[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * DensityBasedClustererSplitEvaluator.java |
---|
| 19 | * Copyright (C) 2008 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | package weka.experiment; |
---|
| 25 | |
---|
| 26 | import weka.clusterers.ClusterEvaluation; |
---|
| 27 | import weka.clusterers.Clusterer; |
---|
| 28 | import weka.clusterers.AbstractClusterer; |
---|
| 29 | import weka.clusterers.AbstractDensityBasedClusterer; |
---|
| 30 | import weka.clusterers.DensityBasedClusterer; |
---|
| 31 | import weka.clusterers.EM; |
---|
| 32 | import weka.core.AdditionalMeasureProducer; |
---|
| 33 | import weka.core.Instances; |
---|
| 34 | import weka.core.Option; |
---|
| 35 | import weka.core.OptionHandler; |
---|
| 36 | import weka.core.RevisionHandler; |
---|
| 37 | import weka.core.RevisionUtils; |
---|
| 38 | import weka.core.Utils; |
---|
| 39 | import weka.filters.Filter; |
---|
| 40 | import weka.filters.unsupervised.attribute.Remove; |
---|
| 41 | |
---|
| 42 | import java.io.ObjectStreamClass; |
---|
| 43 | import java.io.Serializable; |
---|
| 44 | import java.util.Enumeration; |
---|
| 45 | import java.util.Vector; |
---|
| 46 | |
---|
| 47 | /** |
---|
| 48 | * A SplitEvaluator that produces results for a density based clusterer. |
---|
| 49 | * |
---|
| 50 | * -W classname <br> |
---|
| 51 | * Specify the full class name of the clusterer to evaluate. <p> |
---|
| 52 | * |
---|
| 53 | * @author Mark Hall (mhall{[at]}pentaho{[dot]}org |
---|
| 54 | * @version $Revision: 5563 $ |
---|
| 55 | */ |
---|
| 56 | |
---|
| 57 | public class DensityBasedClustererSplitEvaluator |
---|
| 58 | implements SplitEvaluator, |
---|
| 59 | OptionHandler, |
---|
| 60 | AdditionalMeasureProducer, |
---|
| 61 | RevisionHandler { |
---|
| 62 | |
---|
| 63 | /** Remove the class column (if set) from the data */ |
---|
| 64 | protected boolean m_removeClassColumn = true; |
---|
| 65 | |
---|
| 66 | /** The clusterer used for evaluation */ |
---|
| 67 | protected DensityBasedClusterer m_clusterer = new EM(); |
---|
| 68 | |
---|
| 69 | /** The names of any additional measures to look for in SplitEvaluators */ |
---|
| 70 | protected String [] m_additionalMeasures = null; |
---|
| 71 | |
---|
| 72 | /** Array of booleans corresponding to the measures in m_AdditionalMeasures |
---|
| 73 | indicating which of the AdditionalMeasures the current clusterer |
---|
| 74 | can produce */ |
---|
| 75 | protected boolean [] m_doesProduce = null; |
---|
| 76 | |
---|
| 77 | /** The number of additional measures that need to be filled in |
---|
| 78 | after taking into account column constraints imposed by the final |
---|
| 79 | destination for results */ |
---|
| 80 | protected int m_numberAdditionalMeasures = 0; |
---|
| 81 | |
---|
| 82 | /** Holds the statistics for the most recent application of the clusterer */ |
---|
| 83 | protected String m_result = null; |
---|
| 84 | |
---|
| 85 | /** The clusterer options (if any) */ |
---|
| 86 | protected String m_clustererOptions = ""; |
---|
| 87 | |
---|
| 88 | /** The clusterer version */ |
---|
| 89 | protected String m_clustererVersion = ""; |
---|
| 90 | |
---|
| 91 | /** The length of a key */ |
---|
| 92 | private static final int KEY_SIZE = 3; |
---|
| 93 | |
---|
| 94 | /** The length of a result */ |
---|
| 95 | private static final int RESULT_SIZE = 6; |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | public DensityBasedClustererSplitEvaluator() { |
---|
| 99 | updateOptions(); |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | /** |
---|
| 103 | * Returns a string describing this split evaluator |
---|
| 104 | * @return a description of the split evaluator suitable for |
