | protected Instances m_Instances; |
---|
143 | |
---|
144 | /** The ResultListener to send results to */ |
---|
145 | protected ResultListener m_ResultListener = new CSVResultListener(); |
---|
146 | |
---|
147 | /** The ResultProducer used to generate results */ |
---|
148 | protected ResultProducer m_ResultProducer |
---|
149 | = new AveragingResultProducer(); |
---|
150 | |
---|
151 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
152 | protected String [] m_AdditionalMeasures = null; |
---|
153 | |
---|
154 | /** |
---|
155 | * The minimum number of instances to use. If this is zero, the first |
---|
156 | * step will contain m_StepSize instances |
---|
157 | */ |
---|
158 | protected int m_LowerSize = 0; |
---|
159 | |
---|
160 | /** |
---|
161 | * The maximum number of instances to use. -1 indicates no maximum |
---|
162 | * (other than the total number of instances) |
---|
163 | */ |
---|
164 | protected int m_UpperSize = -1; |
---|
165 | |
---|
166 | /** The number of instances to add at each step */ |
---|
167 | protected int m_StepSize = 10; |
---|
168 | |
---|
169 | /** The current dataset size during stepping */ |
---|
170 | protected int m_CurrentSize = 0; |
---|
171 | |
---|
172 | /** The name of the key field containing the learning rate step number */ |
---|
173 | public static String STEP_FIELD_NAME = "Total_instances"; |
---|
174 | |
---|
175 | /** |
---|
176 | * Returns a string describing this result producer |
---|
177 | * @return a description of the result producer suitable for |
---|
178 | * displaying in the explorer/experimenter gui |
---|
179 | */ |
---|
180 | public String globalInfo() { |
---|
181 | return "Tells a sub-ResultProducer to reproduce the current run for " |
---|
182 | +"varying sized subsamples of the dataset. Normally used with " |
---|
183 | +"an AveragingResultProducer and CrossValidationResultProducer " |
---|
184 | +"combo to generate learning curve results. For non-numeric " |
---|
185 | +"result fields, the first value is used."; |
---|
186 | } |
---|
187 | |
---|
188 | |
---|
189 | /** |
---|
190 | * Determines if there are any constraints (imposed by the |
---|
191 | * destination) on the result columns to be produced by |
---|
192 | * resultProducers. Null should be returned if there are NO |
---|
193 | * constraints, otherwise a list of column names should be |
---|
194 | * returned as an array of Strings. |
---|
195 | * @param rp the ResultProducer to which the constraints will apply |
---|
196 | * @return an array of column names to which resutltProducer's |
---|
197 | * results will be restricted. |
---|
198 | * @throws Exception if constraints can't be determined |
---|
199 | */ |
---|
200 | public String [] determineColumnConstraints(ResultProducer rp) |
---|
201 | throws Exception { |
---|
202 | return null; |
---|
203 | } |
---|
204 | |
---|
205 | /** |
---|
206 | * Gets the keys for a specified run number. Different run |
---|
207 | * numbers correspond to different randomizations of the data. Keys |
---|
208 | * produced should be sent to the current ResultListener |
---|
209 | * |
---|
210 | * @param run the run number to get keys for. |
---|
211 | * @throws Exception if a problem occurs while getting the keys |
---|
212 | */ |
---|
213 | public void doRunKeys(int run) throws Exception { |
---|
214 | |
---|
215 | if (m_ResultProducer == null) { |
---|
216 | throw new Exception("No ResultProducer set"); |
---|
217 | } |
---|
218 | if (m_ResultListener == null) { |
---|
219 | throw new Exception("No ResultListener set"); |
---|
220 | } |
---|
221 | if (m_Instances == null) { |
---|
222 | throw new Exception("No Instances set"); |
---|
223 | } |
---|
224 | |
---|
225 | // Tell the resultproducer to send results to us |
---|
226 | m_ResultProducer.setResultListener(this); |
---|
227 | m_ResultProducer.setInstances(m_Instances); |
---|
228 | |
---|
229 | // For each subsample size |
---|
230 | if (m_LowerSize == 0) { |
