1 | /* |
---|
2 | * This program is free software; you can redistribute it and/or modify |
---|
3 | * it under the terms of the GNU General Public License as published by |
---|
4 | * the Free Software Foundation; either version 2 of the License, or |
---|
5 | * (at your option) any later version. |
---|
6 | * |
---|
7 | * This program is distributed in the hope that it will be useful, |
---|
8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
10 | * GNU General Public License for more details. |
---|
11 | * |
---|
12 | * You should have received a copy of the GNU General Public License |
---|
13 | * along with this program; if not, write to the Free Software |
---|
14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
15 | */ |
---|
16 | |
---|
17 | /* |
---|
18 | * DensityBasedClustererSplitEvaluator.java |
---|
19 | * Copyright (C) 2008 University of Waikato, Hamilton, New Zealand |
---|
20 | * |
---|
21 | */ |
---|
22 | |
---|
23 | |
---|
24 | package weka.experiment; |
---|
25 | |
---|
26 | import weka.clusterers.ClusterEvaluation; |
---|
27 | import weka.clusterers.Clusterer; |
---|
28 | import weka.clusterers.AbstractClusterer; |
---|
29 | import weka.clusterers.AbstractDensityBasedClusterer; |
---|
30 | import weka.clusterers.DensityBasedClusterer; |
---|
31 | import weka.clusterers.EM; |
---|
32 | import weka.core.AdditionalMeasureProducer; |
---|
33 | import weka.core.Instances; |
---|
34 | import weka.core.Option; |
---|
35 | import weka.core.OptionHandler; |
---|
36 | import weka.core.RevisionHandler; |
---|
37 | import weka.core.RevisionUtils; |
---|
38 | import weka.core.Utils; |
---|
39 | import weka.filters.Filter; |
---|
40 | import weka.filters.unsupervised.attribute.Remove; |
---|
41 | |
---|
42 | import java.io.ObjectStreamClass; |
---|
43 | import java.io.Serializable; |
---|
44 | import java.util.Enumeration; |
---|
45 | import java.util.Vector; |
---|
46 | |
---|
47 | /** |
---|
48 | * A SplitEvaluator that produces results for a density based clusterer. |
---|
49 | * |
---|
50 | * -W classname <br> |
---|
51 | * Specify the full class name of the clusterer to evaluate. <p> |
---|
52 | * |
---|
53 | * @author Mark Hall (mhall{[at]}pentaho{[dot]}org |
---|
54 | * @version $Revision: 5563 $ |
---|
55 | */ |
---|
56 | |
---|
57 | public class DensityBasedClustererSplitEvaluator |
---|
58 | implements SplitEvaluator, |
---|
59 | OptionHandler, |
---|
60 | AdditionalMeasureProducer, |
---|
61 | RevisionHandler { |
---|
62 | |
---|
63 | /** Remove the class column (if set) from the data */ |
---|
64 | protected boolean m_removeClassColumn = true; |
---|
65 | |
---|
66 | /** The clusterer used for evaluation */ |
---|
67 | protected DensityBasedClusterer m_clusterer = new EM(); |
---|
68 | |
---|
69 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
70 | protected String [] m_additionalMeasures = null; |
---|
71 | |
---|
72 | /** Array of booleans corresponding to the measures in m_AdditionalMeasures |
---|
73 | indicating which of the AdditionalMeasures the current clusterer |
---|
74 | can produce */ |
---|
75 | protected boolean [] m_doesProduce = null; |
---|
76 | |
---|
77 | /** The number of additional measures that need to be filled in |
---|
78 | after taking into account column constraints imposed by the final |
---|
79 | destination for results */ |
---|
80 | protected int m_numberAdditionalMeasures = 0; |
---|
81 | |
---|
82 | /** Holds the statistics for the most recent application of the clusterer */ |
---|
83 | protected String m_result = null; |
---|
84 | |
---|