---|
| 105 | * displaying in the explorer/experimenter gui |
---|
| 106 | */ |
---|
| 107 | public String globalInfo() { |
---|
| 108 | return " A SplitEvaluator that produces results for a density based clusterer. "; |
---|
| 109 | } |
---|
| 110 | |
---|
| 111 | /** |
---|
| 112 | * Returns an enumeration describing the available options. |
---|
| 113 | * |
---|
| 114 | * @return an enumeration of all the available options. |
---|
| 115 | */ |
---|
| 116 | public Enumeration listOptions() { |
---|
| 117 | |
---|
| 118 | Vector newVector = new Vector(1); |
---|
| 119 | |
---|
| 120 | newVector.addElement(new Option( |
---|
| 121 | "\tThe full class name of the density based clusterer.\n" |
---|
| 122 | +"\teg: weka.clusterers.EM", |
---|
| 123 | "W", 1, |
---|
| 124 | "-W <class name>")); |
---|
| 125 | |
---|
| 126 | if ((m_clusterer != null) && |
---|
| 127 | (m_clusterer instanceof OptionHandler)) { |
---|
| 128 | newVector.addElement(new Option( |
---|
| 129 | "", |
---|
| 130 | "", 0, "\nOptions specific to clusterer " |
---|
| 131 | + m_clusterer.getClass().getName() + ":")); |
---|
| 132 | Enumeration enu = ((OptionHandler)m_clusterer).listOptions(); |
---|
| 133 | while (enu.hasMoreElements()) { |
---|
| 134 | newVector.addElement(enu.nextElement()); |
---|
| 135 | } |
---|
| 136 | } |
---|
| 137 | return newVector.elements(); |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | /** |
---|
| 141 | * Parses a given list of options. Valid options are:<p> |
---|
| 142 | * |
---|
| 143 | * -W classname <br> |
---|
| 144 | * Specify the full class name of the clusterer to evaluate. <p> |
---|
| 145 | * |
---|
| 146 | * All option after -- will be passed to the classifier. |
---|
| 147 | * |
---|
| 148 | * @param options the list of options as an array of strings |
---|
| 149 | * @exception Exception if an option is not supported |
---|
| 150 | */ |
---|
| 151 | public void setOptions(String[] options) throws Exception { |
---|
| 152 | |
---|
| 153 | String cName = Utils.getOption('W', options); |
---|
| 154 | if (cName.length() == 0) { |
---|
| 155 | throw new Exception("A clusterer must be specified with" |
---|
| 156 | + " the -W option."); |
---|
| 157 | } |
---|
| 158 | // Do it first without options, so if an exception is thrown during |
---|
| 159 | // the option setting, listOptions will contain options for the actual |
---|
| 160 | // Classifier. |
---|
| 161 | setClusterer((DensityBasedClusterer)AbstractClusterer.forName(cName, null)); |
---|
| 162 | if (getClusterer() instanceof OptionHandler) { |
---|
| 163 | ((OptionHandler) getClusterer()) |
---|
| 164 | .setOptions(Utils.partitionOptions(options)); |
---|
| 165 | updateOptions(); |
---|
| 166 | } |
---|
| 167 | } |
---|
| 168 | |
---|
| 169 | /** |
---|
| 170 | * Gets the current settings of the Classifier. |
---|
| 171 | * |
---|
| 172 | * @return an array of strings suitable for passing to setOptions |
---|
| 173 | */ |
---|
| 174 | public String [] getOptions() { |
---|
| 175 | |
---|
| 176 | String [] clustererOptions = new String [0]; |
---|
| 177 | if ((m_clusterer != null) && |
---|
| 178 | (m_clusterer instanceof OptionHandler)) { |
---|
| 179 | clustererOptions = ((OptionHandler)m_clusterer).getOptions(); |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | String [] options = new String [clustererOptions.length + 3]; |
---|
| 183 | int current = 0; |
---|
| 184 | |
---|
| 185 | if (getClusterer() != null) { |
---|
| 186 | options[current++] = "-W"; |
---|
| 187 | options[current++] = getClusterer().getClass().getName(); |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | options[current++] = "--"; |