---|
231 | m_CurrentSize = m_StepSize; |
---|
232 | } else { |
---|
233 | m_CurrentSize = m_LowerSize; |
---|
234 | } |
---|
235 | while (m_CurrentSize <= m_Instances.numInstances() && |
---|
236 | ((m_UpperSize == -1) || |
---|
237 | (m_CurrentSize <= m_UpperSize))) { |
---|
238 | m_ResultProducer.doRunKeys(run); |
---|
239 | m_CurrentSize += m_StepSize; |
---|
240 | } |
---|
241 | } |
---|
242 | |
---|
243 | |
---|
244 | /** |
---|
245 | * Gets the results for a specified run number. Different run |
---|
246 | * numbers correspond to different randomizations of the data. Results |
---|
247 | * produced should be sent to the current ResultListener |
---|
248 | * |
---|
249 | * @param run the run number to get results for. |
---|
250 | * @throws Exception if a problem occurs while getting the results |
---|
251 | */ |
---|
252 | public void doRun(int run) throws Exception { |
---|
253 | |
---|
254 | if (m_ResultProducer == null) { |
---|
255 | throw new Exception("No ResultProducer set"); |
---|
256 | } |
---|
257 | if (m_ResultListener == null) { |
---|
258 | throw new Exception("No ResultListener set"); |
---|
259 | } |
---|
260 | if (m_Instances == null) { |
---|
261 | throw new Exception("No Instances set"); |
---|
262 | } |
---|
263 | |
---|
264 | // Randomize on a copy of the original dataset |
---|
265 | Instances runInstances = new Instances(m_Instances); |
---|
266 | runInstances.randomize(new Random(run)); |
---|
267 | |
---|
268 | /*if (runInstances.classAttribute().isNominal() && (m_Instances.numInstances() / m_StepSize >= 1)) { |
---|
269 | // runInstances.stratify(m_Instances.numInstances() / m_StepSize); |
---|
270 | }*/ |
---|
271 | |
---|
272 | // Tell the resultproducer to send results to us |
---|
273 | m_ResultProducer.setResultListener(this); |
---|
274 | |
---|
275 | // For each subsample size |
---|
276 | if (m_LowerSize == 0) { |
---|
277 | m_CurrentSize = m_StepSize; |
---|
278 | } else { |
---|
279 | m_CurrentSize = m_LowerSize; |
---|
280 | } |
---|
281 | while (m_CurrentSize <= m_Instances.numInstances() && |
---|
282 | ((m_UpperSize == -1) || |
---|
283 | (m_CurrentSize <= m_UpperSize))) { |
---|
284 | m_ResultProducer.setInstances(new Instances(runInstances, 0, |
---|
285 | m_CurrentSize)); |
---|
286 | m_ResultProducer.doRun(run); |
---|
287 | m_CurrentSize += m_StepSize; |
---|
288 | } |
---|
289 | } |
---|
290 | |
---|
291 | |
---|
292 | |
---|
293 | /** |
---|
294 | * Prepare for the results to be received. |
---|
295 | * |
---|
296 | * @param rp the ResultProducer that will generate the results |
---|
297 | * @throws Exception if an error occurs during preprocessing. |
---|
298 | */ |
---|
299 | public void preProcess(ResultProducer rp) throws Exception { |
---|
300 | |
---|
301 | if (m_ResultListener == null) { |
---|
302 | throw new Exception("No ResultListener set"); |
---|
303 | } |
---|
304 | m_ResultListener.preProcess(this); |
---|
305 | } |
---|
306 | |
---|
307 | /** |
---|
308 | * Prepare to generate results. The ResultProducer should call |
---|
309 | * preProcess(this) on the ResultListener it is to send results to. |
---|
310 | * |
---|
311 | * @throws Exception if an error occurs during preprocessing. |
---|
312 | */ |
---|
313 | public void preProcess() throws Exception { |
---|
314 | |
---|
315 | if (m_ResultProducer == null) { |
---|
316 | throw new Exception("No ResultProducer set"); |
---|
317 | } |
---|
318 | // Tell the resultproducer to send results to us |
---|
319 | m_ResultProducer.setResultListener(this); |
---|
320 | m_ResultProducer.preProcess(); |
---|
321 | } |
---|
322 | |
---|
323 | /** |
---|
324 | * When this method is called, it indicates that no more results |
---|
325 | * will be sent that need to be grouped together in any way. |
---|
326 | * |
---|
327 | * @param rp the ResultProducer that generated the results |
---|
328 | * @throws Exception if an error occurs |
---|
329 | */ |
