/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * CrossValidationSplitResultProducer.java * Copyright (C) 1999, 2009 University of Waikato, Hamilton, New Zealand * */ package weka.experiment; import weka.core.AdditionalMeasureProducer; import weka.core.Instance; import weka.core.Instances; import weka.core.Option; import weka.core.OptionHandler; import weka.core.RevisionHandler; import weka.core.RevisionUtils; import weka.core.Utils; import java.io.File; import java.util.Calendar; import java.util.Enumeration; import java.util.Random; import java.util.TimeZone; import java.util.Vector; /** * Carries out one split of a repeated k-fold cross-validation, using the set SplitEvaluator to generate some results. Note that the run number is actually the nth split of a repeated k-fold cross-validation, i.e. if k=10, run number 100 is the 10th fold of the 10th cross-validation run. This producer's sole purpose is to allow more fine-grained distribution of cross-validation experiments. If the class attribute is nominal, the dataset is stratified. *
* * Valid options are: * *-X <number of folds> * The number of folds to use for the cross-validation. * (default 10)* *
-D * Save raw split evaluator output.* *
-O <file/directory name/path> * The filename where raw output will be stored. * If a directory name is specified then then individual * outputs will be gzipped, otherwise all output will be * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)* *
-W <class name> * The full class name of a SplitEvaluator. * eg: weka.experiment.ClassifierSplitEvaluator* *
* Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: ** *
-W <class name> * The full class name of the classifier. * eg: weka.classifiers.bayes.NaiveBayes* *
-C <index> * The index of the class for which IR statistics * are to be output. (default 1)* *
-I <index> * The index of an attribute to output in the * results. This attribute should identify an * instance in order to know which instances are * in the test set of a cross validation. if 0 * no output (default 0).* *
-P * Add target and prediction columns to the result * for each fold.* *
* Options specific to classifier weka.classifiers.rules.ZeroR: ** *
-D * If set, classifier is run in debug mode and * may output additional info to the console* * * All options after -- will be passed to the split evaluator. * * @author Len Trigg * @author Eibe Frank * @version $Revision: 5828 $ */ public class CrossValidationSplitResultProducer extends CrossValidationResultProducer { /** for serialization */ static final long serialVersionUID = 1403798164046795073L; /** * Returns a string describing this result producer * @return a description of the result producer suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Carries out one split of a repeated k-fold cross-validation, " + "using the set SplitEvaluator to generate some results. " + "Note that the run number is actually the nth split of a repeated " + "k-fold cross-validation, i.e. if k=10, run number 100 is the 10th " + "fold of the 10th cross-validation run. This producer's sole purpose " + "is to allow more fine-grained distribution of cross-validation " + "experiments. If the class attribute is nominal, the dataset is stratified."; } /** * Gets the keys for a specified run number. Different run * numbers correspond to different randomizations of the data. Keys * produced should be sent to the current ResultListener * * @param run the run number to get keys for. * @throws Exception if a problem occurs while getting the keys */ public void doRunKeys(int run) throws Exception { if (m_Instances == null) { throw new Exception("No Instances set"); } // Add in some fields to the key like run and fold number, dataset name Object [] seKey = m_SplitEvaluator.getKey(); Object [] key = new Object [seKey.length + 3]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[2] = "" + (((run - 1) % m_NumFolds) + 1); key[1] = "" + (((run - 1) / m_NumFolds) + 1); System.arraycopy(seKey, 0, key, 3, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { try { m_ResultListener.acceptResult(this, key, null); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets the results for a specified run number. Different run * numbers correspond to different randomizations of the data. Results * produced should be sent to the current ResultListener * * @param run the run number to get results for. * @throws Exception if a problem occurs while getting the results */ public void doRun(int run) throws Exception { if (getRawOutput()) { if (m_ZipDest == null) { m_ZipDest = new OutputZipper(m_OutputFile); } } if (m_Instances == null) { throw new Exception("No Instances set"); } // Compute run and fold number from given run int fold = (run - 1) % m_NumFolds; run = ((run - 1) / m_NumFolds) + 1; // Randomize on a copy of the original dataset Instances runInstances = new Instances(m_Instances); Random random = new Random(run); runInstances.randomize(random); if (runInstances.classAttribute().isNominal()) { runInstances.stratify(m_NumFolds); } // Add in some fields to the key like run and fold number, dataset name Object [] seKey = m_SplitEvaluator.getKey(); Object [] key = new Object [seKey.length + 3]; key[0] = Utils.backQuoteChars(m_Instances.relationName()); key[1] = "" + run; key[2] = "" + (fold + 1); System.arraycopy(seKey, 0, key, 3, seKey.length); if (m_ResultListener.isResultRequired(this, key)) { Instances train = runInstances.trainCV(m_NumFolds, fold, random); Instances test = runInstances.testCV(m_NumFolds, fold); try { Object [] seResults = m_SplitEvaluator.getResult(train, test); Object [] results = new Object [seResults.length + 1]; results[0] = getTimestamp(); System.arraycopy(seResults, 0, results, 1, seResults.length); if (m_debugOutput) { String resultName = (""+run+"."+(fold+1)+"." + Utils.backQuoteChars(runInstances.relationName()) +"." +m_SplitEvaluator.toString()).replace(' ','_'); resultName = Utils.removeSubstring(resultName, "weka.classifiers."); resultName = Utils.removeSubstring(resultName, "weka.filters."); resultName = Utils.removeSubstring(resultName, "weka.attributeSelection."); m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); } m_ResultListener.acceptResult(this, key, results); } catch (Exception ex) { // Save the train and test datasets for debugging purposes? throw ex; } } } /** * Gets a text descrption of the result producer. * * @return a text description of the result producer. */ public String toString() { String result = "CrossValidationSplitResultProducer: "; result += getCompatibilityState(); if (m_Instances == null) { result += ":