---|
| 191 | |
---|
| 192 | System.arraycopy(clustererOptions, 0, options, current, |
---|
| 193 | clustererOptions.length); |
---|
| 194 | current += clustererOptions.length; |
---|
| 195 | while (current < options.length) { |
---|
| 196 | options[current++] = ""; |
---|
| 197 | } |
---|
| 198 | return options; |
---|
| 199 | } |
---|
| 200 | |
---|
| 201 | /** |
---|
| 202 | * Set a list of method names for additional measures to look for |
---|
| 203 | * in Classifiers. This could contain many measures (of which only a |
---|
| 204 | * subset may be produceable by the current Classifier) if an experiment |
---|
| 205 | * is the type that iterates over a set of properties. |
---|
| 206 | * @param additionalMeasures a list of method names |
---|
| 207 | */ |
---|
| 208 | public void setAdditionalMeasures(String [] additionalMeasures) { |
---|
| 209 | // System.err.println("ClassifierSplitEvaluator: setting additional measures"); |
---|
| 210 | m_additionalMeasures = additionalMeasures; |
---|
| 211 | |
---|
| 212 | // determine which (if any) of the additional measures this clusterer |
---|
| 213 | // can produce |
---|
| 214 | if (m_additionalMeasures != null && m_additionalMeasures.length > 0) { |
---|
| 215 | m_doesProduce = new boolean [m_additionalMeasures.length]; |
---|
| 216 | |
---|
| 217 | if (m_clusterer instanceof AdditionalMeasureProducer) { |
---|
| 218 | Enumeration en = ((AdditionalMeasureProducer)m_clusterer). |
---|
| 219 | enumerateMeasures(); |
---|
| 220 | while (en.hasMoreElements()) { |
---|
| 221 | String mname = (String)en.nextElement(); |
---|
| 222 | for (int j=0;j<m_additionalMeasures.length;j++) { |
---|
| 223 | if (mname.compareToIgnoreCase(m_additionalMeasures[j]) == 0) { |
---|
| 224 | m_doesProduce[j] = true; |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | } |
---|
| 229 | } else { |
---|
| 230 | m_doesProduce = null; |
---|
| 231 | } |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | /** |
---|
| 235 | * Returns an enumeration of any additional measure names that might be |
---|
| 236 | * in the classifier |
---|
| 237 | * @return an enumeration of the measure names |
---|
| 238 | */ |
---|
| 239 | public Enumeration enumerateMeasures() { |
---|
| 240 | Vector newVector = new Vector(); |
---|
| 241 | if (m_clusterer instanceof AdditionalMeasureProducer) { |
---|
| 242 | Enumeration en = ((AdditionalMeasureProducer)m_clusterer). |
---|
| 243 | enumerateMeasures(); |
---|
| 244 | while (en.hasMoreElements()) { |
---|
| 245 | String mname = (String)en.nextElement(); |
---|
| 246 | newVector.addElement(mname); |
---|
| 247 | } |
---|
| 248 | } |
---|
| 249 | return newVector.elements(); |
---|
| 250 | } |
---|
| 251 | |
---|
| 252 | /** |
---|
| 253 | * Returns the value of the named measure |
---|
| 254 | * @param additionalMeasureName the name of the measure to query for its value |
---|
| 255 | * @return the value of the named measure |
---|
| 256 | * @exception IllegalArgumentException if the named measure is not supported |
---|
| 257 | */ |
---|
| 258 | public double getMeasure(String additionalMeasureName) { |
---|
| 259 | if (m_clusterer instanceof AdditionalMeasureProducer) { |
---|
| 260 | return ((AdditionalMeasureProducer)m_clusterer). |
---|
| 261 | getMeasure(additionalMeasureName); |
---|
| 262 | } else { |
---|
| 263 | throw new IllegalArgumentException("DensityBasedClustererSplitEvaluator: " |
---|
| 264 | +"Can't return value for : "+additionalMeasureName |
---|
| 265 | +". "+m_clusterer.getClass().getName()+" " |
---|
| 266 | +"is not an AdditionalMeasureProducer"); |
---|
| 267 | } |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | /** |
---|
