source: src/main/java/weka/experiment/CostSensitiveClassifierSplitEvaluator.java @ 8

Last change on this file since 8 was 4, checked in by gnappo, 14 years ago

Import di weka.

File size: 18.3 KB
Line 
1/*
2 *    This program is free software; you can redistribute it and/or modify
3 *    it under the terms of the GNU General Public License as published by
4 *    the Free Software Foundation; either version 2 of the License, or
5 *    (at your option) any later version.
6 *
7 *    This program is distributed in the hope that it will be useful,
8 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
9 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10 *    GNU General Public License for more details.
11 *
12 *    You should have received a copy of the GNU General Public License
13 *    along with this program; if not, write to the Free Software
14 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
15 */
16
17/*
18 *    CostSensitiveClassifierSplitEvaluator.java
19 *    Copyright (C) 2002 University of Waikato, Hamilton, New Zealand
20 *
21 */
22
23
24package weka.experiment;
25
26import weka.classifiers.Classifier;
27import weka.classifiers.AbstractClassifier;
28import weka.classifiers.CostMatrix;
29import weka.classifiers.Evaluation;
30import weka.core.AdditionalMeasureProducer;
31import weka.core.Attribute;
32import weka.core.Instance;
33import weka.core.Instances;
34import weka.core.Option;
35import weka.core.RevisionUtils;
36import weka.core.Summarizable;
37import weka.core.Utils;
38
39import java.io.BufferedReader;
40import java.io.ByteArrayOutputStream;
41import java.io.File;
42import java.io.FileReader;
43import java.io.ObjectOutputStream;
44import java.lang.management.ManagementFactory;
45import java.lang.management.ThreadMXBean;
46import java.util.Enumeration;
47import java.util.Vector;
48
49/**
50 <!-- globalinfo-start -->
51 * SplitEvaluator that produces results for a classification scheme on a nominal class attribute, including weighted misclassification costs.
52 * <p/>
53 <!-- globalinfo-end -->
54 *
55 <!-- options-start -->
56 * Valid options are: <p/>
57 *
58 * <pre> -W &lt;class name&gt;
59 *  The full class name of the classifier.
60 *  eg: weka.classifiers.bayes.NaiveBayes</pre>
61 *
62 * <pre> -C &lt;index&gt;
63 *  The index of the class for which IR statistics
64 *  are to be output. (default 1)</pre>
65 *
66 * <pre> -I &lt;index&gt;
67 *  The index of an attribute to output in the
68 *  results. This attribute should identify an
69 *  instance in order to know which instances are
70 *  in the test set of a cross validation. if 0
71 *  no output (default 0).</pre>
72 *
73 * <pre> -P
74 *  Add target and prediction columns to the result
75 *  for each fold.</pre>
76 *
77 * <pre>
78 * Options specific to classifier weka.classifiers.rules.ZeroR:
79 * </pre>
80 *
81 * <pre> -D
82 *  If set, classifier is run in debug mode and
83 *  may output additional info to the console</pre>
84 *
85 * <pre> -D &lt;directory&gt;
86 *  Name of a directory to search for cost files when loading
87 *  costs on demand (default current directory).</pre>
88 *
89 <!-- options-end -->
90 *
91 * All options after -- will be passed to the classifier.
92 *
93 * @author Len Trigg (len@reeltwo.com)
94 * @version $Revision: 5987 $
95 */
96public class CostSensitiveClassifierSplitEvaluator 
97  extends ClassifierSplitEvaluator {
98
99  /** for serialization */
100  static final long serialVersionUID = -8069566663019501276L;
101
102  /**
103   * The directory used when loading cost files on demand, null indicates
104   * current directory
105   */
106  protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));
107
108  /** The length of a result */
109  private static final int RESULT_SIZE = 31;
110
111  /**
112   * Returns a string describing this split evaluator
113   * @return a description of the split evaluator suitable for
114   * displaying in the explorer/experimenter gui
115   */
116  public String globalInfo() {
117    return " SplitEvaluator that produces results for a classification scheme "
118      +"on a nominal class attribute, including weighted misclassification "
119      +"costs.";
120  }
121
122  /**
123   * Returns an enumeration describing the available options..