85 | /** The clusterer options (if any) */ |
---|
86 | protected String m_clustererOptions = ""; |
---|
87 | |
---|
88 | /** The clusterer version */ |
---|
89 | protected String m_clustererVersion = ""; |
---|
90 | |
---|
91 | /** The length of a key */ |
---|
92 | private static final int KEY_SIZE = 3; |
---|
93 | |
---|
94 | /** The length of a result */ |
---|
95 | private static final int RESULT_SIZE = 6; |
---|
96 | |
---|
97 | |
---|
98 | public DensityBasedClustererSplitEvaluator() { |
---|
99 | updateOptions(); |
---|
100 | } |
---|
101 | |
---|
102 | /** |
---|
103 | * Returns a string describing this split evaluator |
---|
104 | * @return a description of the split evaluator suitable for |
---|
105 | * displaying in the explorer/experimenter gui |
---|
106 | */ |
---|
107 | public String globalInfo() { |
---|
108 | return " A SplitEvaluator that produces results for a density based clusterer. "; |
---|
109 | } |
---|
110 | |
---|
111 | /** |
---|
112 | * Returns an enumeration describing the available options. |
---|
113 | * |
---|
114 | * @return an enumeration of all the available options. |
---|
115 | */ |
---|
116 | public Enumeration listOptions() { |
---|
117 | |
---|
118 | Vector newVector = new Vector(1); |
---|
119 | |
---|
120 | newVector.addElement(new Option( |
---|
121 | "\tThe full class name of the density based clusterer.\n" |
---|
122 | +"\teg: weka.clusterers.EM", |
---|
123 | "W", 1, |
---|
124 | "-W <class name>")); |
---|
125 | |
---|
126 | if ((m_clusterer != null) && |
---|
127 | (m_clusterer instanceof OptionHandler)) { |
---|
128 | newVector.addElement(new Option( |
---|
129 | "", |
---|
130 | "", 0, "\nOptions specific to clusterer " |
---|
131 | + m_clusterer.getClass().getName() + ":")); |
---|
132 | Enumeration enu = ((OptionHandler)m_clusterer).listOptions(); |
---|
133 | while (enu.hasMoreElements()) { |
---|
134 | newVector.addElement(enu.nextElement()); |
---|
135 | } |
---|
136 | } |
---|
137 | return newVector.elements(); |
---|
138 | } |
---|
139 | |
---|
140 | /** |
---|
141 | * Parses a given list of options. Valid options are:<p> |
---|
142 | * |
---|
143 | * -W classname <br> |
---|
144 | * Specify the full class name of the clusterer to evaluate. <p> |
---|
145 | * |
---|
146 | * All option after -- will be passed to the classifier. |
---|
147 | * |
---|
148 | * @param options the list of options as an array of strings |
---|
149 | * @exception Exception if an option is not supported |
---|
150 | */ |
---|
151 | public void setOptions(String[] options) throws Exception { |
---|
152 | |
---|
153 | String cName = Utils.getOption('W', options); |
---|
154 | if (cName.length() == 0) { |
---|
155 | throw new Exception("A clusterer must be specified with" |
---|
156 | + " the -W option."); |
---|
157 | } |
---|
158 | // Do it first without options, so if an exception is thrown during |
---|
159 | // the option setting, listOptions will contain options for the actual |
---|
160 | // Classifier. |
---|
161 | setClusterer((DensityBasedClusterer)AbstractClusterer.forName(cName, null)); |
---|
162 | if (getClusterer() instanceof OptionHandler) { |
---|
163 | ((OptionHandler) getClusterer()) |
---|
164 | .setOptions(Utils.partitionOptions(options)); |
---|
165 | updateOptions(); |
---|
166 | } |
---|
167 | } |
---|
168 | |
---|
169 | /** |
---|
170 | * Gets the current settings of the Classifier. |
---|
171 | * |
---|
172 | * @return an array of strings suitable for passing to setOptions |
---|
173 | */ |
---|
174 | public String [] getOptions() { |
---|
175 | |
---|