---|
330 | public void postProcess(ResultProducer rp) throws Exception { |
---|
331 | |
---|
332 | m_ResultListener.postProcess(this); |
---|
333 | } |
---|
334 | |
---|
335 | /** |
---|
336 | * When this method is called, it indicates that no more requests to |
---|
337 | * generate results for the current experiment will be sent. The |
---|
338 | * ResultProducer should call preProcess(this) on the |
---|
339 | * ResultListener it is to send results to. |
---|
340 | * |
---|
341 | * @throws Exception if an error occurs |
---|
342 | */ |
---|
343 | public void postProcess() throws Exception { |
---|
344 | |
---|
345 | m_ResultProducer.postProcess(); |
---|
346 | } |
---|
347 | |
---|
348 | /** |
---|
349 | * Accepts results from a ResultProducer. |
---|
350 | * |
---|
351 | * @param rp the ResultProducer that generated the results |
---|
352 | * @param key an array of Objects (Strings or Doubles) that uniquely |
---|
353 | * identify a result for a given ResultProducer with given compatibilityState |
---|
354 | * @param result the results stored in an array. The objects stored in |
---|
355 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
356 | * @throws Exception if the result could not be accepted. |
---|
357 | */ |
---|
358 | public void acceptResult(ResultProducer rp, Object [] key, Object [] result) |
---|
359 | throws Exception { |
---|
360 | |
---|
361 | if (m_ResultProducer != rp) { |
---|
362 | throw new Error("Unrecognized ResultProducer sending results!!"); |
---|
363 | } |
---|
364 | // Add in current step as key field |
---|
365 | Object [] newKey = new Object [key.length + 1]; |
---|
366 | System.arraycopy(key, 0, newKey, 0, key.length); |
---|
367 | newKey[key.length] = new String("" + m_CurrentSize); |
---|
368 | // Pass on to result listener |
---|
369 | m_ResultListener.acceptResult(this, newKey, result); |
---|
370 | } |
---|
371 | |
---|
372 | /** |
---|
373 | * Determines whether the results for a specified key must be |
---|
374 | * generated. |
---|
375 | * |
---|
376 | * @param rp the ResultProducer wanting to generate the results |
---|
377 | * @param key an array of Objects (Strings or Doubles) that uniquely |
---|
378 | * identify a result for a given ResultProducer with given compatibilityState |
---|
379 | * @return true if the result should be generated |
---|
380 | * @throws Exception if it could not be determined if the result |
---|
381 | * is needed. |
---|
382 | */ |
---|
383 | public boolean isResultRequired(ResultProducer rp, Object [] key) |
---|
384 | throws Exception { |
---|
385 | |
---|
386 | if (m_ResultProducer != rp) { |
---|
387 | throw new Error("Unrecognized ResultProducer sending results!!"); |
---|
388 | } |
---|
389 | // Add in current step as key field |
---|
390 | Object [] newKey = new Object [key.length + 1]; |
---|
391 | System.arraycopy(key, 0, newKey, 0, key.length); |
---|
392 | newKey[key.length] = new String("" + m_CurrentSize); |
---|
393 | // Pass on request to result listener |
---|
394 | return m_ResultListener.isResultRequired(this, newKey); |
---|
395 | } |
---|
396 | |
---|
397 | /** |
---|
398 | * Gets the names of each of the columns produced for a single run. |
---|
399 | * |
---|
400 | * @return an array containing the name of each column |
---|
401 | * @throws Exception if key names cannot be generated |
---|
402 | */ |
---|
403 | public String [] getKeyNames() throws Exception { |
---|
404 | |
---|
405 | String [] keyNames = m_ResultProducer.getKeyNames(); |
---|
406 | String [] newKeyNames = new String [keyNames.length + 1]; |
---|
407 | System.arraycopy(keyNames, 0, newKeyNames, 0, keyNames.length); |
---|
408 | // Think of a better name for this key field |
---|
409 | newKeyNames[keyNames.length] = STEP_FIELD_NAME; |
---|
410 | return newKeyNames; |
---|
411 | } |
---|
412 | |
---|
413 | /** |
---|
414 | * Gets the data types of each of the columns produced for a single run. |
---|