| 271 | * Gets the data types of each of the key columns produced for a single run. |
---|
| 272 | * The number of key fields must be constant |
---|
| 273 | * for a given SplitEvaluator. |
---|
| 274 | * |
---|
| 275 | * @return an array containing objects of the type of each key column. The |
---|
| 276 | * objects should be Strings, or Doubles. |
---|
| 277 | */ |
---|
| 278 | public Object [] getKeyTypes() { |
---|
| 279 | |
---|
| 280 | Object [] keyTypes = new Object[KEY_SIZE]; |
---|
| 281 | keyTypes[0] = ""; |
---|
| 282 | keyTypes[1] = ""; |
---|
| 283 | keyTypes[2] = ""; |
---|
| 284 | return keyTypes; |
---|
| 285 | } |
---|
| 286 | |
---|
| 287 | /** |
---|
| 288 | * Gets the names of each of the key columns produced for a single run. |
---|
| 289 | * The number of key fields must be constant |
---|
| 290 | * for a given SplitEvaluator. |
---|
| 291 | * |
---|
| 292 | * @return an array containing the name of each key column |
---|
| 293 | */ |
---|
| 294 | public String [] getKeyNames() { |
---|
| 295 | |
---|
| 296 | String [] keyNames = new String[KEY_SIZE]; |
---|
| 297 | keyNames[0] = "Scheme"; |
---|
| 298 | keyNames[1] = "Scheme_options"; |
---|
| 299 | keyNames[2] = "Scheme_version_ID"; |
---|
| 300 | return keyNames; |
---|
| 301 | } |
---|
| 302 | |
---|
| 303 | /** |
---|
| 304 | * Gets the key describing the current SplitEvaluator. For example |
---|
| 305 | * This may contain the name of the classifier used for classifier |
---|
| 306 | * predictive evaluation. The number of key fields must be constant |
---|
| 307 | * for a given SplitEvaluator. |
---|
| 308 | * |
---|
| 309 | * @return an array of objects containing the key. |
---|
| 310 | */ |
---|
| 311 | public Object [] getKey(){ |
---|
| 312 | |
---|
| 313 | Object [] key = new Object[KEY_SIZE]; |
---|
| 314 | key[0] = m_clusterer.getClass().getName(); |
---|
| 315 | key[1] = m_clustererOptions; |
---|
| 316 | key[2] = m_clustererVersion; |
---|
| 317 | return key; |
---|
| 318 | } |
---|
| 319 | |
---|
| 320 | /** |
---|
| 321 | * Gets the data types of each of the result columns produced for a |
---|
| 322 | * single run. The number of result fields must be constant |
---|
| 323 | * for a given SplitEvaluator. |
---|
| 324 | * |
---|
| 325 | * @return an array containing objects of the type of each result column. |
---|
| 326 | * The objects should be Strings, or Doubles. |
---|
| 327 | */ |
---|
| 328 | public Object [] getResultTypes() { |
---|
| 329 | int addm = (m_additionalMeasures != null) |
---|
| 330 | ? m_additionalMeasures.length |
---|
| 331 | : 0; |
---|
| 332 | int overall_length = RESULT_SIZE+addm; |
---|
| 333 | |
---|
| 334 | Object [] resultTypes = new Object[overall_length]; |
---|
| 335 | Double doub = new Double(0); |
---|
| 336 | int current = 0; |
---|
| 337 | |
---|
| 338 | // number of training and testing instances |
---|
| 339 | resultTypes[current++] = doub; |
---|
| 340 | resultTypes[current++] = doub; |
---|
| 341 | |
---|
| 342 | // log liklihood |
---|
| 343 | resultTypes[current++] = doub; |
---|
| 344 | // number of clusters |
---|
| 345 | resultTypes[current++] = doub; |
---|
| 346 | |
---|
| 347 | // timing stats |
---|
| 348 | resultTypes[current++] = doub; |
---|
| 349 | resultTypes[current++] = doub; |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | // resultTypes[current++] = ""; |
---|
| 353 | |
---|
| 354 | // add any additional measures |
---|
| 355 | for (int i=0;i<addm;i++) { |
---|
| 356 | resultTypes[current++] = doub; |
---|
| 357 | } |
---|
| 358 | if (current != overall_length) { |
---|
| 359 | throw new Error("ResultTypes didn't fit RESULT_SIZE"); |
---|
| 360 | } |
---|
