[4] | 1 | /* |
---|
| 2 | * This program is free software; you can redistribute it and/or modify |
---|
| 3 | * it under the terms of the GNU General Public License as published by |
---|
| 4 | * the Free Software Foundation; either version 2 of the License, or |
---|
| 5 | * (at your option) any later version. |
---|
| 6 | * |
---|
| 7 | * This program is distributed in the hope that it will be useful, |
---|
| 8 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 9 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 10 | * GNU General Public License for more details. |
---|
| 11 | * |
---|
| 12 | * You should have received a copy of the GNU General Public License |
---|
| 13 | * along with this program; if not, write to the Free Software |
---|
| 14 | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 15 | */ |
---|
| 16 | |
---|
| 17 | /* |
---|
| 18 | * CrossValidationSplitResultProducer.java |
---|
| 19 | * Copyright (C) 1999, 2009 University of Waikato, Hamilton, New Zealand |
---|
| 20 | * |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | |
---|
| 24 | package weka.experiment; |
---|
| 25 | |
---|
| 26 | import weka.core.AdditionalMeasureProducer; |
---|
| 27 | import weka.core.Instance; |
---|
| 28 | import weka.core.Instances; |
---|
| 29 | import weka.core.Option; |
---|
| 30 | import weka.core.OptionHandler; |
---|
| 31 | import weka.core.RevisionHandler; |
---|
| 32 | import weka.core.RevisionUtils; |
---|
| 33 | import weka.core.Utils; |
---|
| 34 | |
---|
| 35 | import java.io.File; |
---|
| 36 | import java.util.Calendar; |
---|
| 37 | import java.util.Enumeration; |
---|
| 38 | import java.util.Random; |
---|
| 39 | import java.util.TimeZone; |
---|
| 40 | import java.util.Vector; |
---|
| 41 | |
---|
| 42 | /** |
---|
| 43 | <!-- globalinfo-start --> |
---|
| 44 | * Carries out one split of a repeated k-fold cross-validation, using the set SplitEvaluator to generate some results. Note that the run number is actually the nth split of a repeated k-fold cross-validation, i.e. if k=10, run number 100 is the 10th fold of the 10th cross-validation run. This producer's sole purpose is to allow more fine-grained distribution of cross-validation experiments. If the class attribute is nominal, the dataset is stratified. |
---|
| 45 | * <p/> |
---|
| 46 | <!-- globalinfo-end --> |
---|
| 47 | * |
---|
| 48 | <!-- options-start --> |
---|
| 49 | * Valid options are: <p/> |
---|
| 50 | * |
---|
| 51 | * <pre> -X <number of folds> |
---|
| 52 | * The number of folds to use for the cross-validation. |
---|
| 53 | * (default 10)</pre> |
---|
| 54 | * |
---|
| 55 | * <pre> -D |
---|
| 56 | * Save raw split evaluator output.</pre> |
---|
| 57 | * |
---|
| 58 | * <pre> -O <file/directory name/path> |
---|
| 59 | * The filename where raw output will be stored. |
---|
| 60 | * If a directory name is specified then then individual |
---|
| 61 | * outputs will be gzipped, otherwise all output will be |
---|
| 62 | * zipped to the named file. Use in conjuction with -D. (default splitEvalutorOut.zip)</pre> |
---|
| 63 | * |
---|
| 64 | * <pre> -W <class name> |
---|
| 65 | * The full class name of a SplitEvaluator. |
---|
| 66 | * eg: weka.experiment.ClassifierSplitEvaluator</pre> |
---|
| 67 | * |
---|
| 68 | * <pre> |
---|
| 69 | * Options specific to split evaluator weka.experiment.ClassifierSplitEvaluator: |
---|
| 70 | * </pre> |
---|
| 71 | * |
---|
| 72 | * <pre> -W <class name> |
---|
| 73 | * The full class name of the classifier. |
---|
| 74 | * eg: weka.classifiers.bayes.NaiveBayes</pre> |
---|
| 75 | * |
---|
| 76 | * <pre> -C <index> |
---|
| 77 | * The index of the class for which IR statistics |
---|
| 78 | * are to be output. (default 1)</pre> |
---|
| 79 | * |
---|
| 80 | * <pre> -I <index> |
---|
| 81 | * The index of an attribute to output in the |
---|
| 82 | * results. This attribute should identify an |