415 | * This method should really be static. |
---|
416 | * |
---|
417 | * @return an array containing objects of the type of each column. The |
---|
418 | * objects should be Strings, or Doubles. |
---|
419 | * @throws Exception if the key types could not be determined (perhaps |
---|
420 | * because of a problem from a nested sub-resultproducer) |
---|
421 | */ |
---|
422 | public Object [] getKeyTypes() throws Exception { |
---|
423 | |
---|
424 | Object [] keyTypes = m_ResultProducer.getKeyTypes(); |
---|
425 | Object [] newKeyTypes = new Object [keyTypes.length + 1]; |
---|
426 | System.arraycopy(keyTypes, 0, newKeyTypes, 0, keyTypes.length); |
---|
427 | newKeyTypes[keyTypes.length] = ""; |
---|
428 | return newKeyTypes; |
---|
429 | } |
---|
430 | |
---|
431 | /** |
---|
432 | * Gets the names of each of the columns produced for a single run. |
---|
433 | * A new result field is added for the number of results used to |
---|
434 | * produce each average. |
---|
435 | * If only averages are being produced the names are not altered, if |
---|
436 | * standard deviations are produced then "Dev_" and "Avg_" are prepended |
---|
437 | * to each result deviation and average field respectively. |
---|
438 | * |
---|
439 | * @return an array containing the name of each column |
---|
440 | * @throws Exception if the result names could not be determined (perhaps |
---|
441 | * because of a problem from a nested sub-resultproducer) |
---|
442 | */ |
---|
443 | public String [] getResultNames() throws Exception { |
---|
444 | |
---|
445 | return m_ResultProducer.getResultNames(); |
---|
446 | } |
---|
447 | |
---|
448 | /** |
---|
449 | * Gets the data types of each of the columns produced for a single run. |
---|
450 | * |
---|
451 | * @return an array containing objects of the type of each column. The |
---|
452 | * objects should be Strings, or Doubles. |
---|
453 | * @throws Exception if the result types could not be determined (perhaps |
---|
454 | * because of a problem from a nested sub-resultproducer) |
---|
455 | */ |
---|
456 | public Object [] getResultTypes() throws Exception { |
---|
457 | |
---|
458 | return m_ResultProducer.getResultTypes(); |
---|
459 | } |
---|
460 | |
---|
461 | /** |
---|
462 | * Gets a description of the internal settings of the result |
---|
463 | * producer, sufficient for distinguishing a ResultProducer |
---|
464 | * instance from another with different settings (ignoring |
---|
465 | * those settings set through this interface). For example, |
---|
466 | * a cross-validation ResultProducer may have a setting for the |
---|
467 | * number of folds. For a given state, the results produced should |
---|
468 | * be compatible. Typically if a ResultProducer is an OptionHandler, |
---|
469 | * this string will represent the command line arguments required |
---|
470 | * to set the ResultProducer to that state. |
---|
471 | * |
---|
472 | * @return the description of the ResultProducer state, or null |
---|
473 | * if no state is defined |
---|
474 | */ |
---|
475 | public String getCompatibilityState() { |
---|
476 | |
---|
477 | String result = " "; |
---|
478 | // + "-F " + Utils.quote(getKeyFieldName()) |
---|
479 | // + " -X " + getStepSize() + " "; |
---|
480 | if (m_ResultProducer == null) { |
---|
481 | result += "<null ResultProducer>"; |
---|
482 | } else { |
---|
483 | result += "-W " + m_ResultProducer.getClass().getName(); |
---|
484 | } |
---|
485 | result += " -- " + m_ResultProducer.getCompatibilityState(); |
---|
486 | return result.trim(); |
---|
487 | } |
---|
488 | |
---|
489 | |
---|
490 | /** |
---|
491 | * Returns an enumeration describing the available options.. |
---|
492 | * |
---|
493 | * @return an enumeration of all the available options. |
---|
494 | */ |
---|
495 | public Enumeration listOptions() { |
---|
496 | |
---|
497 | Vector newVector = new Vector(2); |
---|
498 | |
---|
499 | newVector.addElement(new Option( |