176 | String [] clustererOptions = new String [0]; |
---|
177 | if ((m_clusterer != null) && |
---|
178 | (m_clusterer instanceof OptionHandler)) { |
---|
179 | clustererOptions = ((OptionHandler)m_clusterer).getOptions(); |
---|
180 | } |
---|
181 | |
---|
182 | String [] options = new String [clustererOptions.length + 3]; |
---|
183 | int current = 0; |
---|
184 | |
---|
185 | if (getClusterer() != null) { |
---|
186 | options[current++] = "-W"; |
---|
187 | options[current++] = getClusterer().getClass().getName(); |
---|
188 | } |
---|
189 | |
---|
190 | options[current++] = "--"; |
---|
191 | |
---|
192 | System.arraycopy(clustererOptions, 0, options, current, |
---|
193 | clustererOptions.length); |
---|
194 | current += clustererOptions.length; |
---|
195 | while (current < options.length) { |
---|
196 | options[current++] = ""; |
---|
197 | } |
---|
198 | return options; |
---|
199 | } |
---|
200 | |
---|
201 | /** |
---|
202 | * Set a list of method names for additional measures to look for |
---|
203 | * in Classifiers. This could contain many measures (of which only a |
---|
204 | * subset may be produceable by the current Classifier) if an experiment |
---|
205 | * is the type that iterates over a set of properties. |
---|
206 | * @param additionalMeasures a list of method names |
---|
207 | */ |
---|
208 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
209 | // System.err.println("ClassifierSplitEvaluator: setting additional measures"); |
---|
210 | m_additionalMeasures = additionalMeasures; |
---|
211 | |
---|
212 | // determine which (if any) of the additional measures this clusterer |
---|
213 | // can produce |
---|
214 | if (m_additionalMeasures != null && m_additionalMeasures.length > 0) { |
---|
215 | m_doesProduce = new boolean [m_additionalMeasures.length]; |
---|
216 | |
---|
217 | if (m_clusterer instanceof AdditionalMeasureProducer) { |
---|
218 | Enumeration en = ((AdditionalMeasureProducer)m_clusterer). |
---|
219 | enumerateMeasures(); |
---|
220 | while (en.hasMoreElements()) { |
---|
221 | String mname = (String)en.nextElement(); |
---|
222 | for (int j=0;j<m_additionalMeasures.length;j++) { |
---|
223 | if (mname.compareToIgnoreCase(m_additionalMeasures[j]) == 0) { |
---|
224 | m_doesProduce[j] = true; |
---|
225 | } |
---|
226 | } |
---|
227 | } |
---|
228 | } |
---|
229 | } else { |
---|
230 | m_doesProduce = null; |
---|
231 | } |
---|
232 | } |
---|
233 | |
---|
234 | /** |
---|
235 | * Returns an enumeration of any additional measure names that might be |
---|
236 | * in the classifier |
---|
237 | * @return an enumeration of the measure names |
---|
238 | */ |
---|
239 | public Enumeration enumerateMeasures() { |
---|
240 | Vector newVector = new Vector(); |
---|
241 | if (m_clusterer instanceof AdditionalMeasureProducer) { |
---|
242 | Enumeration en = ((AdditionalMeasureProducer)m_clusterer). |
---|
243 | enumerateMeasures(); |
---|
244 | while (en.hasMoreElements()) { |
---|
245 | String mname = (String)en.nextElement(); |
---|
246 | newVector.addElement(mname); |
---|
247 | } |
---|
248 | } |
---|
249 | return newVector.elements(); |
---|
250 | } |
---|
251 | |
---|
252 | /** |
---|
253 | * Returns the value of the named measure |
---|
254 | * @param additionalMeasureName the name of the measure to query for its value |
---|
255 | * @return the value of the named measure |
---|
256 | * @exception IllegalArgumentException if the named measure is not supported |
---|
257 | */ |
---|
258 | public double getMeasure(String additionalMeasureName) { |
---|
259 | if (m_clusterer instanceof AdditionalMeasureProducer) { |