124   *
125   * @return an enumeration of all the available options.
126   */
127  public Enumeration listOptions() {
128
129    Vector newVector = new Vector(1);
130    Enumeration enu = super.listOptions();
131    while (enu.hasMoreElements()) {
132      newVector.addElement(enu.nextElement());
133    }
134
135    newVector.addElement(new Option(
136              "\tName of a directory to search for cost files when loading\n"
137              +"\tcosts on demand (default current directory).",
138              "D", 1, "-D <directory>"));
139
140    return newVector.elements();
141  }
142
143  /**
144   * Parses a given list of options. <p/>
145   *
146   <!-- options-start -->
147   * Valid options are: <p/>
148   *
149   * <pre> -W &lt;class name&gt;
150   *  The full class name of the classifier.
151   *  eg: weka.classifiers.bayes.NaiveBayes</pre>
152   *
153   * <pre> -C &lt;index&gt;
154   *  The index of the class for which IR statistics
155   *  are to be output. (default 1)</pre>
156   *
157   * <pre> -I &lt;index&gt;
158   *  The index of an attribute to output in the
159   *  results. This attribute should identify an
160   *  instance in order to know which instances are
161   *  in the test set of a cross validation. if 0
162   *  no output (default 0).</pre>
163   *
164   * <pre> -P
165   *  Add target and prediction columns to the result
166   *  for each fold.</pre>
167   *
168   * <pre>
169   * Options specific to classifier weka.classifiers.rules.ZeroR:
170   * </pre>
171   *
172   * <pre> -D
173   *  If set, classifier is run in debug mode and
174   *  may output additional info to the console</pre>
175   *
176   * <pre> -D &lt;directory&gt;
177   *  Name of a directory to search for cost files when loading
178   *  costs on demand (default current directory).</pre>
179   *
180   <!-- options-end -->
181   *
182   * All options after -- will be passed to the classifier.
183   *
184   * @param options the list of options as an array of strings
185   * @throws Exception if an option is not supported
186   */
187  public void setOptions(String[] options) throws Exception {
188   
189    String demandDir = Utils.getOption('D', options);
190    if (demandDir.length() != 0) {
191      setOnDemandDirectory(new File(demandDir));
192    }
193
194    super.setOptions(options);
195  }
196
197  /**
198   * Gets the current settings of the Classifier.
199   *
200   * @return an array of strings suitable for passing to setOptions
201   */
202  public String [] getOptions() {
203
204    String [] superOptions = super.getOptions();
205    String [] options = new String [superOptions.length + 3];
206    int current = 0;
207
208    options[current++] = "-D";
209    options[current++] = "" + getOnDemandDirectory();
210
211    System.arraycopy(superOptions, 0, options, current, 
212                     superOptions.length);
213    current += superOptions.length;
214    while (current < options.length) {
215      options[current++] = "";
216    }
217    return options;
218  }
219
220  /**
221   * Returns the tip text for this property
222   * @return tip text for this property suitable for
223   * displaying in the explorer/experimenter gui
224   */
225  public String onDemandDirectoryTipText() {
226    return "The directory to look in for cost files. This directory will be "
227      +"searched for cost files when loading on demand.";
228  }
229
230  /**
231   * Returns the directory that will be searched for cost files when
232   * loading on demand.
233   *
234   * @return The cost file search directory.
235   */
236  public File getOnDemandDirectory() {
237
238    return m_OnDemandDirectory;
239  }
240
241  /**
242   * Sets the directory that will be searched for cost files when
243   * loading on demand.
244   *
245   * @param newDir The cost file search directory.
246   */
247  public void setOnDemandDirectory(File newDir) {
248
249    if (newDir.isDirectory()) {
250      m_OnDemandDirectory = newDir;
251    } else {
252      m_OnDemandDirectory = new File(newDir.getParent());
253    }
254  }
255
256  /**
257   * Gets the data types of each of the result columns produced for a
258   * single run. The number of result fields must be constant
259   * for a given SplitEvaluator.