---|
500 | "\tThe number of steps in the learning rate curve.\n" |
---|
501 | +"\t(default 10)", |
---|
502 | "X", 1, |
---|
503 | "-X <num steps>")); |
---|
504 | newVector.addElement(new Option( |
---|
505 | "\tThe full class name of a ResultProducer.\n" |
---|
506 | +"\teg: weka.experiment.CrossValidationResultProducer", |
---|
507 | "W", 1, |
---|
508 | "-W <class name>")); |
---|
509 | |
---|
510 | if ((m_ResultProducer != null) && |
---|
511 | (m_ResultProducer instanceof OptionHandler)) { |
---|
512 | newVector.addElement(new Option( |
---|
513 | "", |
---|
514 | "", 0, "\nOptions specific to result producer " |
---|
515 | + m_ResultProducer.getClass().getName() + ":")); |
---|
516 | Enumeration enu = ((OptionHandler)m_ResultProducer).listOptions(); |
---|
517 | while (enu.hasMoreElements()) { |
---|
518 | newVector.addElement(enu.nextElement()); |
---|
519 | } |
---|
520 | } |
---|
521 | return newVector.elements(); |
---|
522 | } |
---|
523 | |
---|
524 | /** |
---|
525 | * Parses a given list of options. <p/> |
---|
526 | * |
---|
527 | <!-- options-start --> |
---|
528 | * Valid options are: <p/> |
---|
529 | * |
---|
530 | * <pre> -X <num steps> |
---|
531 | * The number of steps in the learning rate curve. |
---|
532 | * (default 10)</pre> |
---|
533 | * |
---|
534 | * <pre> -W <class name> |
---|
535 | * The full class name of a ResultProducer. |
---|
536 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
537 | * |
---|
538 | * <pre> |
---|
539 | * Options specific to result producer weka.experiment.AveragingResultProducer: |
---|
540 | * </pre> |
---|
541 | * |
---|
542 | * <pre> -F <field name> |
---|
543 | * The name of the field to average over. |
---|
544 | * (default "Fold")</pre> |
---|
545 | * |
---|
546 | * <pre> -X <num results> |
---|
547 | * The number of results expected per average. |
---|
548 | * (default 10)</pre> |
---|
549 | * |
---|
550 | * <pre> -S |
---|
551 | * Calculate standard deviations. |
---|
552 | * (default only averages)</pre> |
---|
553 | * |
---|
554 | * <pre> -W <class name> |
---|
555 | * The full class name of a ResultProducer. |
---|
556 | * eg: weka.experiment.CrossValidationResultProducer</pre> |
---|
557 | * |
---|
558 | * <pre> |
---|
559 | * Options specific to result producer weka.experiment.CrossValidationResultProducer: |
---|
560 | * </pre> |
---|
561 | * |
---|
562 | * <pre> -X <number of folds> |
---|
563 | * The number of folds to use for the cross-validation. |
---|
564 | * (default 10)</pre> |
---|
565 | * |
---|
566 | * <pre> -D |
---|
567 | * Save raw split evaluator output.</pre> |
---|
568 | * |
---|
569 | * <pre> -O <file/directory name/path> |
---|
570 | * The filename where raw output will be stored. |
---|
571 | * If a directory name is specified then then individual |
---|
572 | * outputs will be gzipped, otherwise all output will be |
---|
573 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
574 | * |
---|
575 | * <pre> -W <class name> |
---|
576 | * The full class name of a SplitEvaluator. |
---|
577 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
578 | * |
---|
579 | * <pre> |
---|
580 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
581 | * </pre> |
---|
582 | * |
---|
583 | * <pre> -W <class name> |
---|
584 | * The full class name of the classifier. |
---|
585 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
586 | * |
---|
587 | * <pre> -C <index> |
---|
588 | * The index of the class for which IR statistics |
---|
589 | * are to be output. (default 1)</pre> |
---|
590 | * |
---|
591 | * <pre> -I <index> |
---|
592 | * The index of an attribute to output in the |
---|
593 | * results. This attribute should identify an |
---|
594 | * instance in order to know which instances are |
---|
595 | * in the test set of a cross validation. if 0 |
---|
596 | * no output (default 0).</pre> |
---|
597 | * |
---|
598 | * <pre> -P |
---|
599 | * Add target and prediction columns to the result |