---|
260 | return ((AdditionalMeasureProducer)m_clusterer). |
---|
261 | getMeasure(additionalMeasureName); |
---|
262 | } else { |
---|
263 | throw new IllegalArgumentException("DensityBasedClustererSplitEvaluator: " |
---|
264 | +"Can't return value for : "+additionalMeasureName |
---|
265 | +". "+m_clusterer.getClass().getName()+" " |
---|
266 | +"is not an AdditionalMeasureProducer"); |
---|
267 | } |
---|
268 | } |
---|
269 | |
---|
270 | /** |
---|
271 | * Gets the data types of each of the key columns produced for a single run. |
---|
272 | * The number of key fields must be constant |
---|
273 | * for a given SplitEvaluator. |
---|
274 | * |
---|
275 | * @return an array containing objects of the type of each key column. The |
---|
276 | * objects should be Strings, or Doubles. |
---|
277 | */ |
---|
278 | public Object [] getKeyTypes() { |
---|
279 | |
---|
280 | Object [] keyTypes = new Object[KEY_SIZE]; |
---|
281 | keyTypes[0] = ""; |
---|
282 | keyTypes[1] = ""; |
---|
283 | keyTypes[2] = ""; |
---|
284 | return keyTypes; |
---|
285 | } |
---|
286 | |
---|
287 | /** |
---|
288 | * Gets the names of each of the key columns produced for a single run. |
---|
289 | * The number of key fields must be constant |
---|
290 | * for a given SplitEvaluator. |
---|
291 | * |
---|
292 | * @return an array containing the name of each key column |
---|
293 | */ |
---|
294 | public String [] getKeyNames() { |
---|
295 | |
---|
296 | String [] keyNames = new String[KEY_SIZE]; |
---|
297 | keyNames[0] = "Scheme"; |
---|
298 | keyNames[1] = "Scheme_options"; |
---|
299 | keyNames[2] = "Scheme_version_ID"; |
---|
300 | return keyNames; |
---|
301 | } |
---|
302 | |
---|
303 | /** |
---|
304 | * Gets the key describing the current SplitEvaluator. For example |
---|
305 | * This may contain the name of the classifier used for classifier |
---|
306 | * predictive evaluation. The number of key fields must be constant |
---|
307 | * for a given SplitEvaluator. |
---|
308 | * |
---|
309 | * @return an array of objects containing the key. |
---|
310 | */ |
---|
311 | public Object [] getKey(){ |
---|
312 | |
---|
313 | Object [] key = new Object[KEY_SIZE]; |
---|
314 | key[0] = m_clusterer.getClass().getName(); |
---|
315 | key[1] = m_clustererOptions; |
---|
316 | key[2] = m_clustererVersion; |
---|
317 | return key; |
---|
318 | } |
---|
319 | |
---|
320 | /** |
---|
321 | * Gets the data types of each of the result columns produced for a |
---|
322 | * single run. The number of result fields must be constant |
---|
323 | * for a given SplitEvaluator. |
---|
324 | * |
---|
325 | * @return an array containing objects of the type of each result column. |
---|
326 | * The objects should be Strings, or Doubles. |
---|
327 | */ |
---|
328 | public Object [] getResultTypes() { |
---|
329 | int addm = (m_additionalMeasures != null) |
---|
330 | ? m_additionalMeasures.length |
---|
331 | : 0; |
---|
332 | int overall_length = RESULT_SIZE+addm; |
---|
333 | |
---|
334 | Object [] resultTypes = new Object[overall_length]; |
---|
335 | Double doub = new Double(0); |
---|
336 | int current = 0; |
---|
337 | |
---|
338 | // number of training and testing instances |
---|
339 | resultTypes[current++] = doub; |
---|
340 | resultTypes[current++] = doub; |
---|
341 | |
---|
342 | // log liklihood |
---|
343 | resultTypes[current++] = doub; |
---|
344 | // number of clusters |
---|
345 | resultTypes[current++] = doub; |
---|
346 | |
---|
347 | // timing stats |
---|
348 | resultTypes[current++] = doub; |
---|