260   *
261   * @return an array containing objects of the type of each result column.
262   * The objects should be Strings, or Doubles.
263   */
264  public Object [] getResultTypes() {
265    int addm = (m_AdditionalMeasures != null) 
266      ? m_AdditionalMeasures.length 
267      : 0;
268    Object [] resultTypes = new Object[RESULT_SIZE+addm];
269    Double doub = new Double(0);
270    int current = 0;
271    resultTypes[current++] = doub;
272    resultTypes[current++] = doub;
273
274    resultTypes[current++] = doub;
275    resultTypes[current++] = doub;
276    resultTypes[current++] = doub;
277    resultTypes[current++] = doub;
278    resultTypes[current++] = doub;
279    resultTypes[current++] = doub;
280    resultTypes[current++] = doub;
281    resultTypes[current++] = doub;
282
283    resultTypes[current++] = doub;
284    resultTypes[current++] = doub;
285    resultTypes[current++] = doub;
286    resultTypes[current++] = doub;
287
288    resultTypes[current++] = doub;
289    resultTypes[current++] = doub;
290    resultTypes[current++] = doub;
291    resultTypes[current++] = doub;
292    resultTypes[current++] = doub;
293    resultTypes[current++] = doub;
294
295    resultTypes[current++] = doub;
296    resultTypes[current++] = doub;
297    resultTypes[current++] = doub;
298
299    // Timing stats
300    resultTypes[current++] = doub;
301    resultTypes[current++] = doub;
302    resultTypes[current++] = doub;
303    resultTypes[current++] = doub;
304   
305    // sizes
306    resultTypes[current++] = doub;
307    resultTypes[current++] = doub;
308    resultTypes[current++] = doub;
309   
310    resultTypes[current++] = "";
311
312    // add any additional measures
313    for (int i=0;i<addm;i++) {
314      resultTypes[current++] = doub;
315    }
316    if (current != RESULT_SIZE+addm) {
317      throw new Error("ResultTypes didn't fit RESULT_SIZE");
318    }
319    return resultTypes;
320  }
321
322  /**
323   * Gets the names of each of the result columns produced for a single run.
324   * The number of result fields must be constant
325   * for a given SplitEvaluator.
326   *
327   * @return an array containing the name of each result column
328   */
329  public String [] getResultNames() {
330    int addm = (m_AdditionalMeasures != null) 
331      ? m_AdditionalMeasures.length 
332      : 0;
333    String [] resultNames = new String[RESULT_SIZE+addm];
334    int current = 0;
335    resultNames[current++] = "Number_of_training_instances";
336    resultNames[current++] = "Number_of_testing_instances";
337
338    // Basic performance stats - right vs wrong
339    resultNames[current++] = "Number_correct";
340    resultNames[current++] = "Number_incorrect";
341    resultNames[current++] = "Number_unclassified";
342    resultNames[current++] = "Percent_correct";
343    resultNames[current++] = "Percent_incorrect";
344    resultNames[current++] = "Percent_unclassified";
345    resultNames[current++] = "Total_cost";
346    resultNames[current++] = "Average_cost";
347
348    // Sensitive stats - certainty of predictions
349    resultNames[current++] = "Mean_absolute_error";
350    resultNames[current++] = "Root_mean_squared_error";
351    resultNames[current++] = "Relative_absolute_error";
352    resultNames[current++] = "Root_relative_squared_error";
353
354    // SF stats
355    resultNames[current++] = "SF_prior_entropy";
356    resultNames[current++] = "SF_scheme_entropy";
357    resultNames[current++] = "SF_entropy_gain";
358    resultNames[current++] = "SF_mean_prior_entropy";
359    resultNames[current++] = "SF_mean_scheme_entropy";
360    resultNames[current++] = "SF_mean_entropy_gain";
361
362    // K&B stats
363    resultNames[current++] = "KB_information";
364    resultNames[current++] = "KB_mean_information";
365    resultNames[current++] = "KB_relative_information";
366
367    // Timing stats
368    resultNames[current++] = "Elapsed_Time_training";
369    resultNames[current++] = "Elapsed_Time_testing";
370    resultNames[current++] = "UserCPU_Time_training";
371    resultNames[current++] = "UserCPU_Time_testing";
372
373    // sizes
374    resultNames[current++] = "Serialized_Model_Size";
375    resultNames[current++] = "Serialized_Train_Set_Size";
376    resultNames[current++] = "Serialized_Test_Set_Size";
377
378    // Classifier defined extras
379    resultNames[current++] = "Summary";
380    // add any additional measures
381    for (int i=0;i<addm;i++) {
382      resultNames[current++] = m_AdditionalMeasures[i];
383    }
384    if (current != RESULT_SIZE+addm) {
385      throw new Error("ResultNames didn't fit RESULT_SIZE");
386    }
387    return resultNames;
388  }
389
390  /**
391   * Gets the results for the supplied train and test datasets. Now performs
392   * a deep copy of the classifier before it is built and evaluated (just in case
393   * the classifier is not initialized properly in buildClassifier()).