---|
600 | * for each fold.</pre> |
---|
601 | * |
---|
602 | * <pre> |
---|
603 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
604 | * </pre> |
---|
605 | * |
---|
606 | * <pre> -D |
---|
607 | * If set, classifier is run in debug mode and |
---|
608 | * may output additional info to the console</pre> |
---|
609 | * |
---|
610 | <!-- options-end --> |
---|
611 | * |
---|
612 | * All options after -- will be passed to the result producer. |
---|
613 | * |
---|
614 | * @param options the list of options as an array of strings |
---|
615 | * @throws Exception if an option is not supported |
---|
616 | */ |
---|
617 | public void setOptions(String[] options) throws Exception { |
---|
618 | |
---|
619 | String stepSize = Utils.getOption('S', options); |
---|
620 | if (stepSize.length() != 0) { |
---|
621 | setStepSize(Integer.parseInt(stepSize)); |
---|
622 | } else { |
---|
623 | setStepSize(10); |
---|
624 | } |
---|
625 | |
---|
626 | String lowerSize = Utils.getOption('L', options); |
---|
627 | if (lowerSize.length() != 0) { |
---|
628 | setLowerSize(Integer.parseInt(lowerSize)); |
---|
629 | } else { |
---|
630 | setLowerSize(0); |
---|
631 | } |
---|
632 | |
---|
633 | String upperSize = Utils.getOption('U', options); |
---|
634 | if (upperSize.length() != 0) { |
---|
635 | setUpperSize(Integer.parseInt(upperSize)); |
---|
636 | } else { |
---|
637 | setUpperSize(-1); |
---|
638 | } |
---|
639 | |
---|
640 | String rpName = Utils.getOption('W', options); |
---|
641 | if (rpName.length() == 0) { |
---|
642 | throw new Exception("A ResultProducer must be specified with" |
---|
643 | + " the -W option."); |
---|
644 | } |
---|
645 | // Do it first without options, so if an exception is thrown during |
---|
646 | // the option setting, listOptions will contain options for the actual |
---|
647 | // RP. |
---|
648 | setResultProducer((ResultProducer)Utils.forName( |
---|
649 | ResultProducer.class, |
---|
650 | rpName, |
---|
651 | null)); |
---|
652 | if (getResultProducer() instanceof OptionHandler) { |
---|
653 | ((OptionHandler) getResultProducer()) |
---|
654 | .setOptions(Utils.partitionOptions(options)); |
---|
655 | } |
---|
656 | } |
---|
657 | |
---|
658 | /** |
---|
659 | * Gets the current settings of the result producer. |
---|
660 | * |
---|
661 | * @return an array of strings suitable for passing to setOptions |
---|
662 | */ |
---|
663 | public String [] getOptions() { |
---|
664 | |
---|
665 | String [] seOptions = new String [0]; |
---|
666 | if ((m_ResultProducer != null) && |
---|
667 | (m_ResultProducer instanceof OptionHandler)) { |
---|
668 | seOptions = ((OptionHandler)m_ResultProducer).getOptions(); |
---|
669 | } |
---|
670 | |
---|
671 | String [] options = new String [seOptions.length + 9]; |
---|
672 | int current = 0; |
---|
673 | |
---|
674 | options[current++] = "-S"; |
---|
675 | options[current++] = "" + getStepSize(); |
---|
676 | options[current++] = "-L"; |
---|
677 | options[current++] = "" + getLowerSize(); |
---|
678 | options[current++] = "-U"; |
---|
679 | options[current++] = "" + getUpperSize(); |
---|
680 | if (getResultProducer() != null) { |
---|
681 | options[current++] = "-W"; |
---|
682 | options[current++] = getResultProducer().getClass().getName(); |
---|
683 | } |
---|
684 | options[current++] = "--"; |
---|
685 | |
---|
686 | System.arraycopy(seOptions, 0, options, current, |
---|
687 | seOptions.length); |
---|
688 | current += seOptions.length; |
---|
689 | while (current < options.length) { |
---|
690 | options[current++] = ""; |
---|
691 | } |
---|
692 | return options; |
---|
693 | } |
---|
694 | |
---|
695 | /** |
---|
696 | * Set a list of method names for additional measures to look for |
---|
697 | * in SplitEvaluators. This could contain many measures (of which only a |
---|
698 | * subset may be produceable by the current resultProducer) if an experiment |
---|