---|
| 83 | * instance in order to know which instances are |
---|
| 84 | * in the test set of a cross validation. if 0 |
---|
| 85 | * no output (default 0).</pre> |
---|
| 86 | * |
---|
| 87 | * <pre> -P |
---|
| 88 | * Add target and prediction columns to the result |
---|
| 89 | * for each fold.</pre> |
---|
| 90 | * |
---|
| 91 | * <pre> |
---|
| 92 | * Options specific to classifier weka.classifiers.rules.ZeroR: |
---|
| 93 | * </pre> |
---|
| 94 | * |
---|
| 95 | * <pre> -D |
---|
| 96 | * If set, classifier is run in debug mode and |
---|
| 97 | * may output additional info to the console</pre> |
---|
| 98 | * |
---|
| 99 | <!-- options-end --> |
---|
| 100 | * |
---|
| 101 | * All options after -- will be passed to the split evaluator. |
---|
| 102 | * |
---|
| 103 | * @author Len Trigg |
---|
| 104 | * @author Eibe Frank |
---|
| 105 | * @version $Revision: 5828 $ |
---|
| 106 | */ |
---|
| 107 | public class CrossValidationSplitResultProducer |
---|
| 108 | extends CrossValidationResultProducer { |
---|
| 109 | |
---|
| 110 | /** for serialization */ |
---|
| 111 | static final long serialVersionUID = 1403798164046795073L; |
---|
| 112 | |
---|
| 113 | /** |
---|
| 114 | * Returns a string describing this result producer |
---|
| 115 | * @return a description of the result producer suitable for |
---|
| 116 | * displaying in the explorer/experimenter gui |
---|
| 117 | */ |
---|
| 118 | public String globalInfo() { |
---|
| 119 | return |
---|
| 120 | "Carries out one split of a repeated k-fold cross-validation, " |
---|
| 121 | + "using the set SplitEvaluator to generate some results. " |
---|
| 122 | + "Note that the run number is actually the nth split of a repeated " |
---|
| 123 | + "k-fold cross-validation, i.e. if k=10, run number 100 is the 10th " |
---|
| 124 | + "fold of the 10th cross-validation run. This producer's sole purpose " |
---|
| 125 | + "is to allow more fine-grained distribution of cross-validation " |
---|
| 126 | + "experiments. If the class attribute is nominal, the dataset is stratified."; |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | /** |
---|
| 130 | * Gets the keys for a specified run number. Different run |
---|
| 131 | * numbers correspond to different randomizations of the data. Keys |
---|
| 132 | * produced should be sent to the current ResultListener |
---|
| 133 | * |
---|
| 134 | * @param run the run number to get keys for. |
---|
| 135 | * @throws Exception if a problem occurs while getting the keys |
---|
| 136 | */ |
---|
| 137 | public void doRunKeys(int run) throws Exception { |
---|
| 138 | if (m_Instances == null) { |
---|
| 139 | throw new Exception("No Instances set"); |
---|
| 140 | } |
---|
| 141 | |
---|
| 142 | // Add in some fields to the key like run and fold number, dataset name |
---|
| 143 | Object [] seKey = m_SplitEvaluator.getKey(); |
---|
| 144 | Object [] key = new Object [seKey.length + 3]; |
---|
| 145 | key[0] = Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 146 | key[2] = "" + (((run - 1) % m_NumFolds) + 1); |
---|
| 147 | key[1] = "" + (((run - 1) / m_NumFolds) + 1); |
---|
| 148 | System.arraycopy(seKey, 0, key, 3, seKey.length); |
---|
| 149 | if (m_ResultListener.isResultRequired(this, key)) { |
---|
| 150 | try { |
---|
| 151 | m_ResultListener.acceptResult(this, key, null); |
---|
| 152 | } catch (Exception ex) { |
---|
| 153 | // Save the train and test datasets for debugging purposes? |
---|
| 154 | throw ex; |
---|
| 155 | } |
---|
| 156 | } |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /** |
---|
| 160 | * Gets the results for a specified run number. Different run |
---|
| 161 | * numbers correspond to different randomizations of the data. Results |
---|
| 162 | * produced should be sent to the current ResultListener |
---|
| 163 | * |
---|
| 164 | * @param run the run number to get results for. |
---|