349 | resultTypes[current++] = doub; |
---|
350 | |
---|
351 | |
---|
352 | // resultTypes[current++] = ""; |
---|
353 | |
---|
354 | // add any additional measures |
---|
355 | for (int i=0;i<addm;i++) { |
---|
356 | resultTypes[current++] = doub; |
---|
357 | } |
---|
358 | if (current != overall_length) { |
---|
359 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
360 | } |
---|
361 | return resultTypes; |
---|
362 | } |
---|
363 | |
---|
364 | /** |
---|
365 | * Gets the names of each of the result columns produced for a single run. |
---|
366 | * The number of result fields must be constant |
---|
367 | * for a given SplitEvaluator. |
---|
368 | * |
---|
369 | * @return an array containing the name of each result column |
---|
370 | */ |
---|
371 | public String [] getResultNames() { |
---|
372 | int addm = (m_additionalMeasures != null) |
---|
373 | ? m_additionalMeasures.length |
---|
374 | : 0; |
---|
375 | int overall_length = RESULT_SIZE+addm; |
---|
376 | |
---|
377 | String [] resultNames = new String[overall_length]; |
---|
378 | int current = 0; |
---|
379 | resultNames[current++] = "Number_of_training_instances"; |
---|
380 | resultNames[current++] = "Number_of_testing_instances"; |
---|
381 | |
---|
382 | // Basic performance stats |
---|
383 | resultNames[current++] = "Log_likelihood"; |
---|
384 | resultNames[current++] = "Number_of_clusters"; |
---|
385 | |
---|
386 | // Timing stats |
---|
387 | resultNames[current++] = "Time_training"; |
---|
388 | resultNames[current++] = "Time_testing"; |
---|
389 | |
---|
390 | // Classifier defined extras |
---|
391 | // resultNames[current++] = "Summary"; |
---|
392 | // add any additional measures |
---|
393 | for (int i=0;i<addm;i++) { |
---|
394 | resultNames[current++] = m_additionalMeasures[i]; |
---|
395 | } |
---|
396 | if (current != overall_length) { |
---|
397 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
398 | } |
---|
399 | return resultNames; |
---|
400 | } |
---|
401 | |
---|
402 | /** |
---|
403 | * Gets the results for the supplied train and test datasets. |
---|
404 | * |
---|
405 | * @param train the training Instances. |
---|
406 | * @param test the testing Instances. |
---|
407 | * @return the results stored in an array. The objects stored in |
---|
408 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
409 | * @exception Exception if a problem occurs while getting the results |
---|
410 | */ |
---|
411 | public Object [] getResult(Instances train, Instances test) |
---|
412 | throws Exception { |
---|
413 | |
---|
414 | if (m_clusterer == null) { |
---|
415 | throw new Exception("No clusterer has been specified"); |
---|
416 | } |
---|
417 | int addm = (m_additionalMeasures != null) |
---|
418 | ? m_additionalMeasures.length |
---|
419 | : 0; |
---|
420 | int overall_length = RESULT_SIZE+addm; |
---|
421 | |
---|
422 | if (m_removeClassColumn && train.classIndex() != -1) { |
---|
423 | // remove the class column from the training and testing data |
---|
424 | Remove r = new Remove(); |
---|
425 | r.setAttributeIndicesArray(new int [] {train.classIndex()}); |
---|
426 | r.setInvertSelection(false); |
---|
427 | r.setInputFormat(train); |
---|
428 | train = Filter.useFilter(train, r); |
---|
429 | |
---|
430 | test = Filter.useFilter(test, r); |
---|
431 | } |
---|
432 | train.setClassIndex(-1); |
---|
433 | test.setClassIndex(-1); |
---|
434 | |
---|
435 | |
---|
436 | ClusterEvaluation eval = new ClusterEvaluation(); |
---|
437 | |
---|
438 | Object [] result = new Object[overall_length]; |
---|
439 | long trainTimeStart = System.currentTimeMillis(); |