699 | * is the type that iterates over a set of properties. |
---|
700 | * @param additionalMeasures an array of measure names, null if none |
---|
701 | */ |
---|
702 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
703 | m_AdditionalMeasures = additionalMeasures; |
---|
704 | |
---|
705 | if (m_ResultProducer != null) { |
---|
706 | System.err.println("LearningRateResultProducer: setting additional " |
---|
707 | +"measures for " |
---|
708 | +"ResultProducer"); |
---|
709 | m_ResultProducer.setAdditionalMeasures(m_AdditionalMeasures); |
---|
710 | } |
---|
711 | } |
---|
712 | |
---|
713 | /** |
---|
714 | * Returns an enumeration of any additional measure names that might be |
---|
715 | * in the result producer |
---|
716 | * @return an enumeration of the measure names |
---|
717 | */ |
---|
718 | public Enumeration enumerateMeasures() { |
---|
719 | Vector newVector = new Vector(); |
---|
720 | if (m_ResultProducer instanceof AdditionalMeasureProducer) { |
---|
721 | Enumeration en = ((AdditionalMeasureProducer)m_ResultProducer). |
---|
722 | enumerateMeasures(); |
---|
723 | while (en.hasMoreElements()) { |
---|
724 | String mname = (String)en.nextElement(); |
---|
725 | newVector.addElement(mname); |
---|
726 | } |
---|
727 | } |
---|
728 | return newVector.elements(); |
---|
729 | } |
---|
730 | |
---|
731 | /** |
---|
732 | * Returns the value of the named measure |
---|
733 | * @param additionalMeasureName the name of the measure to query for its value |
---|
734 | * @return the value of the named measure |
---|
735 | * @throws IllegalArgumentException if the named measure is not supported |
---|
736 | */ |
---|
737 | public double getMeasure(String additionalMeasureName) { |
---|
738 | if (m_ResultProducer instanceof AdditionalMeasureProducer) { |
---|
739 | return ((AdditionalMeasureProducer)m_ResultProducer). |
---|
740 | getMeasure(additionalMeasureName); |
---|
741 | } else { |
---|
742 | throw new IllegalArgumentException("LearningRateResultProducer: " |
---|
743 | +"Can't return value for : "+additionalMeasureName |
---|
744 | +". "+m_ResultProducer.getClass().getName()+" " |
---|
745 | +"is not an AdditionalMeasureProducer"); |
---|
746 | } |
---|
747 | } |
---|
748 | |
---|
749 | /** |
---|
750 | * Sets the dataset that results will be obtained for. |
---|
751 | * |
---|
752 | * @param instances a value of type 'Instances'. |
---|
753 | */ |
---|
754 | public void setInstances(Instances instances) { |
---|
755 | |
---|
756 | m_Instances = instances; |
---|
757 | } |
---|
758 | |
---|
759 | |
---|
760 | /** |
---|
761 | * Returns the tip text for this property |
---|
762 | * @return tip text for this property suitable for |
---|
763 | * displaying in the explorer/experimenter gui |
---|
764 | */ |
---|
765 | public String lowerSizeTipText() { |
---|
766 | return "Set the minmum number of instances in a dataset. Setting zero " |
---|
767 | + "here will actually use <stepSize> number of instances at the first " |
---|
768 | + "step (since it makes no sense to use zero instances :-))"; |
---|
769 | } |
---|
770 | |
---|
771 | /** |
---|
772 | * Get the value of LowerSize. |
---|
773 | * |
---|
774 | * @return Value of LowerSize. |
---|
775 | */ |
---|
776 | public int getLowerSize() { |
---|
777 | |
---|
778 | return m_LowerSize; |
---|
779 | } |
---|
780 | |
---|
781 | /** |
---|
782 | * Set the value of LowerSize. |
---|
783 | * |
---|
784 | * @param newLowerSize Value to assign to |
---|
785 | * LowerSize. |
---|
786 | */ |
---|
787 | public void setLowerSize(int newLowerSize) { |
---|
788 | |
---|
789 | m_LowerSize = newLowerSize; |
---|
790 | } |
---|
791 | |
---|
792 | /** |
---|
793 | * Returns the tip text for this property |
---|
794 | * @return tip text for this property suitable for |
---|
795 | * displaying in the explorer/experimenter gui |
---|
796 | */ |
---|
797 | public String upperSizeTipText() { |
---|
798 | return "Set the maximum number of instances in a dataset. Setting -1 " |