394   *
395   * @param train the training Instances.
396   * @param test the testing Instances.
397   * @return the results stored in an array. The objects stored in
398   * the array may be Strings, Doubles, or null (for the missing value).
399   * @throws Exception if a problem occurs while getting the results
400   */
401  public Object [] getResult(Instances train, Instances test)
402  throws Exception {
403   
404    if (train.classAttribute().type() != Attribute.NOMINAL) {
405      throw new Exception("Class attribute is not nominal!");
406    }
407    if (m_Template == null) {
408      throw new Exception("No classifier has been specified");
409    }
410    ThreadMXBean thMonitor = ManagementFactory.getThreadMXBean();
411    boolean canMeasureCPUTime = thMonitor.isThreadCpuTimeSupported();
412    if(!thMonitor.isThreadCpuTimeEnabled())
413      thMonitor.setThreadCpuTimeEnabled(true);
414   
415    int addm = (m_AdditionalMeasures != null) ? m_AdditionalMeasures.length : 0;
416    Object [] result = new Object[RESULT_SIZE+addm];
417    long thID = Thread.currentThread().getId();
418    long CPUStartTime=-1, trainCPUTimeElapsed=-1, testCPUTimeElapsed=-1,
419         trainTimeStart, trainTimeElapsed, testTimeStart, testTimeElapsed;   
420   
421    String costName = train.relationName() + CostMatrix.FILE_EXTENSION;
422    File costFile = new File(getOnDemandDirectory(), costName);
423    if (!costFile.exists()) {
424      throw new Exception("On-demand cost file doesn't exist: " + costFile);
425    }
426    CostMatrix costMatrix = new CostMatrix(new BufferedReader(
427    new FileReader(costFile)));
428   
429    Evaluation eval = new Evaluation(train, costMatrix);   
430    m_Classifier = AbstractClassifier.makeCopy(m_Template);
431   
432    trainTimeStart = System.currentTimeMillis();
433    if(canMeasureCPUTime)
434      CPUStartTime = thMonitor.getThreadUserTime(thID);
435    m_Classifier.buildClassifier(train);
436    if(canMeasureCPUTime)
437      trainCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
438    trainTimeElapsed = System.currentTimeMillis() - trainTimeStart;
439    testTimeStart = System.currentTimeMillis();
440    if(canMeasureCPUTime)
441      CPUStartTime = thMonitor.getThreadUserTime(thID);
442    eval.evaluateModel(m_Classifier, test);
443    if(canMeasureCPUTime)
444      testCPUTimeElapsed = thMonitor.getThreadUserTime(thID) - CPUStartTime;
445    testTimeElapsed = System.currentTimeMillis() - testTimeStart;
446    thMonitor = null;
447   
448    m_result = eval.toSummaryString();
449    // The results stored are all per instance -- can be multiplied by the
450    // number of instances to get absolute numbers
451    int current = 0;
452    result[current++] = new Double(train.numInstances());
453    result[current++] = new Double(eval.numInstances());
454   
455    result[current++] = new Double(eval.correct());
456    result[current++] = new Double(eval.incorrect());
457    result[current++] = new Double(eval.unclassified());
458    result[current++] = new Double(eval.pctCorrect());
459    result[current++] = new Double(eval.pctIncorrect());
460    result[current++] = new Double(eval.pctUnclassified());
461    result[current++] = new Double(eval.totalCost());
462    result[current++] = new Double(eval.avgCost());
463   
464    result[current++] = new Double(eval.meanAbsoluteError());
465    result[current++] = new Double(eval.rootMeanSquaredError());
466    result[current++] = new Double(eval.relativeAbsoluteError());