---|
440 | m_clusterer.buildClusterer(train); |
---|
441 | double numClusters = m_clusterer.numberOfClusters(); |
---|
442 | eval.setClusterer(m_clusterer); |
---|
443 | long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
444 | long testTimeStart = System.currentTimeMillis(); |
---|
445 | eval.evaluateClusterer(test); |
---|
446 | long testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
447 | // m_result = eval.toSummaryString(); |
---|
448 | |
---|
449 | // The results stored are all per instance -- can be multiplied by the |
---|
450 | // number of instances to get absolute numbers |
---|
451 | int current = 0; |
---|
452 | result[current++] = new Double(train.numInstances()); |
---|
453 | result[current++] = new Double(test.numInstances()); |
---|
454 | |
---|
455 | result[current++] = new Double(eval.getLogLikelihood()); |
---|
456 | result[current++] = new Double(numClusters); |
---|
457 | |
---|
458 | // Timing stats |
---|
459 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
460 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
461 | |
---|
462 | for (int i=0;i<addm;i++) { |
---|
463 | if (m_doesProduce[i]) { |
---|
464 | try { |
---|
465 | double dv = ((AdditionalMeasureProducer)m_clusterer). |
---|
466 | getMeasure(m_additionalMeasures[i]); |
---|
467 | Double value = new Double(dv); |
---|
468 | |
---|
469 | result[current++] = value; |
---|
470 | } catch (Exception ex) { |
---|
471 | System.err.println(ex); |
---|
472 | } |
---|
473 | } else { |
---|
474 | result[current++] = null; |
---|
475 | } |
---|
476 | } |
---|
477 | |
---|
478 | if (current != overall_length) { |
---|
479 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
480 | } |
---|
481 | return result; |
---|
482 | } |
---|
483 | |
---|
484 | /** |
---|
485 | * Returns the tip text for this property |
---|
486 | * @return tip text for this property suitable for |
---|
487 | * displaying in the explorer/experimenter gui |
---|
488 | */ |
---|
489 | public String removeClassColumnTipText() { |
---|
490 | return "Remove the class column (if set) from the data."; |
---|
491 | } |
---|
492 | |
---|
493 | /** |
---|
494 | * Set whether the class column should be removed from the data. |
---|
495 | * |
---|
496 | * @param r true if the class column is to be removed. |
---|
497 | */ |
---|
498 | public void setRemoveClassColumn(boolean r) { |
---|
499 | m_removeClassColumn = r; |
---|
500 | } |
---|
501 | |
---|
502 | /** |
---|
503 | * Get whether the class column is to be removed. |
---|
504 | * |
---|
505 | * @return true if the class column is to be removed. |
---|
506 | */ |
---|
507 | public boolean getRemoveClassColumn() { |
---|
508 | return m_removeClassColumn; |
---|
509 | } |
---|
510 | |
---|
511 | /** |
---|
512 | * Returns the tip text for this property |
---|
513 | * @return tip text for this property suitable for |
---|
514 | * displaying in the explorer/experimenter gui |
---|
515 | */ |
---|
516 | public String clustererTipText() { |
---|
517 | return "The density based clusterer to use."; |
---|
518 | } |
---|
519 | |
---|
520 | /** |
---|
521 | * Get the value of clusterer |
---|
522 | * |
---|
523 | * @return Value of clusterer. |
---|
524 | */ |
---|
525 | public DensityBasedClusterer getClusterer() { |
---|
526 | |
---|
527 | return m_clusterer; |
---|
528 | } |
---|
529 | |
---|
530 | /** |
---|
531 | * Sets the clusterer. |
---|
532 | * |
---|
533 | * @param newClusterer the new clusterer to use. |
---|
534 | */ |
---|
535 | public void setClusterer(DensityBasedClusterer newClusterer) { |