---|
799 | + "sets no upper limit (other than the total number of instances " |
---|
800 | + "in the full dataset)"; |
---|
801 | } |
---|
802 | |
---|
803 | /** |
---|
804 | * Get the value of UpperSize. |
---|
805 | * |
---|
806 | * @return Value of UpperSize. |
---|
807 | */ |
---|
808 | public int getUpperSize() { |
---|
809 | |
---|
810 | return m_UpperSize; |
---|
811 | } |
---|
812 | |
---|
813 | /** |
---|
814 | * Set the value of UpperSize. |
---|
815 | * |
---|
816 | * @param newUpperSize Value to assign to |
---|
817 | * UpperSize. |
---|
818 | */ |
---|
819 | public void setUpperSize(int newUpperSize) { |
---|
820 | |
---|
821 | m_UpperSize = newUpperSize; |
---|
822 | } |
---|
823 | |
---|
824 | |
---|
825 | /** |
---|
826 | * Returns the tip text for this property |
---|
827 | * @return tip text for this property suitable for |
---|
828 | * displaying in the explorer/experimenter gui |
---|
829 | */ |
---|
830 | public String stepSizeTipText() { |
---|
831 | return "Set the number of instances to add at each step."; |
---|
832 | } |
---|
833 | |
---|
834 | /** |
---|
835 | * Get the value of StepSize. |
---|
836 | * |
---|
837 | * @return Value of StepSize. |
---|
838 | */ |
---|
839 | public int getStepSize() { |
---|
840 | |
---|
841 | return m_StepSize; |
---|
842 | } |
---|
843 | |
---|
844 | /** |
---|
845 | * Set the value of StepSize. |
---|
846 | * |
---|
847 | * @param newStepSize Value to assign to |
---|
848 | * StepSize. |
---|
849 | */ |
---|
850 | public void setStepSize(int newStepSize) { |
---|
851 | |
---|
852 | m_StepSize = newStepSize; |
---|
853 | } |
---|
854 | |
---|
855 | /** |
---|
856 | * Sets the object to send results of each run to. |
---|
857 | * |
---|
858 | * @param listener a value of type 'ResultListener' |
---|
859 | */ |
---|
860 | public void setResultListener(ResultListener listener) { |
---|
861 | |
---|
862 | m_ResultListener = listener; |
---|
863 | } |
---|
864 | |
---|
865 | /** |
---|
866 | * Returns the tip text for this property |
---|
867 | * @return tip text for this property suitable for |
---|
868 | * displaying in the explorer/experimenter gui |
---|
869 | */ |
---|
870 | public String resultProducerTipText() { |
---|
871 | return "Set the resultProducer for which learning rate results should be " |
---|
872 | + "generated."; |
---|
873 | } |
---|
874 | |
---|
875 | /** |
---|
876 | * Get the ResultProducer. |
---|
877 | * |
---|
878 | * @return the ResultProducer. |
---|
879 | */ |
---|
880 | public ResultProducer getResultProducer() { |
---|
881 | |
---|
882 | return m_ResultProducer; |
---|
883 | } |
---|
884 | |
---|
885 | /** |
---|
886 | * Set the ResultProducer. |
---|
887 | * |
---|
888 | * @param newResultProducer new ResultProducer to use. |
---|
889 | */ |
---|
890 | public void setResultProducer(ResultProducer newResultProducer) { |
---|
891 | |
---|
892 | m_ResultProducer = newResultProducer; |
---|
893 | m_ResultProducer.setResultListener(this); |
---|
894 | } |
---|
895 | |
---|
896 | /** |
---|
897 | * Gets a text descrption of the result producer. |
---|
898 | * |
---|
899 | * @return a text description of the result producer. |
---|
900 | */ |
---|
901 | public String toString() { |
---|
902 | |
---|
903 | String result = "LearningRateResultProducer: "; |
---|
904 | result += getCompatibilityState(); |
---|
905 | if (m_Instances == null) { |
---|
906 | result += ": <null Instances>"; |
---|
907 | } else { |
---|
908 | result += ": " + Utils.backQuoteChars(m_Instances.relationName()); |
---|
909 | } |
---|
910 | return result; |
---|
911 | } |
---|
912 | |
---|
913 | /** |
---|
914 | * Returns the revision string. |
---|
915 | * |
---|
916 | * @return the revision |
---|
917 | */ |
---|
918 | public String getRevision() { |
---|
919 | return RevisionUtils.extract("$Revision: 5597 $"); |
---|
920 | } |
---|
921 | } // LearningRateResultProducer |
---|