| 165 | * @throws Exception if a problem occurs while getting the results |
---|
| 166 | */ |
---|
| 167 | public void doRun(int run) throws Exception { |
---|
| 168 | |
---|
| 169 | if (getRawOutput()) { |
---|
| 170 | if (m_ZipDest == null) { |
---|
| 171 | m_ZipDest = new OutputZipper(m_OutputFile); |
---|
| 172 | } |
---|
| 173 | } |
---|
| 174 | |
---|
| 175 | if (m_Instances == null) { |
---|
| 176 | throw new Exception("No Instances set"); |
---|
| 177 | } |
---|
| 178 | |
---|
| 179 | // Compute run and fold number from given run |
---|
| 180 | int fold = (run - 1) % m_NumFolds; |
---|
| 181 | run = ((run - 1) / m_NumFolds) + 1; |
---|
| 182 | |
---|
| 183 | |
---|
| 184 | // Randomize on a copy of the original dataset |
---|
| 185 | Instances runInstances = new Instances(m_Instances); |
---|
| 186 | Random random = new Random(run); |
---|
| 187 | runInstances.randomize(random); |
---|
| 188 | if (runInstances.classAttribute().isNominal()) { |
---|
| 189 | runInstances.stratify(m_NumFolds); |
---|
| 190 | } |
---|
| 191 | |
---|
| 192 | // Add in some fields to the key like run and fold number, dataset name |
---|
| 193 | Object [] seKey = m_SplitEvaluator.getKey(); |
---|
| 194 | Object [] key = new Object [seKey.length + 3]; |
---|
| 195 | key[0] = Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 196 | key[1] = "" + run; |
---|
| 197 | key[2] = "" + (fold + 1); |
---|
| 198 | System.arraycopy(seKey, 0, key, 3, seKey.length); |
---|
| 199 | if (m_ResultListener.isResultRequired(this, key)) { |
---|
| 200 | Instances train = runInstances.trainCV(m_NumFolds, fold, random); |
---|
| 201 | Instances test = runInstances.testCV(m_NumFolds, fold); |
---|
| 202 | try { |
---|
| 203 | Object [] seResults = m_SplitEvaluator.getResult(train, test); |
---|
| 204 | Object [] results = new Object [seResults.length + 1]; |
---|
| 205 | results[0] = getTimestamp(); |
---|
| 206 | System.arraycopy(seResults, 0, results, 1, |
---|
| 207 | seResults.length); |
---|
| 208 | if (m_debugOutput) { |
---|
| 209 | String resultName = (""+run+"."+(fold+1)+"." |
---|
| 210 | + Utils.backQuoteChars(runInstances.relationName()) |
---|
| 211 | +"." |
---|
| 212 | +m_SplitEvaluator.toString()).replace(' ','_'); |
---|
| 213 | resultName = Utils.removeSubstring(resultName, |
---|
| 214 | "weka.classifiers."); |
---|
| 215 | resultName = Utils.removeSubstring(resultName, |
---|
| 216 | "weka.filters."); |
---|
| 217 | resultName = Utils.removeSubstring(resultName, |
---|
| 218 | "weka.attributeSelection."); |
---|
| 219 | m_ZipDest.zipit(m_SplitEvaluator.getRawResultOutput(), resultName); |
---|
| 220 | } |
---|
| 221 | m_ResultListener.acceptResult(this, key, results); |
---|
| 222 | } catch (Exception ex) { |
---|
| 223 | // Save the train and test datasets for debugging purposes? |
---|
| 224 | throw ex; |
---|
| 225 | } |
---|
| 226 | } |
---|
| 227 | } |
---|
| 228 | |
---|
| 229 | /** |
---|
| 230 | * Gets a text descrption of the result producer. |
---|
| 231 | * |
---|
| 232 | * @return a text description of the result producer. |
---|
| 233 | */ |
---|
| 234 | public String toString() { |
---|
| 235 | |
---|
| 236 | String result = "CrossValidationSplitResultProducer: "; |
---|
| 237 | result += getCompatibilityState(); |
---|
| 238 | if (m_Instances == null) { |
---|
| 239 | result += ": <null Instances>"; |
---|
| 240 | } else { |
---|
| 241 | result += ": " + Utils.backQuoteChars(m_Instances.relationName()); |
---|
| 242 | } |
---|
| 243 | return result; |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | /** |
---|
| 247 | * Returns the revision string. |
---|
| 248 | * |
---|
| 249 | * @return the revision |
---|
| 250 | */ |
---|
| 251 | public String getRevision() { |
---|
| 252 | return RevisionUtils.extract("$Revision: 5828 $"); |
---|
| 253 | } |
---|
| 254 | } // CrossValidationSplitResultProducer |
---|
| 255 | |
---|