467    result[current++] = new Double(eval.rootRelativeSquaredError());
468   
469    result[current++] = new Double(eval.SFPriorEntropy());
470    result[current++] = new Double(eval.SFSchemeEntropy());
471    result[current++] = new Double(eval.SFEntropyGain());
472    result[current++] = new Double(eval.SFMeanPriorEntropy());
473    result[current++] = new Double(eval.SFMeanSchemeEntropy());
474    result[current++] = new Double(eval.SFMeanEntropyGain());
475   
476    // K&B stats
477    result[current++] = new Double(eval.KBInformation());
478    result[current++] = new Double(eval.KBMeanInformation());
479    result[current++] = new Double(eval.KBRelativeInformation());
480   
481    // Timing stats
482    result[current++] = new Double(trainTimeElapsed / 1000.0);
483    result[current++] = new Double(testTimeElapsed / 1000.0);
484    if(canMeasureCPUTime) {
485      result[current++] = new Double((trainCPUTimeElapsed/1000000.0) / 1000.0);
486      result[current++] = new Double((testCPUTimeElapsed /1000000.0) / 1000.0);
487    }
488    else {
489      result[current++] = new Double(Utils.missingValue());
490      result[current++] = new Double(Utils.missingValue());
491    }
492   
493    // sizes
494    ByteArrayOutputStream bastream = new ByteArrayOutputStream();
495    ObjectOutputStream oostream = new ObjectOutputStream(bastream);
496    oostream.writeObject(m_Classifier);
497    result[current++] = new Double(bastream.size());
498    bastream = new ByteArrayOutputStream();
499    oostream = new ObjectOutputStream(bastream);
500    oostream.writeObject(train);
501    result[current++] = new Double(bastream.size());
502    bastream = new ByteArrayOutputStream();
503    oostream = new ObjectOutputStream(bastream);
504    oostream.writeObject(test);
505    result[current++] = new Double(bastream.size());
506   
507    if (m_Classifier instanceof Summarizable) {
508      result[current++] = ((Summarizable)m_Classifier).toSummaryString();
509    } else {
510      result[current++] = null;
511    }
512   
513    for (int i=0;i<addm;i++) {
514      if (m_doesProduce[i]) {
515        try {
516          double dv = ((AdditionalMeasureProducer)m_Classifier).
517          getMeasure(m_AdditionalMeasures[i]);
518          if (!Utils.isMissingValue(dv)) {
519            Double value = new Double(dv);
520            result[current++] = value;
521          } else {
522            result[current++] = null;
523          }
524        } catch (Exception ex) {
525          System.err.println(ex);
526        }
527      } else {
528        result[current++] = null;
529      }
530    }
531   
532    if (current != RESULT_SIZE+addm) {
533      throw new Error("Results didn't fit RESULT_SIZE");
534    }
535    return result;
536  }
537
538  /**
539   * Returns a text description of the split evaluator.
540   *
541   * @return a text description of the split evaluator.
542   */
543  public String toString() {
544
545    String result = "CostSensitiveClassifierSplitEvaluator: ";
546    if (m_Template == null) {
547      return result + "<null> classifier";
548    }
549    return result + m_Template.getClass().getName() + " " 
550      + m_ClassifierOptions + "(version " + m_ClassifierVersion + ")";
551  }
552 
553  /**
554   * Returns the revision string.
555   *
556   * @return            the revision
557   */
558  public String getRevision() {
559    return RevisionUtils.extract("$Revision: 5987 $");
560  }
561} // CostSensitiveClassifierSplitEvaluator
Note: See TracBrowser for help on using the repository browser.