| 361 | return resultTypes; |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | /** |
---|
| 365 | * Gets the names of each of the result columns produced for a single run. |
---|
| 366 | * The number of result fields must be constant |
---|
| 367 | * for a given SplitEvaluator. |
---|
| 368 | * |
---|
| 369 | * @return an array containing the name of each result column |
---|
| 370 | */ |
---|
| 371 | public String [] getResultNames() { |
---|
| 372 | int addm = (m_additionalMeasures != null) |
---|
| 373 | ? m_additionalMeasures.length |
---|
| 374 | : 0; |
---|
| 375 | int overall_length = RESULT_SIZE+addm; |
---|
| 376 | |
---|
| 377 | String [] resultNames = new String[overall_length]; |
---|
| 378 | int current = 0; |
---|
| 379 | resultNames[current++] = "Number_of_training_instances"; |
---|
| 380 | resultNames[current++] = "Number_of_testing_instances"; |
---|
| 381 | |
---|
| 382 | // Basic performance stats |
---|
| 383 | resultNames[current++] = "Log_likelihood"; |
---|
| 384 | resultNames[current++] = "Number_of_clusters"; |
---|
| 385 | |
---|
| 386 | // Timing stats |
---|
| 387 | resultNames[current++] = "Time_training"; |
---|
| 388 | resultNames[current++] = "Time_testing"; |
---|
| 389 | |
---|
| 390 | // Classifier defined extras |
---|
| 391 | // resultNames[current++] = "Summary"; |
---|
| 392 | // add any additional measures |
---|
| 393 | for (int i=0;i<addm;i++) { |
---|
| 394 | resultNames[current++] = m_additionalMeasures[i]; |
---|
| 395 | } |
---|
| 396 | if (current != overall_length) { |
---|
| 397 | throw new Error("ResultNames didn't fit RESULT_SIZE"); |
---|
| 398 | } |
---|
| 399 | return resultNames; |
---|
| 400 | } |
---|
| 401 | |
---|
| 402 | /** |
---|
| 403 | * Gets the results for the supplied train and test datasets. |
---|
| 404 | * |
---|
| 405 | * @param train the training Instances. |
---|
| 406 | * @param test the testing Instances. |
---|
| 407 | * @return the results stored in an array. The objects stored in |
---|
| 408 | * the array may be Strings, Doubles, or null (for the missing value). |
---|
| 409 | * @exception Exception if a problem occurs while getting the results |
---|
| 410 | */ |
---|
| 411 | public Object [] getResult(Instances train, Instances test) |
---|
| 412 | throws Exception { |
---|
| 413 | |
---|
| 414 | if (m_clusterer == null) { |
---|
| 415 | throw new Exception("No clusterer has been specified"); |
---|
| 416 | } |
---|
| 417 | int addm = (m_additionalMeasures != null) |
---|
| 418 | ? m_additionalMeasures.length |
---|
| 419 | : 0; |
---|
| 420 | int overall_length = RESULT_SIZE+addm; |
---|
| 421 | |
---|
| 422 | if (m_removeClassColumn && train.classIndex() != -1) { |
---|
| 423 | // remove the class column from the training and testing data |
---|
| 424 | Remove r = new Remove(); |
---|
| 425 | r.setAttributeIndicesArray(new int [] {train.classIndex()}); |
---|
| 426 | r.setInvertSelection(false); |
---|
| 427 | r.setInputFormat(train); |
---|
| 428 | train = Filter.useFilter(train, r); |
---|
| 429 | |
---|
| 430 | test = Filter.useFilter(test, r); |
---|
| 431 | } |
---|
| 432 | train.setClassIndex(-1); |
---|
| 433 | test.setClassIndex(-1); |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | ClusterEvaluation eval = new ClusterEvaluation(); |
---|
| 437 | |
---|
| 438 | Object [] result = new Object[overall_length]; |
---|
| 439 | long trainTimeStart = System.currentTimeMillis(); |
---|
| 440 | m_clusterer.buildClusterer(train); |
---|
| 441 | double numClusters = m_clusterer.numberOfClusters(); |
---|
| 442 | eval.setClusterer(m_clusterer); |
---|
| 443 | long trainTimeElapsed = System.currentTimeMillis() - trainTimeStart; |