---|
536 | |
---|
537 | m_clusterer = newClusterer; |
---|
538 | updateOptions(); |
---|
539 | } |
---|
540 | |
---|
541 | |
---|
542 | protected void updateOptions() { |
---|
543 | |
---|
544 | if (m_clusterer instanceof OptionHandler) { |
---|
545 | m_clustererOptions = Utils.joinOptions(((OptionHandler)m_clusterer) |
---|
546 | .getOptions()); |
---|
547 | } else { |
---|
548 | m_clustererOptions = ""; |
---|
549 | } |
---|
550 | if (m_clusterer instanceof Serializable) { |
---|
551 | ObjectStreamClass obs = ObjectStreamClass.lookup(m_clusterer |
---|
552 | .getClass()); |
---|
553 | m_clustererVersion = "" + obs.getSerialVersionUID(); |
---|
554 | } else { |
---|
555 | m_clustererVersion = ""; |
---|
556 | } |
---|
557 | } |
---|
558 | |
---|
559 | /** |
---|
560 | * Set the Clusterer to use, given it's class name. A new clusterer will be |
---|
561 | * instantiated. |
---|
562 | * |
---|
563 | * @param newClustererName the clusterer class name. |
---|
564 | * @exception Exception if the class name is invalid. |
---|
565 | */ |
---|
566 | public void setClustererName(String newClustererName) throws Exception { |
---|
567 | |
---|
568 | try { |
---|
569 | setClusterer((DensityBasedClusterer)Class.forName(newClustererName) |
---|
570 | .newInstance()); |
---|
571 | } catch (Exception ex) { |
---|
572 | throw new Exception("Can't find Clusterer with class name: " |
---|
573 | + newClustererName); |
---|
574 | } |
---|
575 | } |
---|
576 | |
---|
577 | /** |
---|
578 | * Gets the raw output from the classifier |
---|
579 | * @return the raw output from the classifier |
---|
580 | */ |
---|
581 | public String getRawResultOutput() { |
---|
582 | StringBuffer result = new StringBuffer(); |
---|
583 | |
---|
584 | if (m_clusterer == null) { |
---|
585 | return "<null> clusterer"; |
---|
586 | } |
---|
587 | result.append(toString()); |
---|
588 | result.append("Clustering model: \n"+m_clusterer.toString()+'\n'); |
---|
589 | |
---|
590 | // append the performance statistics |
---|
591 | if (m_result != null) { |
---|
592 | // result.append(m_result); |
---|
593 | |
---|
594 | if (m_doesProduce != null) { |
---|
595 | for (int i=0;i<m_doesProduce.length;i++) { |
---|
596 | if (m_doesProduce[i]) { |
---|
597 | try { |
---|
598 | double dv = ((AdditionalMeasureProducer)m_clusterer). |
---|
599 | getMeasure(m_additionalMeasures[i]); |
---|
600 | Double value = new Double(dv); |
---|
601 | |
---|
602 | result.append(m_additionalMeasures[i]+" : "+value+'\n'); |
---|
603 | } catch (Exception ex) { |
---|
604 | System.err.println(ex); |
---|
605 | } |
---|
606 | } |
---|
607 | } |
---|
608 | } |
---|
609 | } |
---|
610 | return result.toString(); |
---|
611 | } |
---|
612 | |
---|
613 | /** |
---|
614 | * Returns a text description of the split evaluator. |
---|
615 | * |
---|
616 | * @return a text description of the split evaluator. |
---|
617 | */ |
---|
618 | public String toString() { |
---|
619 | |
---|
620 | String result = "DensityBasedClustererSplitEvaluator: "; |
---|
621 | if (m_clusterer == null) { |
---|
622 | return result + "<null> clusterer"; |
---|
623 | } |
---|
624 | return result + m_clusterer.getClass().getName() + " " |
---|
625 | + m_clustererOptions + "(version " + m_clustererVersion + ")"; |
---|
626 | } |
---|
627 | |
---|
628 | /** |
---|
629 | * Returns the revision string. |
---|
630 | * |
---|
631 | * @return the revision |
---|
632 | */ |
---|
633 | public String getRevision() { |
---|
634 | return RevisionUtils.extract("$Revision: 5563 $"); |
---|
635 | } |
---|
636 | } |
---|