---|
| 444 | long testTimeStart = System.currentTimeMillis(); |
---|
| 445 | eval.evaluateClusterer(test); |
---|
| 446 | long testTimeElapsed = System.currentTimeMillis() - testTimeStart; |
---|
| 447 | // m_result = eval.toSummaryString(); |
---|
| 448 | |
---|
| 449 | // The results stored are all per instance -- can be multiplied by the |
---|
| 450 | // number of instances to get absolute numbers |
---|
| 451 | int current = 0; |
---|
| 452 | result[current++] = new Double(train.numInstances()); |
---|
| 453 | result[current++] = new Double(test.numInstances()); |
---|
| 454 | |
---|
| 455 | result[current++] = new Double(eval.getLogLikelihood()); |
---|
| 456 | result[current++] = new Double(numClusters); |
---|
| 457 | |
---|
| 458 | // Timing stats |
---|
| 459 | result[current++] = new Double(trainTimeElapsed / 1000.0); |
---|
| 460 | result[current++] = new Double(testTimeElapsed / 1000.0); |
---|
| 461 | |
---|
| 462 | for (int i=0;i<addm;i++) { |
---|
| 463 | if (m_doesProduce[i]) { |
---|
| 464 | try { |
---|
| 465 | double dv = ((AdditionalMeasureProducer)m_clusterer). |
---|
| 466 | getMeasure(m_additionalMeasures[i]); |
---|
| 467 | Double value = new Double(dv); |
---|
| 468 | |
---|
| 469 | result[current++] = value; |
---|
| 470 | } catch (Exception ex) { |
---|
| 471 | System.err.println(ex); |
---|
| 472 | } |
---|
| 473 | } else { |
---|
| 474 | result[current++] = null; |
---|
| 475 | } |
---|
| 476 | } |
---|
| 477 | |
---|
| 478 | if (current != overall_length) { |
---|
| 479 | throw new Error("Results didn't fit RESULT_SIZE"); |
---|
| 480 | } |
---|
| 481 | return result; |
---|
| 482 | } |
---|
| 483 | |
---|
| 484 | /** |
---|
| 485 | * Returns the tip text for this property |
---|
| 486 | * @return tip text for this property suitable for |
---|
| 487 | * displaying in the explorer/experimenter gui |
---|
| 488 | */ |
---|
| 489 | public String removeClassColumnTipText() { |
---|
| 490 | return "Remove the class column (if set) from the data."; |
---|
| 491 | } |
---|
| 492 | |
---|
| 493 | /** |
---|
| 494 | * Set whether the class column should be removed from the data. |
---|
| 495 | * |
---|
| 496 | * @param r true if the class column is to be removed. |
---|
| 497 | */ |
---|
| 498 | public void setRemoveClassColumn(boolean r) { |
---|
| 499 | m_removeClassColumn = r; |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | /** |
---|
| 503 | * Get whether the class column is to be removed. |
---|
| 504 | * |
---|
| 505 | * @return true if the class column is to be removed. |
---|
| 506 | */ |
---|
| 507 | public boolean getRemoveClassColumn() { |
---|
| 508 | return m_removeClassColumn; |
---|
| 509 | } |
---|
| 510 | |
---|
| 511 | /** |
---|
| 512 | * Returns the tip text for this property |
---|
| 513 | * @return tip text for this property suitable for |
---|
| 514 | * displaying in the explorer/experimenter gui |
---|
| 515 | */ |
---|
| 516 | public String clustererTipText() { |
---|
| 517 | return "The density based clusterer to use."; |
---|
| 518 | } |
---|
| 519 | |
---|
| 520 | /** |
---|
| 521 | * Get the value of clusterer |
---|
| 522 | * |
---|
| 523 | * @return Value of clusterer. |
---|
| 524 | */ |
---|
| 525 | public DensityBasedClusterer getClusterer() { |
---|
| 526 | |
---|
| 527 | return m_clusterer; |
---|
| 528 | } |
---|
| 529 | |
---|
| 530 | /** |
---|
| 531 | * Sets the clusterer. |
---|
| 532 | * |
---|
| 533 | * @param newClusterer the new clusterer to use. |
---|
| 534 | */ |
---|
| 535 | public void setClusterer(DensityBasedClusterer newClusterer) { |
---|
| 536 | |
---|
| 537 | m_clusterer = newClusterer; |
---|
| 538 | updateOptions(); |
---|
| 539 | } |
---|
| 540 | |
---|
| 541 | |
---|
| 542 | protected void updateOptions() { |
---|
| 543 | |
---|
| 544 | if (m_clusterer instanceof OptionHandler) { |
---|
| 545 | m_clustererOptions = Utils.joinOptions(((OptionHandler)m_clusterer) |
---|
| 546 | .getOptions()); |
---|
| 547 | } else { |
---|
| 548 | m_clustererOptions = ""; |
---|
| 549 | } |
---|
| 550 | if (m_clusterer instanceof Serializable) { |
---|
| 551 | ObjectStreamClass obs = ObjectStreamClass.lookup(m_clusterer |
---|
| 552 | .getClass()); |
---|
| 553 | m_clustererVersion = "" + obs.getSerialVersionUID(); |
---|
| 554 | } else { |
---|
| 555 | m_clustererVersion = ""; |
---|
| 556 | } |
---|
| 557 | } |
---|
| 558 | |
---|
| 559 | /** |
---|
| 560 | * Set the Clusterer to use, given it's class name. A new clusterer will be |
---|
| 561 | * instantiated. |
---|
| 562 | * |
---|
| 563 | * @param newClustererName the clusterer class name. |
---|
| 564 | * @exception Exception if the class name is invalid. |
---|
| 565 | */ |
---|
| 566 | public void setClustererName(String newClustererName) throws Exception { |
---|
| 567 | |
---|
| 568 | try { |
---|
| 569 | setClusterer((DensityBasedClusterer)Class.forName(newClustererName) |
---|
| 570 | .newInstance()); |
---|
| 571 | } catch (Exception ex) { |
---|
| 572 | throw new Exception("Can't find Clusterer with class name: " |
---|
| 573 | + newClustererName); |
---|
| 574 | } |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | /** |
---|
| 578 | * Gets the raw output from the classifier |
---|
| 579 | * @return the raw output from the classifier |
---|
| 580 | */ |
---|
| 581 | public String getRawResultOutput() { |
---|
| 582 | StringBuffer result = new StringBuffer(); |
---|
| 583 | |
---|
| 584 | if (m_clusterer == null) { |
---|
| 585 | return "<null> clusterer"; |
---|
| 586 | } |
---|
| 587 | result.append(toString()); |
---|
| 588 | result.append("Clustering model: \n"+m_clusterer.toString()+'\n'); |
---|
| 589 | |
---|
| 590 | // append the performance statistics |
---|
| 591 | if (m_result != null) { |
---|
| 592 | // result.append(m_result); |
---|
| 593 | |
---|
| 594 | if (m_doesProduce != null) { |
---|
| 595 | for (int i=0;i<m_doesProduce.length;i++) { |
---|
| 596 | if (m_doesProduce[i]) { |
---|
| 597 | try { |
---|
| 598 | double dv = ((AdditionalMeasureProducer)m_clusterer). |
---|
| 599 | getMeasure(m_additionalMeasures[i]); |
---|
| 600 | Double value = new Double(dv); |
---|
| 601 | |
---|
| 602 | result.append(m_additionalMeasures[i]+" : "+value+'\n'); |
---|
| 603 | } catch (Exception ex) { |
---|
| 604 | System.err.println(ex); |
---|
| 605 | } |
---|
| 606 | } |
---|
| 607 | } |
---|
| 608 | } |
---|
| 609 | } |
---|
| 610 | return result.toString(); |
---|
| 611 | } |
---|
| 612 | |
---|
| 613 | /** |
---|
| 614 | * Returns a text description of the split evaluator. |
---|
| 615 | * |
---|
| 616 | * @return a text description of the split evaluator. |
---|
| 617 | */ |
---|
| 618 | public String toString() { |
---|
| 619 | |
---|
| 620 | String result = "DensityBasedClustererSplitEvaluator: "; |
---|
| 621 | if (m_clusterer == null) { |
---|
| 622 | return result + "<null> clusterer"; |
---|
| 623 | } |
---|
| 624 | return result + m_clusterer.getClass().getName() + " " |
---|
| 625 | + m_clustererOptions + "(version " + m_clustererVersion + ")"; |
---|
| 626 | } |
---|
| 627 | |
---|
| 628 | /** |
---|
| 629 | * Returns the revision string. |
---|
| 630 | * |
---|
| 631 | * @return the revision |
---|
| 632 | */ |
---|
| 633 | public String getRevision() { |
---|
| 634 | return RevisionUtils.extract("$Revision: 5563 $"); |
---|
| 635 | } |
---|
| 636 | } |
---|